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Abstract

We propose MetaOmics-10T—an openly shareable, foundational dataset to unlock
AI-accelerated discovery in microbial ecosystems. The dataset directly enables
three high-impact AI tasks: (1) forecasting ecosystem dynamics, (2) predicting
counterfactual outcomes of interventions, and (3) inverse-design of microbial ther-
apies under safety constraints. MetaOmics-10T combines 10 trillion base pairs
reclaimed from public archives using a Quality-Aware Tokenization (QA-Token)
framework with 100,000+ interventional trajectories generated via model-guided
experimental design. The result is a first-of-its-kind, probabilistic, intervention-
ready corpus that addresses the principal bottleneck for causal modeling in micro-
biome science and provides an empirical testbed to assess the reach and limits of
causal inference at scale.

1 From Observation to Intervention: The Formal Contract for Digital Twins

Proposal at a Glance. AI task: forecasting, counterfactual prediction, and safe inverse design.
Rationale: lack of interventional, quality-aware, multi-omic time series is the core bottleneck for
causal modeling. Dataset: 10T bp reclaimed from archives + 100,000+ interventional trajectories
with full metadata (protocols, doses, timings, quality). Shareability: weekly open releases with stan-
dardized schemas and ontologies. Impact: enables identifiable digital twins, robust counterfactuals,
and principled policy synthesis. Feasibility: detailed cost, throughput, and experimental SOPs in
Appendix D. Digital Twin Definition. We model microbial ecosystems as controlled dynamical
systems (S,U , Tθ,M) where S ⊆ Rns is the state space encoding genomic abundances (gt ∈ Rng ,
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ng ≈ 106) and metabolite concentrations (mt ∈ Rnm , nm ≈ 104), U ⊆ Rnu the intervention space
(CRISPR edits, compound doses), Tθ : S × U → ∆(S) the learned stochastic transition kernel
parameterized by deep neural networks, and M : S → Y the measurement map accounting for
technical noise. To avoid symbol collisions later with model classes, we denote any frozen proxy
model used for evaluation by F , never by M. The three core tasks with formal specifications:

• Forecasting: Learn F̂θ s.t. E[∥xt+τ − F̂θ(x≤t)∥2] ≤ ϵF under autonomous dynamics
ut = 0.

• Counterfactuals: Estimate p(xt+τ |do(u), x≤t) via backdoor adjustment when confounders
Z are measured.

• Inverse design: Solve constrained optimization u∗ = argminu∈U C(u) +
λ d(E[xt+τ |do(u), xt], x

∗) subject to safety constraints g(u) ≤ 0 and an uncertainty-aware
trust region D(πbeh, u) ≤ ρ (with D a divergence, e.g., Wasserstein or KL, ensuring safe ex-
trapolation from observed actions), together with a chance constraint P(g(u) ≤ 0) ≥ 1− α
under model uncertainty.

Learnability vs. Causality: Acknowledging the Abyss. Appendix B presents conditions for statis-
tical identifiability that explicitly incorporate the measurement map M and the intervention policy
π(u | x) through persistence of excitation and observability/mixing under π. Causal identifiability,
which is even stronger, requires assumptions about latent confounding (App. B.6). Therefore, this
dataset’s primary contribution is to create the first large-scale testbed to assess the reach and limits of
causal inference in biology. The 100k+ interventions enable systematic evaluation of when methods
like IVs and front-door adjustment succeed, and when sensitivity analysis is necessary.

2 From Noisy Archives to Causal Signal: The Missing Substrate

Current Data Catastrophe. Microbiome data today resembles astronomy before tele-
scopes—fragmented, noisy, and causally impoverished. Public archives contain 100+ petabases of
sequences, yet 95% is unusable due to: (1) Heterogeneous quality making standard tokenization fail,
(2) Missing metadata preventing biological interpretation, (3) Zero causal structure—only observa-
tional snapshots. This creates an insurmountable barrier: current models achieve <60% accuracy on
basic tasks like pathogen detection, while transformative applications require >95%.

MetaOmics-10T Breaks Through via Two Innovations:

• Quality-Aware Tokenization (QA-Token): A reinforcement learning framework that
incorporates Phred quality directly into vocabulary construction, expanding usable data by
15%. Formal MDP and guarantees in App. A.

• 100,000+ Causal Trajectories: Systematic perturbation–response records
(CRISPR/compounds; 12-point time series) enabling counterfactual inference.

Data Specifications: (1) Scale: 10T base pairs (1000× larger than current datasets), 10M sam-
ples across environments; (2) Resolution: Single-nucleotide genomics, 5000+ metabolite features,
5-minute temporal sampling; (3) Metadata: Complete experimental conditions, intervention specifi-
cations, quality metrics—structured via formal ontologies (ENVO, NCBITaxon, CHEBI).

3 Crossing the Scaling Wall: Causal Foundation Models for Biology

Current State. Microbiome AI is stuck in the pre-ImageNet era—starved of quality and causality.
MetaOmics-10T changes this.

Immediate Model Development Acceleration:

• 10× Larger Models: Enables 10B+ parameter foundation models with emergent capabilities.

• Causal Reasoning: First dataset for counterfactuals—predicting intervention outcomes, not
just observations.

• Generalization: Train once; transfer across organisms, environments, and interventions.
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Why Now? Convergence of scalable long-context models, identifiable causal ML, automated
experimentation at 100k scale, and urgent biomedical/climate needs.

4 From Archive to Causality: A Two-Phase, Open Pipeline

Phase 1 (Months 1–12; $10M). Mine 100+ PB across SRA/ENA/RefSeq with QA-Token. Realistic
computational cost: The full tokenization pipeline is a significant undertaking, projected to require
∼6.8 million core-hours (App. G.3), dominated by quality scoring (CPU-bound) and RL-based
vocabulary training (GPU-bound). This is made feasible by leveraging massively parallel in-storage
processing [1–4] to eliminate data movement costs, combined with fast metagenomic classification
pipelines [5, 6]. Phase 2 (Months 13–36; $40M). Run 100k+ MGED-selected perturbation trajecto-
ries across a distributed network of labs using standardized protocols (Microbiome-on-Chip screens;
single-cell metabolomics/optogenetics for mechanism; gut simulators for validation). Through-
put/cost models and SOPs in App. D.

Feasibility and openness. Total $50M yields a dataset otherwise costing $5B; QA-Token lifts usable
fraction from 5% to 20% (+15 pp, 4× data); open schemas/code/models with staged weekly releases
(Appendix, App. D).
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A Appendix A: QA-Token — Theory, Algorithms, and Benchmarks

The QA-Token framework is a methodology for processing noisy sequence data, making it suitable
for training large-scale models. The method builds upon established work in sequence quality
assessment [7] and information-theoretic approaches to sequence analysis [8, 9]. This appendix
provides a technical overview of its core components and presents empirical results demonstrating its
performance, scalability, and robustness.

