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Abstract

Large language models (LLMs) are often chal-001
lenged by generating erroneous or hallucinated002
responses, especially in complex reasoning003
tasks. Leveraging knowledge graphs (KGs)004
as external knowledge sources has emerged005
as a viable solution. However, existing KG-006
enhanced methods, either retrieval-based or007
agent-based, encounter difficulties in accurately008
retrieving knowledge and efficiently traversing009
KGs at scale. In this paper, we propose a uni-010
fied framework, FiDeLiS, designed to improve011
the factuality of LLM responses by anchoring012
answers to verifiable reasoning steps retrieved013
from a KG. To achieve this, we leverage step-014
wise beam search with a deductive scoring func-015
tion, allowing the LLM to validate each reason-016
ing step and halt the search once the question017
is deducible. In addition, our Path-rag mod-018
ule pre-selects a smaller candidate set for each019
beam search step, reducing computational costs020
by narrowing the search space. Extensive ex-021
periments show that our training-free and effi-022
cient approach outperforms strong baselines,023
enhancing both factuality and interpretabil-024
ity. Code is released at https://anonymous.025
4open.science/r/FiDELIS-E7FC.026

1 Introduction027

Large language models (LLMs) have shown im-028

pressive reasoning capabilities in tackling com-029

plex tasks (Yu et al., 2024). However, the rea-030

soning of LLMs is not always reliable and can031

be prone to generating outputs that are either in-032

consistent with real-world facts (Xu et al., 2024;033

Huang et al., 2025) or show flawed reasoning pro-034

cess (Li et al., 2024; Sui et al., 2024), which greatly035

undermine the reliability of LLMs in real-world ap-036

plications (Kung et al., 2023; Zhang et al., 2024).037

To address this issue, leveraging knowledge038

graphs (KGs) as external knowledge sources has039

emerged as a viable solution (Sun et al., 2023; Ma040

et al., 2024; Luo et al., 2024a). Unlike traditional041

Figure 1: Challenges for existing KG-enhanced meth-
ods: How to balance faithfulness and efficiency?
retrieval-augmented generation (RAG) that relies 042

on web pages or documents (Liu et al., 2024; Qian 043

et al., 2024; Bayarri-Planas et al., 2024), KGs repre- 044

sent information in a structured and interconnected 045

format, where each fact is stored as entities and 046

relations. This format supports explicit, traceable 047

reasoning processes (Pan et al., 2023) and facili- 048

tates multi-hop reasoning through graph traversal. 049

Moreover, each fact in a KG can be traced back to 050

its source (Sui et al., 2024; Agrawal et al., 2024), 051

providing both context and original details, which 052

further enhances the information authenticity and 053

reliability of the reasoning processes. 054

Existing KG-enhanced LLM reasoning methods 055

face notable challenges and can be roughly catego- 056

rized into two primary approaches: retrieval-based 057

and agent-based paradigms (Luo et al., 2024b). 058

Retrieval-based methods (Wang et al., 2023; Luo 059

et al., 2024a; Baek et al., 2023) retrieve relevant KG 060

facts to support LLM reasoning by either prompt- 061

ing (Baek et al., 2023) or fine-tuning LLMs to learn 062

the underlying structure of KG (Luo et al., 2024a,b). 063

These methods often suffer from incomplete or 064

imprecise information extraction due to a lack of 065

contextual understanding or an inability to fully 066

capture the graph structure (Luo et al., 2024b).Our 067

error analysis of a strong retrieval-based method 068

(i.e., Luo et al. (2024a)) in §4.3 reveals that only 069

67% of the generated reasoning steps are valid, 070

with 33% containing format errors or referencing 071

non-existent KG facts. In contrast, agent-based 072
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methods (Sun et al., 2023; Ma et al., 2024) treat073

