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Abstract
Reconstructing digital brain phantoms in the form
of voxel-based, multi-channeled tissue probability
maps for individual subjects is essential for cap-
turing brain anatomical variability, understanding
neurological diseases, as well as for testing im-
age processing methods. We demonstrate the first
framework that estimates brain tissue probability
maps (Grey Matter - GM, White Matter - WM,
and Cerebrospinal fluid - CSF) with the help of a
Physics-based differentiable MRI simulator that
models the magnetization signal at each voxel in
the volume. Given an observed T1/T2-weighted
MRI scan, the corresponding clinical MRI se-
quence, and the MRI differentiable simulator, we
estimate the simulator’s input probability maps by
back-propagating the L2 loss between the simu-
lator’s output and the T1/T2-weighted scan. This
approach has the significant advantage of not re-
lying on any training data and instead uses the
strong inductive bias of the MRI simulator. We
tested the model on 20 scans from the BrainWeb
database and demonstrated a highly accurate re-
construction of GM, WM, and CSF. Our source
code is available online: https://github.
com/BioMedAI-UCSC/BMapEst.

1. Introduction
Quantitative T1 (qT1) and T2 (qT2) MRI plays a pivotal role
in understanding various neurological conditions, including
multiple sclerosis [1], brain tumors [2], and neurodegenera-
tive diseases such as Alzheimer’s [3], by providing valuable
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insights into tissue characteristics and pathological changes.
However, even more information than T1/T2-weighted MRI
can be obtained by reconstructing the tissue probability
maps of the digital brain phantoms. Such multi-channeled
tissue probability maps typically include the percentage of
a particular tissue (GM, WM, CSF, blood vessels, glia cells,
etc.) that exists at each 3D voxel and thus give significantly
more information than standard T1/T2-weighted MRIs. In
addition, probability maps are critical as priors in accurate
self-supervised semantic segmentation or classification of
a 3D volume reconstruction. They also help regularize and
eliminate artifacts such as partial volume effects, motion
artifacts, or bias field artifacts, which typically require ex-
ternal atlas-based priors [4], [5]. BrainWeb phantoms [6],
[7] are popular examples that store probability maps for
11 tissues at each voxel, offering more precise anatomical
detail than qT1/qT2 maps, customizable tissue properties,
and the ability to simulate realistic imaging scenarios.

A related problem to tissue probability map estimation is tis-
sue segmentation, where a single label is assigned for each
voxel. Current state-of-the-art methods for tissue segmen-
tation use supervised deep-learning [8], [9] and clustering
methods [10]–[13]. However, tissue segmentation is a dif-
ferent and easier problem than probability map estimation
since models don’t need to estimate partial volume effects
at all voxels. Despite their utility, we are unaware of any
methods that fully infer tissue probability maps from T1/T2-
weighted scans. Additionally, the problem is particularly
challenging due to its ill-posedness at two different levels:
1) multiple probability map combinations can produce the
same qT1/qT2/PD maps, and 2) multiple qT1/qT2/PD maps
can produce the same T1/T2-weighted image.

MRI imaging simulators [14]–[26] offer a solution for infer-
ring probability maps of digital brain phantoms. They act
as a forward model to generate k-space measurements and
subsequently reconstruct T1/T2-weighted scans. This repre-
sents a paradigm shift in medical imaging simulation and
optimization. By leveraging simulators’ inherent physics-
based inductive biases, it becomes feasible to fine-tune the
parameters of clinical sequences, leading to enhanced image
quality. A recent innovation in the field is the building of
MR-zero [27], a differentiable MRI simulator implement-
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ing the Phase Distribution Graph [28] (Appendix A), thus
alleviating the need for slow derivative-free optimizations.