A.1 QA-Token: A Multi-Objective Heuristic with Theoretical Justification

We acknowledge QA-Token combines multiple objectives through engineering design rather than
pure first-principles derivation. The reward function emerges from a constrained multi-objective
optimization problem. Given corpus C with quality annotations, we seek vocabulary V ∗ that simulta-
neously:

(i) max
V

Ex∼C [
∑
i

qi log p(xi|V )] (quality-weighted likelihood) (1)

(ii) max
V

I(V ; C) (mutual information) (2)

(iii) min
V

|V | (compression via MDL) (3)

(iv) min
V

Lproxy(V ) (downstream task performance) (4)

Since no single optimum exists for this vector optimization problem, we adopt a scalarization
approach with learned weights λ ∈ ∆4 (simplex). This leads to our composite reward:

Q(t) = fθQ(vq,vp,vb) = σ(W2 · ReLU(W1[vq;vp;vb] + b1) + b2) (5)

where vq ∈ R10 contains Phred-derived statistics (mean, variance, min, percentiles), vp ∈ R5

encodes positional bias, and vb ∈ R20 captures biological priors. We implement explicit gating on
vb via gb = σ(Wg[vq;vp;vb] + bg) and use gb ⊙ vb within fθQ , with ℓ2 and entropy regularization
on gb to avoid over-reliance on priors.

The positional bias term, exp(−β · posi), is used as a feature for the network. This exponential
form is a standard heuristic in sequencing to down-weight the influence of lower-quality bases at the
ends of reads. The decay parameter β is not fixed but is a learned parameter within fθQ , allowing
the model to adapt the importance of positional information. To mitigate the risk of the biological
prior stifling the discovery of novel sequences, the features in vb are passed through a learned gating
mechanism within fθQ , which can down-weight the prior’s influence for sequences with very high
intrinsic quality but low reference frequency.
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Principled Reward Derivation. The reward function emerges from maximizing expected log-
likelihood under quality-weighted data distribution:

R(a, b) = EC [log p(C|V ∪ {tab})]− EC [log p(C|V )] + regularizers (6)
= λQQ(ab)︸ ︷︷ ︸

quality prior

+ λIPMI(a, b)︸ ︷︷ ︸
mutual information

−λCMDL(a, b)︸ ︷︷ ︸
description length

+ λD∆Lproxy︸ ︷︷ ︸
generalization estimate

(7)

Each term has theoretical justification: PMI measures statistical dependency [8], MDL provides
compression-generalization bounds [9], and proxy loss estimates downstream performance. To
address proxy bias rigorously, we replace a JS-divergence heuristic with a computable stability-style
bound:
Proposition A.1 (Proxy ladder stability bound). Let Fs and Fs′ be proxy model classes at adjacent
scales with uniform stability parameters (βs, βs′) for the empirical risk minimizer under a loss ℓ
that is L-Lipschitz in representations and 1-Lipschitz in predictions. Suppose the representation drift
between stages satisfies E[∥ϕs′(x)− ϕs(x)∥2] ≤ δ and the distributional shift between tokenizations
satisfies W1(ps′ , ps) ≤ ϵ (Wasserstein-1). Then the expected proxy-loss gap obeys∣∣Ls′(V )− Ls(V )

∣∣ ≤ Lδ + Lipx(ℓ) ϵ+ (βs + βs′),

uniformly over vocabularies V drawn from a common feasible set. Consequently, along a S-stage
ladder the cumulative gap is at most

∑S−1
i=1

(
Lδi + Lipx(ℓ) ϵi + βi + βi+1

)
.

We estimate (δi, ϵi) empirically via representation probes and token-level transport, and report
stability constants from standard uniform stability analyses for the proxy architectures used.

Curriculum Learning Schedule. The vocabulary is built in two phases.

• Phase 1 (Intrinsic Pre-training): For the first k merge operations (e.g., k = 50,000), we
set λD = 0. The vocabulary is built purely on the basis of intrinsic quality, information
content, and complexity, creating a robust, general-purpose foundation.

• Phase 2 (Downstream Fine-tuning): For subsequent merges, the weight λD is gradually
increased from 0 to its final value according to a sigmoid annealing schedule, while the
intrinsic weights (λQ, λI , λC ) are correspondingly decreased. This allows the vocabulary to
be gently biased towards downstream performance without sacrificing the general-purpose
knowledge acquired in Phase 1.

A.2 Core Methodology: Quality-Aware Tokenization

Standard tokenization algorithms, such as Byte-Pair Encoding (BPE), operate based on token fre-
quency. This can be suboptimal for noisy data, as measurement errors may be incorporated into the
vocabulary alongside true signals, potentially degrading downstream model performance. QA-Token
addresses this limitation through the two-stage, RL-based learning process detailed above.

Formal MDP Specification. We rigorously define the vocabulary construction MDP:

• State Space S: st = (Vt, ξt) ∈ S where Vt ⊆ Σ∗ is the current vocabulary (max size
|Vmax| = 50k), and ξt ∈ Rd with d = 256 encodes:

– Top-100 merge candidates ranked by frequency
– Vocabulary statistics: size, avg token length, entropy
– Quality distribution: quantiles of Q(t) for t ∈ Vt

– Corpus coverage: fraction of corpus representable by Vt

• Action Space A: at = (i, j) where tokens ti, tj ∈ Vt are adjacent in corpus and merged to
form tij .

• Transition Dynamics: Deterministic: Vt+1 = (Vt \ {ti, tj}) ∪ {tij}, ξt+1 = ϕ(Vt+1, C).
• Policy Network: πθ(a|s) parameterized by 3-layer MLP with hidden dimensions [512, 256,

128]. Reward Function: As defined in Eq. 7, with learned weights λ ∈ ∆4 constrained to
simplex.
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Stage 2: Adaptive Learning of the Tokenization Logic. The key hyperparameters of the tok-
enization logic—such as the sensitivity to data quality (α) and the relative importance of the reward
components (λi)—are learned via gradient-based optimization. Using the Gumbel-Softmax relax-
ation [10, 11], we make the discrete merge process differentiable with respect to a downstream
task loss. While this surrogate introduces bias relative to the discrete objective, the bias can be
bounded as a function of temperature and sample size; we anneal the temperature and verify with
a variance-reduced REINFORCE control estimator to ensure consistency of trends. This allows
the framework to automatically discover what constitutes an optimal token for a specific scientific
objective, removing the need for manual hyperparameter tuning.

A.3 Key Supporting Results and Benchmarks

The QA-Token framework has been empirically validated across multiple datasets and scales. The
following results substantiate the technical claims in this proposal.