LLMs as interactive agents that explore KGs itera-074

tively to construct reasoning paths and generate an-075

swers. While this approach by nature can enhance076

reasoning accuracy, it is computationally expensive,077

resulting in high latency and scalability limitations.078

As illustrated in Figure 1, balancing faithfulness079

and efficiency remains a critical challenge for ex-080

isting KG-enhanced reasoning methods.081

To this end, we propose FiDeLiS, a unified082

framework designed to improve the factual ac-083

curacy and reasoning efficiency of LLMs on084

KGQA task. FiDeLiS anchors LLM responses085

to verifiable reasoning steps derived from a086

KG by employing two core components: (1)087

Deductive-Verification Beam Search (DVBS)088

which systematically constructs and validates rea-089

soning paths step-by-step, ensuring logical consis-090

tency and factual correctness (discussed in §3.2).091

This module also prevents premature reasoning ter-092

mination and incorrect path extension to ensure093

the validity of the generated reasoning paths. (2)094

Path-RAG, a retrieval-augmented mechanism that095

pre-selects a constrained set of candidate entities096

and relations for each step to mitigate computa-097

tional inefficiencies. It combines semantic similar-098

ity measures with graph-based connectivity analy-099

sis to optimize the search space, significantly reduc-100

ing latency without sacrificing recall or accuracy101

(discussed in §3.1). Extensive experiments show102

that our method outperform strong baselines in103

both accuracy and efficiency, offering a scalable,104

training-free solution for KG-enhanced LLM rea-105

soning. Overall, our main contributions include:106

• We propose FiDeLiS, a unified framework de-107

signed to improve the factual accuracy of LLMs108

by grounding reasoning paths in structured KG109

efficiently.110

• We enable efficient, verifiable reasoning by de-111

ductively validating reasoning steps and narrow-112

ing the search space with high-quality retrieval113

mechanism.114

• FiDeLiS performs robustly across different ex-115

periments without the need for model fine-tuning,116

demonstrating adaptability and scalability with117

improved performance on multiple benchmarks.118

• By anchoring responses in verifiable reason-119

ing paths, FiDeLiS enhances interpretability, en-120

abling users to verify and understand each rea-121

soning step.122

2 Preliminary 123

Notation. To facilitate the demonstration of our 124

method, we define the necessary notation below: 125

• Definition 1. A reasoning step is a pair (r, e), 126

where r is the relation and e is the corresponding 127

entity. 128

• Definition 2. A reasoning path P is a pair (s, T ), 129

where s is the starting entity for the reasoning 130

path, and T is a sequence of reasoning steps 131

T = {t1, . . . , tn} and tk = (rk, ek) denotes the 132

k-th reasoning step in the path and n denotes the 133

length of the path. 134

• Definition 3. The next-hop candidates given 135

path P , denoted N1(en), is defined as the 1-hop 136

neighborhood of en, the last node in the reason- 137

ing path P . 138

• Definition 4. A reasoning path P = (s, T ) 139

is valid if every step (rk, ek) corresponds to 140

an actual triplet (ek−1, rk, ek) in the KG (with 141

e0 = s). For example, a valid reasoning path 142

could be: P = Justin_Bieber
people.person.son−−−−−−−−−−→ 143

Jeremy_Bieber
people.person.ex_wife−−−−−−−−−−−−→ Erin_Wagner, 144

which denotes that “Jeremy Bieber” is the father 145

of “Justin Bieber” and “Erin Wagner” is the ex- 146

wife of “Jeremy Bieber”. 147

Task definition. In this work, we focus on the 148

task of knowledge graph-based question answer- 149

ing (KGQA), a common reasoning task involv- 150

ing KGs. It is defined as: given a user query q 151

and a KG G = {(e, r, e′) | e, e′ ∈ E , r ∈ R}, 152

where E and R denote the set of entities and re- 153

lations in KG, the task aims to design a function 154

f to predict answers a ∈ Aq conditioned on q 155

and G. Following existing KG-enhanced LLMs 156

methods (Sun et al., 2023; Ma et al., 2024), the 157

function f can be generally expressed as finding 158

valid reasoning path(s) P on KGs that connects 159

the entities mentioned in the query and the an- 160

swer as: P (a|q,G) =
∑

P Pθ(a|q,P)Pϕ(P|q,G), 161

where Pθ(a|q,P) denotes the probability of gen- 162

erating answer a conditioned on q and reasoning 163

path(s) P by a function parameterized by θ, and 164

Pϕ(P|q,G) denotes the probability of discovering 165

reasoning path(s) P by a function parameterized 166

by ϕ. As reasoning path P is defined as a sequence 167

of reasoning steps, we factorize the reasoning path 168

probability using the chain rule as Eq 1: 169

P (a|q,G) =
∑
P

Pθ(a|q,P)
n∏

k=1

Pϕ(tk|q, t<k,G) (1) 170
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To acquire valid reasoning paths, most prior studies171