In this paper, we introduce a novel framework leveraging
the capabilities of MR-zero to estimate the tissue probability
maps of digital brain phantoms (Fig. 2) representing the
CSF, GM, and WM. Unlike supervised learning, our frame-
work does not need a-priori training pairs of inputs and
outputs and can further estimate tissue probability maps for
any arbitrary set of MRI sequences (e.g., T1-only, T1+T2,
T2+T∗

2+GRE, etc.) at any arbitrary echo times. Our contri-
butions are:

• We demonstrate the first method of estimating brain
tissue probability maps using a differentiable MRI
simulator that conducts forward inference to gener-
ate a T1/T2-weighted image by backpropagating a loss
function to the brain tissue probability maps. Our ap-
proach is versatile, applicable to many different MRI
sequences, and does not require learnable parameters.

• We overcome the ill-posedness of probability maps
estimation by using the inductive bias of the simulator
and multiple T1/T2 contrasts.

• We validate our approach on BrainWeb’s 20 subjects
with the popular Fast Low Angle Shot (FLASH) se-
quence variants and obtain state-of-the-art results com-
pared to supervised deep learning and clustering meth-
ods.

2. Methodology
Our framework optimizes brain tissue probability maps
given one or more observed T1/T2-weighted MRI scans
(G) and the corresponding MRI clinical sequence (S) used
to generate each scan (Fig. 1). The optimization pipeline be-
gins by transforming the brain tissue probability maps into
qT1, qT2, and Proton Density (PD) maps with the help of
known relaxation time values for a 1.5T scanner [29]. These
maps serve as input for the MR-zero (Appendix B) MRI dif-
ferentiable simulator that produces K-space measurements
as its output of the forward pass. By applying the Inverse
Fourier Transform (I), the simulated T1/T2-weighted scan
(G′) is reconstructed from K-space. Therefore, the end-to-
end forward pass is given as follows:

G′ = I(MRZero(f(GM,WM,CSF ), S)) (1)

where f is a fixed linear transformation mapping tissue
probability maps to qT1/qT2/PD maps using known values
from the literature. The pixel-wise L2 loss ||G − G′||22 is
calculated between the observed T1/T2-weighted scan G′

and the ground truth scan G and backpropagated to the input
probability maps (GM/WM/CSF).

3. Experiments
3.1. Dataset

We demonstrate our method on the BrainWeb dataset, which
comprises brain tissue probability maps from 20 subjects.
We downscaled the 3D brain volumes to 64x64 (higher
resolutions were not possible on our machine due to RAM
requirements exceeding 64GB) and selected the middle slice,
as it contains all three types of tissues, resulting in CSF,
GM, and WM probability maps. Due to the simulator’s
compute-intensive nature, we only select a single slice, but
our method is equally generalizable to other slices of the
volume as well.

3.2. Ill-posed problem

The estimation of tissue probability maps presents a chal-
lenge due to the inherent ambiguity stemming from the
ill-posed nature of the problem, wherein multiple potential
solutions (tissue probabilities) exist for a single observed
T1/T2-weighted scan. This can be seen in Fig. 2, where the
optimization of all tissue probablitity maps of a subject with
only a single observed contrast obtained from the T1 inver-
sion recovery sequence give a blurry estimation of tissue
maps. Furthermore, the sensitivity of tissue delineation is in-
fluenced by the specific MRI clinical sequence utilized. For
instance, the Fluid Attenuated Inversion Recovery (FLAIR)
sequence effectively diminishes the signal from CSF, mak-
ing CSF map estimation from this sequence highly ill-posed.
Unlike supervised deep learning methods, the flexibility of
our method allows us to augment the optimization process
by incorporating additional output contrasts obtained from
capturing images at varying echo times and by including
a diverse array of sequences such as T2-weighted imaging,
T ∗
2 imaging through echo time alterations, FLAIR, Double

Inversion Recovery (DIR), and Diffusion Weighted Imaging
(DWI) sequences.