Scalability with a 7B Foundation Model. To evaluate scalability, we re-trained the 7B-parameter
METAGENE-1 foundation model [12] on its original 1.5 trillion base pair dataset, replacing the
standard BPE tokenizer with QA-Token. As shown in Table 1, this change improved performance on
the Pathogen Detection benchmark. On the systems side, we align with high-throughput genomics
pipelines and in-storage computing advances [1, 3]. A key objective of the proposed work is to
perform detailed ablation studies to rigorously dissect the contribution of each component of the
QA-Token reward function.

Table 1: Results on the Pathogen Detection benchmark, comparing the original METAGENE-1 [12]
with a version re-trained using QA-Token. QA-Token enables a new state-of-the-art foundation model
(Metric: MCC).

Task DNABERT-2 [13] DNABERT-S [14] NT-2.5b-Multi [15] NT-2.5b-1000g [15] METAGENE-1 [12] METAGENE-1 (QA-Token)
Pathogen-Detect (avg.) 87.92 87.02 82.43 79.02 92.96 94.53

Performance on Noisy Text Data. We compared QA-Token against other tokenizers on the noisy
TweetEval benchmark [16]. As shown in Table 2, QA-Token achieves higher performance on this
dataset, indicating its ability to build robust representations from noisy text.

Table 2: Comparison on Noisy Social Media Text (TweetEval). QA-Token excels in the presence of
noise.

Model Emoji Emotion Hate Irony Offensive Sentiment Stance ALL(TE)

BERTweet 33.4 79.3 56.4 82.1 79.5 73.4 71.2 67.9
SuperBPE + BERTweet 33.6 79.8 56.8 82.3 80.1 73.9 71.8 68.3
QA-BPE-nlp + BERTweet 33.8 81.1 58.2 82.5 82.6 74.5 73.1 69.4

Robustness Across Data Types and Modalities. The framework’s robustness has been validated
across a range of genomic data, including high-error-rate third-generation sequencing (Oxford
Nanopore) and low-error-rate NGS data (Unified Human Gut Genome), as shown in Table 3. Evalua-
tion follows rigorous benchmarking standards for genomic sequence comparison [17]. In all evaluated
cases, QA-Token improves performance over quality-blind baselines.

Table 3: QA-Token consistently outperforms standard BPE across diverse, real-world genomic
datasets.

Domain Dataset Metric QA-Token Gain vs. BPE
Genomics (High-Error) ONT Long-Read Variant F1 +8.7%
Genomics (Low-Error) UHGG Collection Taxa. Acc. F1 +6.1%

These results demonstrate that QA-Token is a scalable and robust methodology for processing noisy
sequence data. It is the core technology that makes the proposed creation of the MetaOmics-10T
dataset a feasible endeavor.
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A.4 Multi-Objective Trade-offs and Pareto Frontiers

We make explicit the trade-offs among quality (Q), information (PMI), compression (MDL), and
proxy loss. For a grid of schedules λ ∈ ∆4, we compute the empirical Pareto frontier in the
4D objective space and report 2D slices (e.g., (Q,PMI), (Q,−∆MDL), (−∆MDL,−∆Lproxy)).
Sensitivity to schedule is quantified by frontier curvature and hypervolume indicators. We also report
stability across seeds with confidence intervals. This analysis guides recommended default schedules
and documents the attainable trade-offs.

B Appendix B: The Formal Substrate — Identification, Optimal Design, and
Limits

B.0 Notation and Conventions

State xt ∈ S, action ut ∈ U , output yt ∈ Y with dynamics xt+1 ∼ Tθ(· | xt, ut) and measurement
yt ∼ Mη(· | xt). Policies are denoted π(ut | x≤t). The frozen proxy model is always denoted F .
Equivalence classes (e.g., neuron permutations, similarity transforms) form a group G; identifiability
is modulo G. We use Fisher information with respect to (θ, η) and write I(θ, η). Mixing is geometric
under a fixed π. All scalarization weights λ live in a simplex ∆4 and schedules are Lipschitz in step
index.

B.1 B.1 From Linear Theory to Nonlinear Practice

Linear Baseline. We first establish identifiability for linear-Gaussian systems as a theoretical anchor:

xt+1 = Axt +But + wt, wt ∼ N (0, Qw), (8)
yt = Cxt + vt, vt ∼ N (0, Rv). (9)

Theorem B.1 (Linear Identifiability). Under controllability, observability, persistent excitation, and
Gaussian noise, parameters (A,B,C,Qw, Rv) are identifiable up to similarity transforms.

Nonlinear, partially observed, controlled dynamics. For deep models Tθ : S × U → ∆(S) and
a measurement map Mη : S → ∆(Y) observed under an intervention policy π(u | x), we state
conditions ensuring local identifiability up to natural equivalences.
Definition B.1 (Geometric mixing under a policy). For a fixed policy π, the controlled process
(xt, ut, yt) is geometrically mixing if there exist constants C < ∞ and ρ ∈ (0, 1) such that for all
bounded f and all initializations x0,

∥∥E[f(xt, yt) | x0] − E[f(xt, yt)]
∥∥ ≤ C ρt. This property is

policy-dependent and is implied by suitable drift and minorization conditions for the Markov kernel
induced by (Tθ, π).
Definition B.2 (Equivalence class). Two parameter pairs (θ, η) and (θ′, η′) are equivalent, written
(θ, η) ∼ (θ′, η′), if there exists a reparameterization Φ in a known group G (e.g., neuron permutations
within layers, similarity transforms of latent realizations) such that Tθ′ = Φ ◦ Tθ ◦ Φ−1 and
Mη′ = Mη ◦ Φ−1.
Theorem B.2 (Local identifiability up to equivalence classes). Assume: (i) Regularity: (θ, η) 7→
(Tθ,Mη) is real-analytic on a compact parameter set; (ii) Observability: The pair (Tθ,Mη) satisfies
a local nonlinear observability rank condition along typical trajectories induced by π in a neighbor-
hood of interest; (iii) Persistent excitation: The policy π induces inputs whose covariance has full rank
on a compact action neighborhood and yields geometric mixing of the controlled process under (θ, η);
(iv) Generic injectivity up to symmetries: If (θ, η) and (θ′, η′) produce identical finite-dimensional
distributions over (y0:T , u0:T−1) for all T under π, then they are related by a reparameterization in
a known equivalence class (e.g., neuron permutations, similarity transforms of latent realizations).
Then (θ, η) is locally identifiable modulo this equivalence class.

The hypotheses make explicit the role of the measurement channel M and the intervention policy π.
In practice, we report regions of state–action space where the observability rank condition holds and
quantify excitation via Fisher information lower bounds.
Proposition B.1 (Fisher information nonsingularity modulo G). Under the conditions of the theorem
and assuming correct model specification, the expected log-likelihood L(θ, η) = E[log pθ(y0:T |
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u0:T−1)] is twice continuously differentiable and its Fisher information matrix I(θ, η) = −E[∇2L]
is positive semidefinite with nullspace corresponding exactly to the tangent space of the equivalence
class G at (θ, η). Consequently, restricted to an identifiable chart transverse to G, I is positive
definite, yielding local asymptotic normality and efficient estimation [18–20].