follow the retrieval-based (Li et al., 2023; Luo et al.,172

2024a) or agent-based (Sun et al., 2023) paradigm.173

As indicated in Luo et al. (2024b), retrieval-based174

methods rely on precise additional retrievers, while175

agent-based methods are computationally intensive176

and lead to high latency. To address these issues,177

we propose our method, FiDeLiS, to enable both178

efficient and faithful reasoning over KGs.179

3 Method180

Motivated by the insight that integrating KGs181

with LLMs can mitigate hallucinations and en-182

able verifiable reasoning, we propose FiDeLiS to183

improve the factuality of LLM responses by an-184

choring answers to verifiable reasoning steps re-185

trieved from a KG. The overall framework of Fi-186

DeLiS is illustrated in Figure 2, which consists187

of two main components: (1) Reasoning Path188

Retrieval-Augmented Generation (Path-RAG,189

Algorithm 1) and (1) Deductive-verification190

Beam Search (DVBS, Algorithm 2).191

Given a complex question q, we first use an LLM192

to extract key terms from q and generate dense193

embeddings that capture the question’s core con-194

cepts. These embeddings are input into Path-RAG195

module, which rapidly retrieves relevant entities196

and relations from a pre-embedded KG to select a197

smaller candidate sets for further beam search step,198

addressing the latency and computational burden of199

traditional agent-based methods. Path-RAG then200

constructs candidate reasoning steps by combin-201

ing immediate semantic similarity with the struc-202

tural connectivity of the graph, overcoming the203

dependence on highly precise retrievers in standard204

retrieval-based approaches. Next, the DVBS mod-205

ule employs an LLM-generated planning outline206

to guide a beam search that builds reasoning paths207

step-by-step. At each step, deductive verification208

checks that the accumulated reasoning steps logi-209

cally supports the user question, ensuring the final210

reasoning path is both verifiable and accurate.211

3.1 Path-RAG: Reasoning Path212

Retrieval-Augmented Generation213

Previous agent-based methods (Ma et al., 2024;214

Sun et al., 2023) treat LLMs as agents that iter-215

atively interact with KGs to find reasoning paths216

and answer, which necessitate multiple rounds of217

interaction between agents and KGs and lead to218

high computational costs and latency. We instead219

propose a module, Path-RAG which iteratively pre- 220

select a smaller candidate set to reduces the search 221

space for exploring the potential reasoning paths 222

from KGs. It consists of three steps and we detail 223

the workflow as follows: 224

Initialization. We initiate the Path-RAG by en- 225

coding each entity ei ∈ E , and relation ri ∈ R in 226

the KG using a pre-trained language model (LM), 227

which produces dense vectors z(ei) = LM(ei) ∈ 228

Rd and z(ri) = LM(ri) ∈ Rd, where d denotes 229

the embedding dimension. These embeddings are 230

stored in a nearest neighbor structure to facilitate 231

rapid similarity search. 232

Keyword-Driven Retrieval. We then populate 233

a nearest neighbor index to retrieve relevant en- 234

tities and relations for the user query. We first 235

use an LLM to analysis the user query and gener- 236

ate exhaustive keywords/relation names that could 237

be useful for finding the reasoning path to answer 238

the query (See the prompt in §C.1). This step is 239

designed to maximize coverage of potential rea- 240

soning steps, ensuring that no potential reasoning 241

paths are overlooked during the retrieval process. 242

The extracted keywords are then encoded using 243

the same LM in initialization, yielding z(K) = 244

LM(K) ∈ Rd. We subsequently compute the co- 245

sine similarity between z(K) and the pre-stored 246

embeddings, retrieving the top-m entities and re- 247

lations: Em = argtopmi∈|E| cos (z(K), z(ei)) and 248

Rm = argtopmi∈|R| cos (z(K), z(ri)). 249

Reasoning Step Candidates Construction. 250

Next, we construct candidate reasoning steps 251

defined in §2 using the retrieved candidate entities 252

Em and relations Rm. To guide the selection of 253

potential candidate, we propose a scoring function 254

that combines semantic similarity with the KG’s 255

structural connectivity. First we define the base 256

score function S0 that captures only the semantic 257