3.3. Setup

Our optimization process spans 501 epochs with a learning
rate of 0.01, and takes 5-6min for a single contrast and under
3 hours for 24 contrasts (6 sequences with 4 echo times
each). We concurrently optimize all probability maps (CSF,
GM, and WM), leveraging the output contrasts from up to
six different MRI clinical sequences. Loss computation is
conducted across reconstructed image spaces, representing
the output T1/T2-weighted scans (each with 4 contrasts per
sequence). This is the baseline configuration settings for
comparing the results. We performed leave-one-out cross-
validation. Our approach adds no extra learnable parameters
beyond the probability maps themselves.
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Figure 1: Optimization pipeline: The CSF, GM, and WM probability maps are converted into qT1, qT2, and PD maps using known
T1 and T2 relaxation times. These maps are input into the MR-zero simulator to generate K-space measurements, and the image is
reconstructed via Inverse Fourier Transform I . The L2 loss is computed against a real MRI and backpropagated to the probability maps.

4. Results
As illustrated in Table 1 and in Fig. 2, our method achieves
very good reconstructions when at least 4 contrasts (echoes)
from a single sequence are observed. Only when one single
contrast is used does our method perform poorly due to
the strongly ill-posed problem. Best reconstructions are
achieved using 5 sequences together: T1, T2, T ∗

2 , double
inversion recovery and FLAIR.

In addition, we also compared against a supervised U-Net
baseline [30]. We trained the U-Net by creating pixel-wise
normal distributions of probability maps from the middle
slices of ten (5, 18, 38, 42, 44, 46, 48, 50, 52, 54) BrainWeb
subjects. The input to the U-Net is a 24-channeled MRI con-
trasts tensor, and the output is a 3-channeled CSF, GM, and
WM probability maps. Since training a U-Net is difficult in
this low-data regime, we augmented the dataset by building
pixel-wise normal distributions and isotropically sampling
500 images from the distribution. We tested the model on
the remaining subjects and the same brain slices of training
data subjects on which our method’s metrics are reported.
Table 1 shows that our method has better PSNR and SSIM
than the U-Net across all tissues. Also, our method has
a better DICE score than the U-Net on CSF and a similar
DICE score on GM and WM.

In Table 1, we also tested the BCEFCM [31], a fuzzy
C-means clustering method. BCEFCM performed sub-
optimally for the DICE score and poorly on PSNR and
SSIM metrics, which is evident from Appendix Figure 4, as
clustering-based methods cannot estimate the exact proba-
bility values. Moreover, we have taken Table 2 from [10]
which shows the DICE metrics obtained for CSF, GM, and
WM of the BrainWeb dataset for 4 other clustering methods:
LNLFCM [11], DCT-LNLFCM [12], KWFLICM [13], and
Double Estimation [10] based fuzzy C-means. Though the
slices used for the metric would differ, they are from the

same BrainWeb dataset on which we have reported our re-
sults. Our method outperforms all the other techniques for
GM and CSF and performs equally well for WM estimation.

For visual results, refer to Figure 4 in the Appendix for
inferred probability map results for our baseline, U-Net, and
BCEFCM methods. Also, Appendix C and D show detailed
experiments and other visual results respectively.

5. Conclusion
We have developed BMapEst, the first framework that esti-
mates digital brain phantoms using an MRI differentiable
simulator. In future work, we plan to estimate probability
maps on large brain MRI datasets such as OASIS or ADNI.
Furthermore, in ill-posed settings, our framework can also
be extended using variational inference to capture a distri-
bution over the tissue probability maps that generate the
same T1/T2-weighted MRI scan. This will allow us to cap-
ture the variability in tissue characteristics across different
individuals having similar T1/T2-weighted scans. Another
direction we plan to pursue is to optimize the MRI clinical
sequence parameters towards a downstream goal, such as
better image contrast, better segmentation of structures, or
better disease detection. By leveraging the differentiable
MRI simulators, we can efficiently and accurately model
the impact of various sequence parameters on the resulting
images, enabling us to fine-tune these parameters to enhance
diagnostic utility and achieve optimal imaging sequence.

One of the limitations of differentiable simulators is their
high computational requirements during optimization, in
particular GPU memory. To address this, we plan to investi-
gate the use of advanced optimization techniques and hard-
ware acceleration, such as leveraging GPUs and CPU RAM
in tandem to balance memory consumption, reduce compu-
tational load, and improve processing speed. To speed-up
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Table 1: Dice score, PSNR, and SSIM comparisons for a combination of MRI clinical sequences. Except for the first row,
all the experiments use 4 contrasts per sequence. † represents the baseline configuration. Our method is compared against
two baselines: U-Net and BCEFCM. Note: BCEFCM can only take a single contrast as input.