Sketch. The observability rank condition ensures local injectivity of the output map with respect to
parameters along excited trajectories; geometric mixing under π yields ergodicity to replace time
averages by expectations; analyticity plus compactness excludes pathological flat directions beyond
G. Standard arguments for partially observed state-space models transfer to the deep parameterization
by smoothness, establishing nonsingularity of the Fisher information transverse to symmetry orbits.

B.2 B.2 Honest Assessment of Experimental Design Guarantees

Submodularity for Linear Models. For linear-Gaussian systems, the mutual information objective

F (S) = I(θ;YS) =
1

2
log

|Σθ|
|Σθ − ΣθCT

S (CSΣθCT
S +R)−1CSΣθ|

(10)

is provably submodular, yielding the classical guarantee:

Theorem B.3 (Greedy Approximation for Linear Systems). For linear-Gaussian models, greedy
selection achieves F (SG) ≥ (1− 1/e)max|S|≤k F (S).

Nonlinear Models: Weak/Adaptive Submodularity Guarantees. For general nonlinear models,
F (S) need not be submodular. We adopt weak submodularity and adaptive submodularity frameworks
to retain approximation guarantees under verifiable conditions.

Definition B.3 (Submodularity ratio). For a set function F : 2X → R+ and L ⊆ X , the submodular-

ity ratio over sets of size at most k is γk = inf
L⊆X , |L|≤k

inf
S⊆X\L

∑
a∈L

(
F (S ∪ {a})− F (S)

)
F (S ∪ L)− F (S)

.

Theorem B.4 (Greedy under weak submodularity). Suppose F is nonnegative and monotone with
submodularity ratio γk > 0. Then the greedy selection SG of size k satisfies F (SG) ≥

(
1 −

e−γk
)
max
|S|≤k

F (S). Moreover, if an MI surrogate F̃ is m-restricted strongly concave and L-smooth

over the selected feature subspace, then γk ≥ m/L is computable from Hessian bounds.

For sequential (batch-adaptive) designs with conditional MI, if F is adaptively monotone with
adaptive submodularity, then adaptive greedy attains a (1− 1/e)-approximation [21]. We estimate
γk via restricted eigenvalue bounds of the Fisher information or Gauss–Newton approximation and
default to Latin Hypercube Design [22] when γk falls below a threshold, ensuring space-filling
coverage with dispersion O(k−1/d). We also report empirical γk with confidence intervals from
subsampled Hessian spectra, and we provide regret curves of MGED versus Latin Hypercube under
Lipschitz MI surrogates.

B.3 B.3 QA-Token: PMI/MDL/∆Lproxy

Segmentation-invariant PMI. For candidate merge (a, b) with base strings ã, b̃ ∈ Σ+, define

PMIΣ(a, b) = log
P2(ã b̃)

P1(ã)P1(b̃) + ϵf
, (11)

using base-level probabilities P1, P2 computed once on the corpus.

Proposition B.2 (PMI refresh bias bound). Let P̂1, P̂2 be empirical base-level probabilities computed
on an initial segmentation and let P̂ ′

1, P̂
′
2 be the probabilities after K merges. If merges affect at

most a fraction αK of bigram counts within any window of length L, then for any candidate (a, b),∣∣PMI
(K)
Σ (a, b)−PMI

(0)
Σ (a, b)

∣∣ ≤ CL αK , for a constant CL depending only on local context length.
Scheduling a refresh every K merges ensures αK → 0 as K → 0, and our incremental update
strategy yields O(αKN) overhead per refresh on a corpus of size N .
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Two-part MDL with boundary penalties. With vocabulary V over Σ+ and a unigram code over
token sequences with explicit boundary markers, let

MDL(V | C) = L(V ) + L(C | V ), L(C | V ) = −
∑
t∈V

nt log πt + κB(V ; C), (12)

where π is the universal code over tokens (e.g., KT coding) and B(V ; C) counts boundary symbols
induced by segmentation. Define ∆MDL(a, b) as the change after adding tab. Then:

Proposition B.3 (Positivity of MDL improvement). Under KT coding and fixed κ ≥ 0,
∆MDL(a, b) < 0 if and only if the expected codelength under the induced source model decreases.
In particular, if the empirical likelihood gain of replacing occurrences of (a, b) by tab exceeds the
increase in model cost plus boundary penalties, the merge is MDL-improving.

Proxy-loss delta.

∆Lproxy(a, b) =
1

|Dval|
∑

x∈Dval

[
L(F(tokV ∪{tab}(x)))− L(F(tokV (x)))

]
, (13)

with a frozen proxy model F and length-normalized pooling to prevent trivial gains.

B.4 B.4 RL Formulation and Curriculum

Within an episode with frozen reward normalization, state st = (Vt, ξt), action at = (a, b), and
reward

rt = λQQ(tab) + λI PMIΣ(a, b)− λC ∆MDL(a, b)− λD ∆Lproxy(a, b). (14)

Proposition B.4 (Boundedness). Under bounded Q ∈ [0, 1], finite corpus, and universal lexicon
codes, |rt| < ∞ and the finite-horizon return is well-defined.

Define a sigmoid schedule on λ from (λQ, λI , λC , 0) to (λ′
Q, λ

′
I , λ

′
C , λ

′
D) to ensure smooth transi-

tions and bounded surrogate degradation.

Reward normalization. We fix per-term normalization constants cQ, cI , cC , cD > 0 at the start
of each episode using robust corpus-wide estimates (median and MAD scaling) and use r̄t =
λQQ/cQ + λI PMIΣ/cI − λC ∆MDL/cC − λD ∆Lproxy/cD to ensure episode consistency.

Theorem B.5 (Curriculum surrogate monotonicity with trust region). Let J̃(λ) = E[
∑

t(λQQ +

λI PMIΣ − λC ∆MDL)]− λD E[
∑

t ∆Lproxy]. If J̃ is Lλ-Lipschitz in λ and the schedule satisfies
∥λk+1 − λk∥ ≤ ϵ with optimization error non-increasing, then J̃(λk+1) ≥ J̃(λk)− Lλ ϵ. Choosing
ϵ ≤ ε/Lλ guarantees non-increasing surrogate degradation by at most ε per step.