alignment of the candidate with the query as: 258

S0((r, e)) = Srel(r) + Sent(e), where Sent(e) and 259

Srel(r) represents the cosine similarity between 260

the entity/relation to the query respectfully. To 261

account for the KG’s structural connectivity, i.e., 262

the potential for a candidate to lead to fruitful 263

next steps, we incorporate information from the 264

next-hop candidates and define the overall scoring 265

function as Eq 2: 266

S((r, e)) = S0((r, e)) + α max
∀(rj ,ej)∈N(e)

S0((rj , ej)) (2) 267
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Figure 2: An illustration of FiDeLiS. Top: The workflow of Path-RAG. An LLM first extracts key terms and generates dense
embeddings that feed into the Path-RAG module. Path-RAG rapidly retrieves relevant entities and relations from a pre-embedded
KG and constructs candidate reasoning steps by combining semantic similarity with graph connectivity. Bottom: The workflow
of DVBS. Then, the DVBS module uses an LLM-generated planning outline to guide a beam search that builds reasoning paths
step-by-step over candidates constructed by Path-RAG, with deductive verification ensuring each step logically follows the
previous steps and support the user question.

Where N(e) denotes the set of candidate relation-268

entity pairs reachable from entity e within one269

hop in the KG. α is a hyper-parameter that bal-270

ances the immediate semantic relevance (captured271

by S0((r, e)) with the candidate’s potential for fu-272

ture connectivity (captured by the maximum next-273

hop score). A higher α favors candidates with274

long-term benefits, even if they seem sub-optimal275

initially, while a lower α emphasizes immediate re-276

wards, potentially overlooking future impacts. We277

verify the effectiveness of this new scoring func-278

tion in Table 3 and append the tuning results of279

hyper-parameter α in Figure 5.280

3.2 Deductive-Verification Beam Search281

The objective of DVBS is two-fold: (1) to provide282

a step-wise beam search for exploring verifiable283

reasoning paths from KG based on candidates con-284

structed by Path-RAG (§3.1), and (2) to verify285

each reasoning step based on deductive reason-286

ing (Ling et al., 2023) to ensure each step logically287

follows the previous steps and supports the user288

query. Compared with existing methods like Sun289

et al. (2023) and Ma et al. (2024), while we both290

consider treat LLMs as agents that iteratively inter-291

act with KGs to find reasoning paths and answers,292

our method leverage deductive reasoning to ensure293

each reasoning steps are logically connected and294

only halt the search if the question can be deduced295

based on the reasoning paths. Based on our ro-296

bustness analysis in §4.3, DVBS demonstrate higher297

ratio of valid reasoning paths and can prevent is- 298

sues of either premature stopping (Huang et al., 299

2017) or excessive continuation of reasoning path 300

extension. The DVBS consists of three steps and we 301

detail the workflow as follows: 302

Plan Generation. Inspired by the recent works 303

regarding planning capabilities of LLMs (Zhang 304

et al., 2023; Kagaya et al., 2024), we prompt an 305

LLM to generate the planning steps for answering 306

the user query, denoted as w. This step is designed 307

to provide more hints for subsequent LLM decision 308

making process. Even this step is more like an en- 309

gineering trick, we find that it may unlock some of 310

the capabilities of LLM to do “higher-order” think- 311

ing. By including more hints in the prompt, the 312

LLM tends to make more accurate and determinis- 313

tic decisions during beam search, thus improving 314

the quality of the traversed reasoning paths. (See 315

Table 2 for ablation analysis). 316

Beam Search. We then construct the multi-step 317

reasoning paths by iteratively extending partial 318

paths using a beam search strategy. At each time 319

step t, we use an LLM as agent to select one rea- 320

soning step st from a candidates set St (§3.1) con- 321

ditioned on (1) the likelihood of each candidate 322

si ∈ St, (2) the user query q, (3) the history of 323

previous steps s1:t−1, and (4) planning context w 324

(§3.2), denoted as LM(st|q, s1:t−1, w,St). Instead 325

of exploring every possibility, we retain only the 326
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Backend Models Methods
WebQSP CWQ CR-LT