Contrasts CSF GM WM
Dice↑ PSNR ↑ SSIM ↑ Dice↑ PSNR ↑ SSIM ↑ Dice↑ PSNR ↑ SSIM ↑

T1 single
contrast

0.38±0.07
0.31±0.05
0.04±0.01

17.84±1.18
18.29±0.86
11.47±0.4

0.58±0.07
0.63±0.05
0.13±0.02

0.67±0.05
0.66±0.04
0.40±0.02

14.22±0.97
14.94±0.74
7.53±0.27

0.57±0.08
0.64±0.05
0.16±0.02

0.62±0.05
0.65±0.04
0.38±0.04

12.83±1.1
13.5±0.83
7.68±0.27

0.38±0.07
0.51±0.06
0.18±0.02

T1 four
contrasts

0.55±0.04
0.43±0.04

27.57±2.11
23.57±0.85

0.89±0.03
0.86±0.02

0.7±0.04
0.72±0.03

16.16±0.97
16.52±0.53

0.74±0.05
0.76±0.02

0.76±0.02
0.76±0.02

18.15±0.98
17.38±0.48

0.78±0.04
0.75±0.03

T1+T2
0.55±0.04
0.43±0.04

30.9±3.93
22.63±0.74

0.97±0.02
0.85±0.02

0.76±0.03
0.76±0.02

23.5±1.98
19.19±0.34

0.93±0.03
0.87±0.01

0.79±0.01
0.79±0.02

25.63±2.43
19.71±0.34

0.93±0.03
0.83±0.02

T1+T2+T ∗
2

0.56±0.03
0.47±0.04

33.43±4.72
24.08±0.8

0.97±0.02
0.88±0.02

0.76±0.03
0.76±0.02

26.38±2.35
20.18±0.36

0.96±0.03
0.9±0.01

0.79±0.01
0.79±0.02

25.16±2.34
19.91±0.35

0.91±0.03
0.83±0.02

T1 + T2 +
T ∗
2 + DIR

0.56±0.03
0.45±0.04

33.68±4.51
24.33±0.91

0.97±0.02
0.89±0.02

0.76±0.03
0.76±0.02

26.33±2.38
20.48±0.37

0.96±0.03
0.91±0.01

0.79±0.01
0.79±0.02

25.16±2.45
20.49±0.36

0.91±0.04
0.84±0.02

T1 + T2 +
T ∗
2 + DIR +
FLAIR

0.55±0.04
0.45±0.04

34.64±5.29
24.08±0.78

0.98±0.02
0.89±0.02

0.76±0.02
0.77±0.02

27.71±2.48
20.56±0.38

0.97±0.02
0.9±0.01

0.8±0.01
0.79±0.02

27.0±2.69
20.34±0.39

0.93±0.03
0.84±0.18

T1 + T2 +
T ∗
2 + DIR +
FLAIR +
DWI †

0.55±0.04
0.45±0.04

34.45±4.87
24.23±0.85

0.98±0.02
0.89±0.07

0.76±0.02
0.76±0.02

26.8±2.54
20.38±0.37

0.96±0.02
0.9±0.01

0.79±0.01
0.79±0.02

25.99±2.69
20.42±0.39

0.92±0.03
0.85±0.02

CSF GM WM

Figure 2: From the left are CSF, GM, and WM. The first row
shows the raw tissue probability maps for subject 42 in the Brain-
Web dataset. The second row shows the estimated probability
maps using our baseline configuration. The third row shows the
ill-posed estimation using the single contrast from the T1 inversion
recovery sequence.

Table 2: Dice score, PSNR, and SSIM comparisons with
other clustering-based methods. † represents the baseline
configuration.