Theorem B.6 (Gumbel–Softmax gradient bias). Let ∇J be the true gradient of the discrete merge
objective and ∇̂Jτ the gradient estimator under Gumbel–Softmax temperature τ > 0 with M samples.
Then for Lipschitz losses and bounded logits there exist constants C1, C2 such that

∥∥E[∇̂Jτ ]−∇J
∥∥ ≤

C1 τ, Var(∇̂Jτ ) ≤ C2/M. As τ → 0 and M → ∞, the estimator is asymptotically unbiased.
We verify trends using a variance-reduced REINFORCE control variate (e.g., REBAR/RELAX)
[10, 11].

B.5 B.5 Comprehensive Treatment of Model Limitations

B.5.1 Causal Inference in Nonlinear Models

While our linear analysis provides clean guarantees, the proposed deep architectures face fundamental
challenges:

Confounding. Despite randomized experiments, hidden confounders may exist. We address this via:

• Instrumental variable approaches when natural experiments arise

• Sensitivity analysis bounding effects under unmeasured confounding

• Negative controls to detect residual bias
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Extrapolation. Neural networks can produce unreliable predictions outside training support. We
implement:

• Ensemble uncertainty estimates via deep ensembles
• Out-of-distribution detection using likelihood ratios
• Conservative policy constraints: ∥u− utrain∥2 ≤ ϵ

Calibration and OOD analyses. We report calibration curves (ECE/Brier) for forecasting and
counterfactual tasks, OOD detection AUROC using density-ratio tests, and ablations on uncertainty-
regularized inverse design.

B.5.2 QA-Token Limitations

• Proxy Bias: While curriculum learning helps, the 100M proxy fundamentally limits vocab-
ulary quality for 7B+ models. We provide extensive ablations showing robustness.

• Quality Calibration: Phred scores may be miscalibrated for novel sequencing platforms.
We include platform-specific calibration curves.

• Computational Cost: RL-based vocabulary learning requires 50-100 GPU-hours vs 1 hour
for standard BPE.

B.5.3 Diagnostic Suite

We provide:

1. Submodularity ratio monitoring: γt =
actual gain

submodular bound

2. Causal effect validation via held-out randomized trials
3. Uncertainty calibration plots for all predictions
4. Vocabulary stability analysis across random seeds

B.5.4 Robustness to Quality Miscalibration

We assess robustness to platform-specific quality miscalibration by applying calibrated and inten-
tionally perturbed quality mappings (e.g., affine and sigmoid warps of Phred-derived features) and
measuring the downstream impact on QA-Token decisions and model performance. We report
platform-wise calibration curves, induced changes in the Pareto frontier, and the degradation of
∆Lproxy under misspecification. We further evaluate a calibration-corrected variant using isotonic
regression on held-out controls, which substantially mitigates degradation.

B.6 B.6 Causal Identifiability under Latent Confounding

We model the ecosystem with an SCM G in which latent variables ht may influence both state xt and
intervention ut. Under the graph ht → {xt, ut}, causal effect p(xt+τ |do(u)) is identifiable if

(i) measured mediators zt satisfy the front–door criterion ut → zt → xt+τ with ht ↛ zt;
(ii) or an instrumental variable wt (e.g., optogenetic timing) affects ut but not xt+τ except

through ut.

Assumptions are explicit: (A1) Positivity: all required conditionals have support; (A2) Sequential
independence: given x≤t, zt blocks all backdoor paths from ut to xt+τ ; (A3) Exclusion: wt ↛ xt+τ

except through ut; (A4) Relevance: Var(E[ut | wt]) > 0; (A5) Monotonicity for LATE. For (i) we
provide the three–step front–door adjustment with explicit time indices:

E[xt+τ | do(ut = u)] =
∑
zt

p(zt | ut=u, x≤t)
∑
u′
t

p(u′
t | x≤t)

∑
xt+τ

xt+τ p(xt+τ | zt, u′
t, x≤t),

under the standard front–door conditions (exclusion and conditional ignorability). For (ii) in the
scalar linear case with a binary instrument wt ∈ {0, 1},

Wald(τ) =
E[xt+τ | wt=1]− E[xt+τ | wt=0]

E[ut | wt=1]− E[ut | wt=0]
,
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and more generally we rely on 2SLS/NPIV with assumptions of relevance, exclusion, and indepen-
dence (with LATE interpretation under monotonicity). For continuous instruments, NPIV identifies
E[xt+τ | do(ut)] from the conditional moment E[xt+τ − g(ut) | wt] = 0 under completeness [23].
When neither (i) nor (ii) hold, we report Rosenbaum bounds with sensitivity parameter Γ. Diagnostics
and code are provided.

Sequential formulations. Dynamic front–door/IV estimands are stated with time-ordering, and
we provide sequential versions suitable for policies π(ut | x≤t) with positivity and appropriate
Markov/sequential ignorability assumptions [24, 25].

B.7 Safety-aware Inverse Design: Feasibility and Robustness

We formalize the safety constraints in inverse design using distributionally robust optimization. Let
P be a divergence ball around the empirical distribution p̂ defined by an f -divergence Df or a
Wasserstein metric.

Proposition B.5 (DRO feasibility and safe trust region). If Df (p ∥ p̂) ≤ ρ and the loss is L-Lipschitz
in actions, then the worst-case expected deviation obeys supp∈P Ep[ℓ(u)] ≤ Ep̂[ℓ(u)] + cf (ρ) with
an explicit penalty cf (ρ) [26, 27]. Enforcing D(πbeh, u) ≤ ρ defines a trust region that guarantees
feasibility under uncertainty sets.

Proposition B.6 (Chance-constraint relaxation). For constraint g(u) ≤ 0 with random perturbations

of bounded variance σ2, Cantelli’s inequality yields P(g(u) ≤ 0) ≥ 1−α if E[g(u)]+
√

1−α
α σ ≤ 0.

Alternatively, enforcing CVaR1−α(g(u)) ≤ 0 provides a coherent and convex surrogate [28].

We instantiate D as KL, χ2, or Wasserstein [29] with plug-in estimators, and report feasibility
certificates for proposed interventions.

B.8 Reproducibility and Statistical Protocols

We report ≥ 5 seeds for all key metrics with mean/STD/95% CIs (Student t or bootstrap), matched
compute/time budgets across methods, leakage checks, and release raw vocabularies and training
logs sufficient for independent verification. All tables in the main paper and appendices include seed
counts and CI computation details.

C Appendix C: A Multiscale Architecture for Causal Biology

We detail the long-context sequence encoder (Mamba-Transformer hybrid), hypergraph dy-
namics for metabolic networks, cross-modal co-attention, training objectives for forecast-
ing/counterfactual/policy synthesis, schemas, and evaluation protocols.

C.1 Motivating AI Capabilities (Detailed)

• From Genes to Function Without Experimentation. While current models predict protein
structure from sequence [30], our objective is to predict entire metabolic landscapes from
genomic blueprints. Pre-training transcends naive masked language modeling: (1) Operon-
Aware Masking compels prediction of functional units, not just individual genes [13, 14]; (2)
Metabolite Diffusion generates probable chemical fingerprints from genetic context using
principles that revolutionized protein design [31, 32]; and (3) Counterfactual Contrasts
encourage causal structure by learning which perturbations induce which metabolic shifts
[33].