Hits@1 (%) F1 (%) Hits@1 (%) F1 (%) Acc (%)

Prompting - LLM Only
gpt-3.5-turbo

Zero-shot 54.37 52.31 34.87 28.32 32.74
Few-shot 56.33 53.12 38.52 33.87 36.61
CoT 57.42 54.72 43.21 35.85 37.42

Prompting - LLM Only
gpt-4-turbo

IO 62.32 59.71 42.71 37.93 37.74
Few-shot 68.65 62.71 51.52 43.70 43.61
CoT 72.11 65.37 53.51 44.76 45.42

Finetuning - LLM + KG

NSM (He et al., 2021) 74.31 - 53.92 - -
CBR-KBQA (Das et al., 2021) - - 67.14 - -
DeCAF (Yu et al., 2023) 82.1 - 70.42 - -
KD-CoT (Wang et al., 2023) 73.7 50.2 50.5 - -
RoG (Luo et al., 2024a) 83.15 69.81 61.39 56.17 60.32

Prompting - LLM + KG
gpt-3.5-turbo

ToG (Sun et al., 2023) 75.13 72.32 57.59 56.96 62.48
KAPING (Baek et al., 2023) 72.42 65.12 53.42 50.32 -
FiDeLiS 79.32 76.78 63.12 61.78 67.34

Prompting - LLM + KG
gpt-4-turbo

ToG (Sun et al., 2023) 81.84 75.97 68.51 60.20 67.24
FiDeLiS 84.39 78.32 71.47 64.32 72.12

Table 1: Comparison of FiDeLiS with baseline methods and different backbone LLMs. We replicate the outcomes of ToG and
RoG, and retrieve other baseline results directly from the original paper. We utilize 5 demonstrations as our default setting for
FiDeLiS, ToG, Few-shot, and CoT. The experiment results of open-source models can be found in Table 11.

top-k scoring paths from the previous beam Ht−1327

and extend them by appending candidate steps. The328

overall process can be expressed as Eq 3:329

Ht = Topk

{
h⊕LM(st|q, s1:t−1, w,St) : h ∈ Ht−1

}
(3)330

where ⊕ denotes the concatenation of the current331

path h with the selected candidate step st. The332

beam search strategy enable efficiently navigate333

the vast space of potential reasoning paths while334

concentrating on the most promising ones.335

While beam search, by its nature, can incur high336

computational costs and latency due to multiple337

rounds of LLM interactions. Our retrieval mod-338

ule Path-RAG mitigate this issue by constraining339

candidate set St at each time step t to a narrow,340

high-quality subset rather than requiring the LLM341

to consider all available options. This targeted re-342

trieval not only reduces the number of candidates343

to evaluate at each step but also increases the likeli-344

hood of selecting relevant reasoning steps, thereby345

enabling efficient traversal of KGs at scale. Find346

more discussion regarding efficiency of FiDeLiS347

in §4.4 and Appendix §B.348

Deductive Verification. To ensure that each rea-349

soning step logically follows from its predeces-350

sors and adequately supports the original query,351

we leverage the deductive reasoning capabilities of352

LLMs as a verification criterion (Ling et al., 2023)353

for the beam search process. We first convert the354

user query q into a clear declarative statement q′,355

which encapsulates its logical intent and allows the356

LLM to operate on a well-defined logical target357

(See the concrete example in §C.6). Next, dur-358

ing the beam search, candidate reasoning step st359

are appended to the history s1:t−1 to form poten- 360

tial reasoning paths. For each candidate, we then 361

invoke two deductive verification checks, Cglobal 362

and Clocal (the prompts are given in §C.2). Only 363

those candidates that pass local verification, indicat- 364

ing that the new step maintains logical consistency 365

with the established context, are retained in the 366

beam search process. Once the candidates pass 367

both verification indicate that the user query q can 368

be deduced based on the retained reasoning paths 369

s1:t and the beam search progress should be halted. 370

Global Verification: Cglobal(s
1:t−1, st) re-

turns 1 if (st ∧ s1:t−1) |= q′, and 0 otherwise.