Method CSF GM WM

Our † 0.55±0.04 0.76±0.02 0.79±0.01
Double Estimation 0.41±0.31 0.60±0.37 0.80±0.23

LNLFCM 0.41±0.32 0.58±0.38 0.79±0.23
DCT-LNLFCM 0.41±0.31 0.60±0.36 0.80±0.22

KWFLICM 0.40±0.27 0.59±0.37 0.80±0.23

the convergence, one can also run a pre-trained supervised
deep-learning method to get an initial probability map esti-
mate, which can then be further refined using our method.
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A. Extended Phase Graph
Extended Phase Graphs (EPG) [32] are a powerful way to simulate the magnetization response of various MR sequences. A
key aspect of EPG involves the manipulation of magnetization vectors through changes in a Fourier basis. Initially, the
longitudinal Mz(z) and transverse Mxy and M∗

xy magnetization components are projected on a Fourier basis to obtain the
Fourier components F+

n , F−
n , and Zn:

F+
n =

∫ 1

0

Mxy(z)e
−2πιnzdz

F−
n =

∫ 1

0

M∗
xy(z)e

−2πιnzdz

Zn =

∫ 1

0

Mz(z)e
−2πιnzdz

Q =

 F+
0 F+

1 F+
2 ... F+

N

F+∗
0 F−

1 F−
2 ... F−

N

Z0 Z1 Z2 ... ZN


The F states are then combined across n harmonics to form the EPG basis Q (shown above), which describes the
magnetization state in one isochromat. Using the above EPG formalization, we can model the spin precession as a matrix
operation: F+

n

F−
n

Zn


′

=

eιθ 0 0
0 e−ιθ 0
0 0 1

F+
n

F−
n

Zn

 (2)

where θ is the accumulated phase. Similarly, an RF pulse that flips the magnetization longitudinally by α and transversally
by ϕ as: F+

n

F−
n

Zn


′

=

 cos2(α/2) e2ιϕsin2(α/2) −ιeιϕsin(α)
e−2ιϕsin2(α/2) cos2(α/2) ιe−ιϕsin(α)
− ι

2e−ιϕsin(α)
ι

2eιϕsin(α)
cos(α)

F+
n

F−
n

Zn


Also, the evolution of relaxation for Transverse states F ′

n(t) and Longitudinal states Zn(t) and Z0(t) follows the equations:

F ′
n(t) = Fne

−t/T2

Z ′
n(t) = Zne

−t/T1

Z0(t) = M0(1− e−t/T1) + Z0e
−t/T1

Equivalent linear operations can also be used to model gradients. Therefore, an MRI clinical sequence of events (RF
pulses, gradients, precession, relaxation, etc.) is simulated as a multiplication of Q (representing the voxel’s state) through
several matrices corresponding to precession, RF rotations, relaxation operators, and gradients. Until recently, EPG could
only describe echo amplitudes, but it was extended by Phase Distribution Graphs (PDG) [28] to describe full echo shapes,
including gradient echoes that provide spatial encoding.

B. MRI Differentiable Simulator
MR-zero [27] is an MRI simulation tool that uses PDG to simulate the magnetization changes based on the MRI sequence
events and input T1, T2, and Proton Density (PD) maps. MR-zero can simulate arbitrary MRI sequences, including clinical
MRI sequences, such as Spin-Echo [33], Gradient Recalled Echo [34], Rapid Acquisition with Relaxation Enhancement
[35], and Fast Low Angle Shot [36], etc. The simulation process in MR-zero comprises two passes: The first pass swiftly
simulates numerous states to provide an initial signal estimate. This step identifies crucial states contributing to the signal and
discards irrelevant ones. Secondly, the main pass utilizes the precise signal equation, considering all voxels but minimizing
the number of simulated states based on information gleaned from the pre-pass. Doing so generates a meaningful signal
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CSF GM WM

Figure 3: The first row shows the raw tissue probability maps for subject 42 in the BrainWeb dataset. The second row shows
the checkerboard pattern enclosed in a red-marked region while optimizing 19 linear coefficients instead of using probability
maps directly.

suitable for reconstructing T1/T2-weighted scans as output. As opposed to previous simulators such as [14]–[20], MR-zero
is implemented in PyTorch and is differentiable by design. This allows us to incorporate MR-zero as part of the forward
inference pipeline through which backpropagation can be performed, allowing one to efficiently optimize the input T1/T2/PD
maps or the MRI sequence given a T1/T2-weighted image.