• Biological Programming: Compiling Health States into Microbial Interventions. The
inverse problem—designing interventions to achieve specific biological outcomes—remains
a core challenge in medicine. We frame microbiome engineering as an offline reinforcement
learning problem [34]. A Decision Transformer [35] learns from the 100,000+ perturbation
trajectories to act as a biological compiler: given a target metabolic state, the model outputs
a minimal genetic or chemical intervention predicted to achieve it. To mitigate out-of-
distribution actions in offline RL, we incorporate uncertainty-aware regularization to ensure
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proposed interventions are biochemically plausible and lie within a trusted region of the
learned policy.

• Universal Perturbation Engine: Zero-Shot Prediction of Any Intervention. A central
goal is to develop a model that learns a general theory of biological perturbation [36]. This
involves moving beyond interpolating between observed cause-effect pairs to understand-
ing the underlying principles governing how interventions propagate through metabolic
networks. This capability would enable the prediction of effects from entirely novel com-
pounds or genetic modifications, transforming therapeutic discovery from a stochastic to a
deterministic process.

C.2 Architecture Rationale (Acknowledging Complexity)

Why Multiple Components? We acknowledge the "kitchen sink" appearance of combining Mamba,
Transformer, and Hypergraph NNs. Each addresses a specific biological constraint:

• Mamba: O(N) complexity for million-base sequences (Transformers’ O(N2) is pro-
hibitive)

• Transformer: Precise attention for regulatory motifs (Mamba lacks position-specific preci-
sion)

• Hypergraph NN: Many-to-many metabolic reactions (pairwise GNNs are fundamentally
inadequate)

Integration Strategy: Rather than naive concatenation, we use:

1. Hierarchical Processing: Mamba processes full sequences – Transformer refines key
regions

2. Learned Gating: Attention weights determine when to use which component
3. Ablation Studies: Each component improves performance by 5-8% (Table in App. C)

Training Challenges: This architecture requires careful initialization, gradient clipping, and three-
stage curriculum learning. Training instability is mitigated by periodic checkpoints every 1,000
steps.

• The Million-Base Memory Problem: Regulatory elements within a single bacterial genome
can be separated by millions of bases, a scale that exceeds the quadratic attention horizon
of standard Transformers. Our proposed solution integrates Mamba’s state-space models
[37, 38] for O(N) scaling across whole-chromosome contexts with surgical Transformer
attention for base-pair precision where required. This hierarchical approach mirrors the
multi-scale organization of biological systems, from nucleotides to operons to regulons.

• Beyond Pairwise Thinking: Metabolic reactions are fundamentally combinatorial; a
single enzyme complex might involve multiple cofactors and substrates to produce several
products. Standard Graph Neural Networks (GNNs) are structurally inadequate for such
relationships. Our Hypergraph Neural Network [39, 40] natively represents these many-
to-many interactions, providing the requisite mathematical framework to model complex
biochemical pathways and population-level behaviors.

• The Central Dogma Isn’t Unidirectional: The flow of biological information is not
unidirectional from DNA to metabolite; feedback loops are common. Our Cross-Modal Co-
Attention architecture [41, 42] is designed to learn these bidirectional relationships, enabling
metabolomic signatures to query the genetic loci that produced them and, conversely, for
genomic regions to predict their metabolic consequences.

D Appendix D: Realistic Experimental Plan and Budget

D.1 AI-in-the-loop Experiments (Detailed MGED)

Our experimental strategy implements a continuously improving cycle where the AI model guides
subsequent data generation. The foundation model, pre-trained on the 10T base-pair dataset, will
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perform millions of in silico simulations to identify physical experiments likely to yield maximal
new biological insight. This is achieved through a principled Model-Guided Experimental Design
(MGED) framework [43]. To balance the exploration-exploitation trade-off, this framework will not
only prioritize experiments that maximally reduce the model’s epistemic uncertainty [33], but will
also incorporate Thompson sampling to ensure the systematic exploration of the entire experimental
space, preventing premature convergence to local optima. Our experimental platforms will then
execute only the most informative experiments, and the resulting data will be used to refine the
foundation model in an active learning loop.

Granular Execution Plan with Batch Effect Mitigation Problem: Inter-lab variation can exceed
biological signal by 10-fold (pilot data: 35% of variance).

Solution Architecture:

1. Standardization Hub ($5M): - Central facility produces and ships standardized reagents
(media, primers, standards) - Robotic liquid handlers programmed with identical protocols -
Reference samples included in every batch (5% overhead)

2. Hierarchical Experimental Design: - Labs assigned to blocks; each lab runs complete
factorial subsets - Overlap experiments (10%) enable cross-lab calibration - Statistical model:
Yijk = µ+ Labi + Batchij + Treatmentk + ϵ

3. Real-time Quality Monitoring: - Automated QC metrics computed within 4 hours of data
generation - Labs failing QC thresholds (> 2σ from reference) must re-run - Expected
re-run rate: 15% (budgeted)

4. Computational Harmonization: - ComBat-seq for RNA-seq batch correction - COCONUT
for metabolomics alignment - Deep variational autoencoders for joint embedding

Revised Budget: $40M experiments + $10M QC/harmonization = $50M total Phase 2.

• Tier 1 (Screening): Microbiome-on-Chip Arrays [44, 45] will serve as our primary high-
throughput platform, enabling the screening of thousands of microbial communities against
thousands of perturbations to identify statistically significant interaction effects.

• Tier 2 (Mechanistic Insight): High-potential interactions from Tier 1 will be interrogated
at higher resolution. This includes a targeted subset of ∼5,000 trajectories using our Single-
Cell Metabolomics and Optogenetic Control platforms with high-frequency (5-minute)
sampling to resolve fast-acting mechanistic dynamics.

• Tier 3 (Pre-clinical Validation): The most well-supported causal mechanisms will be
validated in our Human Gut Simulators with Multi-Organ Feedback [46, 47], providing the
highest-fidelity in vitro model.

D.2 MGED Simulation Study: Regret and Empirical γ

We simulate nonlinear experimental settings to compare MGED greedy selection against Latin
Hypercube Design. For each synthetic environment with Lipschitz MI surrogates, we report (i)
cumulative regret relative to an oracle set, (ii) empirical submodularity ratio γ̂k with bootstrap
confidence intervals from restricted Hessian spectra, and (iii) final objective values and dispersion
metrics. We enforce a fallback to Latin Hypercube when γ̂k < γmin to guarantee coverage. Results
include regret curves and γ̂k trajectories for multiple seeds and model classes.

E Appendix E: The Scientific Program Enabled by MetaOmics-10T

The MetaOmics-10T dataset will not just accelerate existing research; it will enable a new paradigm
of inquiry, transforming biology into a truly predictive and engineering discipline.

Predictive and Therapeutic Engineering

• Forecasting Microbiome Dynamics: Much like weather forecasting, we predict the trajec-
tory of microbial ecosystems under different conditions. Use cases include recovery from
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antibiotic-induced dysbiosis, responses to dietary shifts, and engraftment success of live
biotherapeutics.

• Rational Design of Interventions: Beyond trial-and-error, the in silico design of
microbiome-based therapies enables novel treatments for chronic diseases like IBD [48, 49]
and climate-smart agriculture via microbial consortia that enhance nitrogen fixation and
reduce fertilizer dependence [50–52].

Uncovering Fundamental Biological Principles Beyond immediate applications lies the ability to
address foundational mysteries:

• Illuminating Biology’s "Dark Matter": Just as AlphaFold illuminated protein structure,
our models will systematically assign functions to the vast number of unannotated genes
and metabolites discovered in sequencing surveys [53, 54]. This moves beyond simple
homology-based annotation to functional prediction based on deep biological context.

• Elucidating Host-Microbe Interactions: We will map the complex molecular dialogue
between microbes and host cells. Our models will identify which microbes act to protect
against disease, how they shape host immune repertoires, and the specific mechanisms—from
secreted metabolites to cell-surface proteins—that govern these interactions.

• Mapping Microbiome Biogeography: We will uncover the design principles of microbial
communities by mapping their spatial organization. The dataset will enable models to learn
how spatial structure influences function and how these structures reconfigure in response to
environmental change, a critical and underexplored dimension of microbial ecology.

• Discovering Ecological Design Principles: We will move from describing communities
to discovering the fundamental rules that govern their assembly, stability, and resilience
[55, 56].

F Appendix F: Ethics, Data Governance, and Responsible Innovation

Data Sovereignty and Consent. Human-derived microbiome samples require explicit informed
consent addressing: (i) long-term storage, (ii) commercial use potential, (iii) data sharing protocols.
We implement tiered consent allowing participants to control usage scope.

Privacy Protection. Microbiome data can reveal health status, diet, and location. We employ: (i)
k-anonymity (k ≥ 5) for metadata, (ii) differential privacy (ϵ = 1.0) for aggregate statistics, (iii)
secure multi-party computation for sensitive analyses.

DP composition and accounting. Repeated releases compound privacy loss. We adopt Rényi
Differential Privacy (RDP) accounting for composition and conversion to (ϵ, δ)-DP [57], and the
moments accountant for tight bounds under subsampling [58]. For weekly releases, we publish the
per-release privacy budget and cumulative (ϵ, δ) with confidence intervals. We also evaluate privacy
amplification by subsampling for federated aggregation; composition over time uses standard DP
boosting arguments [59].

Benefit Sharing. Communities providing samples receive: (i) priority access to research findings,
(ii) representation on governance board, (iii) 5% of commercial licensing revenue returned to source
communities.

Environmental Impact. Computational footprint estimated at 500 MWh. We commit to: (i) carbon-
neutral computing via renewable energy credits, (ii) efficient algorithms reducing energy by 3× vs.
baseline, (iii) public carbon accounting.

G Appendix G: Pilot Data Demonstrating Feasibility

G.1 G.1 End-to-End Demonstration on 1TB Subset

We processed 1TB of SRA data (0.001% of target) through complete QA-Token pipeline:

• Input: 10M reads from 1000 diverse microbiome samples (gut, soil, ocean)
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• Quality Assessment: Computed Phred scores, GC bias, adapter contamination (12 CPU-
hours)

• Tokenization: Ran 5k merge steps with 100M proxy model (48 GPU-hours)
• Validation: Trained 500M model on QA-Token vs BPE vocabularies
• Result: 12% improvement in held-out perplexity (95% CI: [10.3%, 13.7%])

G.2 G.2 Causal Trajectory Pilot (100 Experiments)

Generated 100 interventional trajectories to assess identifiability:

• Design: 2×2×5 factorial (2 species, 2 compounds, 5 doses), 12 timepoints
• Causal Analysis: - 23% met front-door criterion (metabolite mediators measured) - 31% had

valid IVs (randomized timing) - 46% required sensitivity analysis (unmeasured confounding
likely)

• Cost: $2,100 per trajectory at pilot scale (10× higher than projected scale)
• Key Learning: Batch effects between labs contributed 35% of variance—requires dedicated

harmonization

G.3 G.3 Computational Scaling Analysis

Operation 1TB 1PB (proj.) 100PB (proj.)
Quality Scoring 12 CPU-hr 12k CPU-hr 1.2M CPU-hr
PMI Computation 8 GPU-hr 8k GPU-hr 800k GPU-hr
RL Training 48 GPU-hr 48k GPU-hr 4.8M GPU-hr
Total 68 hr 68k hr 6.8M hr

Table 4: Computational requirements scale super-linearly due to vocabulary growth

Throughput and energy assumptions. We assume GPU nodes with 350 TFLOPS BF16 effective
throughput and 1.5 kW TDP, with parallel efficiency of 70% for PMI kernels and 60% for RL
training due to communication overhead. For CPU quality scoring we assume 2.5 GHz cores at 15 W
TDP. The 100 PB scenario thus draws roughly 4.8M GPU-hr × 1.5 kW ≈ 7.2 GWh (upper bound),
amortized by in-storage compute [1, 60, 3, 61] that reduces IO by ∼ 8×, building on demonstrated
speedups for genome sequence analysis. We schedule PMI statistics refresh every K merges (e.g.,
K = 5000) with an incremental update strategy that re-computes only affected local co-occurrence
counts, yielding ∼10% overhead over the base RL loop.

Robustness to quality miscalibration. We run platform-specific calibration analyses for ONT and
NGS, reporting pre/post calibration curves and the induced changes in variant calling F1, taxonomic
accuracy F1, and reconstruction loss. Miscalibration is simulated via affine and sigmoid warps of
Phred-derived features and corrected via isotonic regression using reference controls; Pareto frontier
shifts are also quantified.

H Appendix H: Why Now — Convergence, Timing, and Readiness

This proposal is timely because it stands at the confluence of four trends that have sparked the AI
revolution: the development of powerful deep learning algorithms, the availability of specialized
hardware (GPUs), the creation of open-source software ecosystems, and access to massive datasets.
We leverage this convergence to solve the three core challenges that have held back AI in biology: (1)
The Scale Problem, which we solve by creating an unprecedentedly large dataset; (2) The Quality
Problem, which we solve with our QA-Token framework; and (3) The Causality Problem, which
we address with 100,000+ targeted perturbation experiments.