C. Results
C.1. Direct pixel optimization

We optimized probability values directly and got the PSNRs and SSIMs for CSF, GM, and WM, respectively (Table
3). The direct pixel optimization outperforms all the other methods. One of those methods includes optimizing either 1
coefficient (scalar optimization) or 19 coefficients (linear coefficients) per pixel. The PSNR and SSIM values for coefficient
optimization failed to surpass those of the baseline configuration and are off by a margin of 5.09 and 0.02 points, respectively,
on average for all the maps. Additionally, examination of the results depicted in Fig 3 revealed a checkerboard pattern
present in the optimized probability maps generated using this technique. Also, we tried optimizing a scalar coefficient per
probability map, with all the contrasts of six sequences, which performed poorly compared to all the methods by being
14.39 and 0.47 points lower on average, respectively.

C.2. All 3 maps vs. single map

In Table 4, we report DICE, PSNR, and SSIM metrics for single map optimization (e.g., only optimize CSF while GM and
WM are assumed to be known). For all tissues, single map optimization has outperformed the optimization of all three maps
concurrently. Single map optimization is significantly easier because the two other maps are assumed to be known and fixed,
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Table 3: Dice score, PSNR, and SSIM comparisons of different types of optimization procedures. † represents the baseline
configuration.

Method CSF GM WM
Dice↑ PSNR ↑ SSIM ↑ Dice↑ PSNR ↑ SSIM ↑ Dice↑ PSNR ↑ SSIM ↑

Direct pixel
estimation † 0.55±0.04 34.45±4.87 0.98±0.02 0.76±0.02 26.8±2.54 0.96±0.02 0.79±0.01 25.99±2.69 0.92±0.03

Linear
coefficients 0.54±0.05 28.26±4.26 0.96±0.03 0.75±0.03 22.55±3.06 0.94±0.04 0.79±0.01 21.19±2.94 0.9±0.05

Scalar
coefficient 0.32±0.09 16.46±1.1 0.42±0.09 0.66±0.05 13.69±1.01 0.51±0.1 0.63±0.04 13.92±1.09 0.53±0.07

Table 4: Dice score, PSNR, and SSIM comparisons on optimizing either all maps concurrently or only a single probability
map given the other two fixed. † represents the baseline configuration.

Maps CSF GM WM
Dice↑ PSNR ↑ SSIM ↑ Dice↑ PSNR ↑ SSIM ↑ Dice↑ PSNR ↑ SSIM ↑

All 3 † 0.55±0.04 34.45±4.87 0.98±0.02 0.76±0.02 26.8±2.54 0.96±0.02 0.79±0.01 25.99±2.69 0.92±0.03
CSF 0.56±0.03 40.34±10.73 0.99±0.01 - - - - - -
GM - - - 0.78±0.02 47.23±10.43 0.99±0.01 - - -
WM - - - - - - 0.8±0.01 43.33±10.65 0.99±0.01

Table 5: Dice score, PSNR, and SSIM comparisons on tissue probability maps while computing loss in Image-space and
K-space domain. † represents the baseline configuration.

Maps CSF GM WM
Dice↑ PSNR ↑ SSIM ↑ Dice↑ PSNR ↑ SSIM ↑ Dice↑ PSNR ↑ SSIM ↑

Image-
space † 0.55±0.04 34.45±4.87 0.98±0.02 0.76±0.02 26.8±2.54 0.96±0.02 0.79±0.01 25.99±2.69 0.92±0.03

K-space 0.48±0.11 23.16±8.15 0.71±0.27 0.72±0.07 18.21±5.02 0.75±0.21 0.74±0.06 18.11±4.4 0.72±0.17
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CSF GM WM

Figure 4: From the left are CSF, GM, and WM. The first row shows the ground truth probability maps for subject 20 of
BrainWeb. The second row shows the estimated map using our baseline method. The third and fourth row shows the inferred
probability maps using U-Net and BCEFCM.
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thus acting as a strong prior for estimating the third map.