MetaOmics-10T is not merely a dataset; it is a blueprint for building foundational predictive models
of the unseen biological worlds that shape our own. It is an engine for a new paradigm of AI-driven,
automated scientific discovery.
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I Appendix I: Making the Long Tail Usable — Foundation-Scale Evidence

Problem statement. Let Draw denote a corpus with heterogeneous per-base/per-measurement
quality distributions that violate i.i.d. assumptions and render standard frequency-only tokenization
unstable. Define the usable subset for a tokenizer Z as the set of inputs for which the induced
token sequence has bounded cross-entropy under a fixed proxy model: U(Z) = {x ∈ Draw :
Lproxy(tokZ(x)) ≤ τ}. QA-Token expands U(Z) by incorporating quality-aware scoring and MDL-
regularized merges (Eqs. 5–7).

Formal claim (informal). Under calibrated quality signals and stationary noise, the QA-Token
merge policy that maximizes expected reward strictly increases the measure of usable data,
|U(ZQA)| ≥ |U(ZBPE)|, for any fixed threshold τ , with strict inequality when the raw corpus
contains non-negligible regions of high-noise segments. Sketch: Decompose proxy loss into quality-
weighted mutual information and code-length penalties; QA-Token merges down-weight low-quality
contributions and preferentially form tokens aligned to reliable structure, shifting sequences below
the loss threshold. See App. B.

Foundation-model evidence at scale. We re-tokenized the 1.5 trillion bp METAGENE-1 [12]
corpus using QA-BPE-seq (vocab size 1,024; identical training protocol) and retrained the 7B model.
The resulting foundation model achieves a new state-of-the-art on Pathogen Detection (Table 5) and
superior macro performance on the GUE benchmark (Table 6).

Table 5: Pathogen Detection benchmark: METAGENE-1 with standard BPE vs QA-Token (MCC).

Task DNABERT-2 DNABERT-S NT-2.5b-Multi NT-2.5b-1000g METAGENE-1 METAGENE-1 (QA-Token)

Pathogen-Detect (avg.) 87.92 87.02 82.43 79.02 92.96 94.53

Table 6: Genome Understanding Evaluation (GUE): macro-averaged performance and per-task slices
(MCC unless noted).

Task CNN HyenaDNA DNABERT NT-2.5B-Multi DNABERT-2 METAGENE-1 METAGENE-1 (QA-Token)

TF-Mouse (AVG.) 45.3 51.0 57.7 67.0 68.0 71.4 72.8
TF-HUMAN (AVG.) 50.7 56.0 64.4 62.6 70.1 68.3 69.9
EMP (AVG.) 37.6 44.9 49.5 58.1 56.0 66.0 67.5
SSD 76.8 72.7 84.1 89.3 85.0 87.8 89.5
COVID (F1) 22.2 23.3 62.2 73.0 71.9 72.5 73.3

Global Win % 0.0 0.0 7.1 21.4 25.0 46.4 57.1

Compression and information retention. With identical vocabulary size, QA-Token yielded
∼315B tokens from 1.69T bp vs ∼370B for standard BPE, indicating longer, functionally coherent
genomic constructs. Let Lcode denote the description length under the learned lexicon; QA-Token
minimizes E[Lcode] subject to quality-weighted fidelity, improving both compression and downstream
loss, consistent with Eq. (7).

J Appendix J: Optimizer-Agnostic QA-Token — Noisy Text and RL
Modularity

J.1 Noisy Social Media Text (TweetEval)

Table 7: TweetEval comparison on noisy social media text: QA-Token improves robustness across
tasks.

Model Emoji Emotion Hate Irony Offensive Sentiment Stance ALL(TE)

BERTweet 33.4 79.3 56.4 82.1 79.5 73.4 71.2 67.9
SuperBPE + BERTweet 33.6 79.8 56.8 82.3 80.1 73.9 71.8 68.3
QA-BPE-nlp + BERTweet 33.8 81.1 58.2 82.5 82.6 74.5 73.1 69.4
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J.2 Ablations on RL Algorithm Choice

Claim. Let πϕ denote the policy class used to select merges. For any optimizer A that monotonically
improves the expected reward E[R] (Eq. 7) under unbiased gradient estimates, the induced vocabulary
has equivalent asymptotic optimality up to optimizer-dependent convergence rates. Empirically
(Table 8), PPO, GRPO, VAPO, and DAPO produce near-identical vocabularies (Jaccard ≥ 0.95) and
downstream performance, confirming modularity.

Table 8: RL optimizer ablation across domains: similar performance, training/inference cost, and
high vocabulary Jaccard vs PPO.

Configuration Metric Value Training Time (GPU-h) Inference Time (ms/seq) Vocab. Jaccard (vs PPO)
Genomics (QA-BPE-seq) — Variant F1

QA-Token (PPO) 0.891 34.0 10.2 0.99
QA-Token (GRPO) 0.890 32.5 10.3 0.98
QA-Token (VAPO) 0.892 31.8 10.2 0.97
QA-Token (DAPO) 0.889 34.2 10.4 0.98

Finance (QAT-QF) — Sharpe Ratio

QA-Token (PPO) 1.72 28.0 15.2 0.99
QA-Token (GRPO) 1.71 26.5 15.3 0.96
QA-Token (VAPO) 1.73 25.0 15.1 0.95
QA-Token (DAPO) 1.70 28.5 15.2 0.96

Social Media (QA-BPE-nlp) — TweetEval Sentiment

QA-Token (PPO) 74.5 30.0 12.5 0.99
QA-Token (GRPO) 74.2 29.0 12.6 0.97
QA-Token (VAPO) 74.6 28.0 12.5 0.98
QA-Token (DAPO) 74.3 31.0 12.7 0.97

J.3 Ablation of Reward Components

To address the concern that the QA-Token reward function is an over-engineered heuristic, we
performed an ablation study on the METAGENE-1 re-training task. We systematically removed each
of the four components from the reward function (Eq. 7) and rebuilt the vocabulary from scratch,
keeping all other aspects of model training identical. Table 9 shows the impact on the downstream
Pathogen Detection benchmark. The results confirm that while the proxy loss (∆Lproxy) is the most
critical component, the quality (Q), information-theoretic (PMI), and complexity (MDL) terms all
provide significant, complementary contributions to the final model’s performance. This supports our
multi-objective design.

Table 9: Ablation study of QA-Token reward components on METAGENE-1 Pathogen Detection
(MCC).

Reward Configuration Pathogen-Detect MCC
Full QA-Token Reward 94.53
Ablations:
w/o Quality (−λQQ) 93.12 (-1.41)
w/o PMI (−λIPMI) 93.89 (-0.64)
w/o MDL (+λCMDL) 94.01 (-0.52)
w/o Proxy Loss (−λD∆L) 91.55 (-2.98)

Standard BPE (Baseline) 92.96
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