C.3. Image-space vs. K-space loss

In Table 5, we report comparisons between an image-space loss and a k-space loss, i.e. computing the loss directly at k-space
values, without applying the inverse Fourier transform. The PSNR and SSIM values of estimated probability maps while
computing the loss in K-space domain are (0.48±0.11, 23.16±8.15, 0.71±0.27), (0.72±0.07, 18.21±5.02, 0.75±0.21),
and (0.74± 0.06, 18.11± 4.4, 0.72± 0.17) for CSF, GM, and WM respectively. These values, on average, are off by a huge
margin of 9.25 and 0.23 points for PSNR and SSIM, respectively, from the baseline configuration metrics of the experiment
done in Image-space. We found these results surprising since the pipeline with the k-space loss has one step less than the
image-space pipeline. We plan to explore this more in our future work.

D. More probability maps estimation results
This section of the Appendix contains the brain probability maps optimization for all other subjects of the BrainWeb dataset.
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CSF GM WM

Figure 5: From the left are CSF, GM, and WM. The first and third rows show the raw tissue probability maps for subjects 04
and 05, respectively, of the BrainWeb dataset. The second and fourth rows show the optimized probability maps using the
baseline configuration for subjects 04 and 05, respectively.
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CSF GM WM

Figure 6: From the left are CSF, GM, and WM. The first and third rows show the raw tissue probability maps for subjects 06
and 18, respectively, of the BrainWeb dataset. The second and fourth rows show the optimized probability maps using the
baseline configuration for subjects 06 and 18, respectively.
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CSF GM WM

Figure 7: From the left are CSF, GM, and WM. The first and third rows show the raw tissue probability maps for subjects 20
and 38, respectively, of the BrainWeb dataset. The second and fourth rows show the optimized probability maps using the
baseline configuration for subjects 20 and 38, respectively.
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CSF GM WM

Figure 8: From the left are CSF, GM, and WM. The first and third rows show the raw tissue probability maps for subjects 41
and 43, respectively, of the BrainWeb dataset. The second and fourth rows show the optimized probability maps using the
baseline configuration for subjects 41 and 43, respectively.
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CSF GM WM

Figure 9: From the left are CSF, GM, and WM. The first and third rows show the raw tissue probability maps for subjects 44
and 45, respectively, of the BrainWeb dataset. The second and fourth rows show the optimized probability maps using the
baseline configuration for subjects 44 and 45, respectively.
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CSF GM WM

Figure 10: From the left are CSF, GM, and WM. The first and third rows show the raw tissue probability maps for subjects
46 and 47, respectively, of the BrainWeb dataset. The second and fourth rows show the optimized probability maps using
the baseline configuration for subjects 46 and 47, respectively.
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CSF GM WM

Figure 11: From the left are CSF, GM, and WM. The first and third rows show the raw tissue probability maps for subjects
48 and 49, respectively, of the BrainWeb dataset. The second and fourth rows show the optimized probability maps using
the baseline configuration for subjects 48 and 49, respectively.
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CSF GM WM

Figure 12: From the left are CSF, GM, and WM. The first and third rows show the raw tissue probability maps for subjects
50 and 51, respectively, of the BrainWeb dataset. The second and fourth rows show the optimized probability maps using
the baseline configuration for subjects 50 and 51, respectively.

19



BMapEst: Estimation of Brain Tissue Probability Maps using a Differentiable MRI Simulator

CSF GM WM

Figure 13: From the left are CSF, GM, and WM. The first and third rows show the raw tissue probability maps for subjects
52 and 53, respectively, of the BrainWeb dataset. The second and fourth rows show the optimized probability maps using
the baseline configuration for subjects 52 and 53, respectively.
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CSF GM WM

Figure 14: From the left are CSF, GM, and WM. The first row shows the raw tissue probability maps for subject 54 of the
BrainWeb dataset. The second row shows the optimized probability maps using the baseline configuration for subject 54.
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