Local Verification: Clocal(s
1:t−1, st) returns

1 if st logically follows from s1:t−1, and 0
otherwise.

By integrating this verification into the beam 371

search offers several benefits: it (1) enhances the 372

robustness and validity of the final answer by en- 373

forcing logical coherence at every step, (2) reduces 374

computational overhead by pruning unpromising 375

paths early, and (3) mitigates risks such as pre- 376

mature termination or excessive extension of the 377

reasoning process. We provide a concrete example 378

of the deductive verification process in §C.6 and 379

the complete DVBS algorithm in Algorithm 2. 380

4 Experiments 381

In this section, we focus on verifying FiDeLiS 382

from four perspectives as follows: (1) compari- 383
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Ablation Setting Components
WebQSP CWQ CR-LT

Hits@1 (%) Hits@1 (%) Acc (%)

No ablation FiDeLiS 79.32 63.12 67.34

w/o Path-RAG
using vanilla retriever 72.35 57.11 59.78
using ToG 75.11 59.47 63.47

w/o DVBS

w/o last step reasoning 75.68 59.45 63.72
w/o planning 76.23 60.14 64.13
w/o beam-search 60.35 49.78 61.87
w/o deductive-verifier 74.13 57.23 63.89

Table 2: Ablation Studies of FiDeLiS using model
gpt-3.5-turbo-0125. ∆ refers to the performance gap be-
tween each component and the entire method.

son results with other baselines over KGQA; (2)384

ablation study; (3) robustness analysis and (4) ef-385

ficiency analysis. We provide all the experiment386

settings in Appendix A due to page constraints.387

The prompts for plan generation, beam search and388

deductive verification can be found in §C.389

4.1 Main Results390

In Table 1, we compare the performance of differ-391

ent methods with various backbend LLMs across392

three datasets. We found that LLM + KG ap-393

proaches generally outperform LLM-only methods394

(Zero-shot, Few-shot, and CoT) by a wide margin,395

indicating the significant benefit of incorporating396

KGs into LLM reasoning. In the LLM + KG cat-397

egory, FiDeLiS stands out as the best-performing398

method across all datasets, particularly when paired399

with GPT-4-turbo. For example, on WebQSP, Fi-400

DeLiS achieves 84.39% Hits@1 and 78.32% F1,401

surpassing ToG (81.84% Hits@1, 75.97% F1) and402

RoG (83.15% Hits@1, 69.81% F1). This improve-403

ment is consistent across other datasets, and even404

compared with some finetuning methods like De-405

CAF and RoG, FiDeLiS as a training-free method406

still demonstrate better performance. The consis-407

tent performance of FiDeLiS highlights its effective408

use of both the KG and LLM, as well as its opti-409

mization of hyper-parameters like beam width and410

depth. Overall, the results illustrate that FiDeLiS,411

leveraging advanced LLMs like GPT-4-turbo and412

KG-based reasoning, sets a new standard for per-413

formance in KG-related tasks.414

4.2 Ablation Study415

Table 2 demonstrates the ablation study of FiDeLiS416

using the gpt-3.5-turbo-0125 model, highlight-417

ing the contributions of individual components418

(Path-RAG and DVBS) to overall performance. We419

conduct the ablation of the Path-RAG by replacing420

it with either a vanilla retriever or ToG (Sun et al.,421

2023) as retriever. We find that using ToG shows422

slight improvements over the vanilla retriever but423

remains below using Path-RAG. Ablating DVBS424

Methods Backbones
WebQSP CWQ CR-LT

Hits@1 (%) Hits@1 (%) Acc (%)

Vanilla Retriever

w/ BM25 58.31 48.39 50.73
w/ SentenceBert 62.74 50.14 51.80
w/ E5 68.42 52.84 54.31
w/ Openai-Emb∗ 72.35 57.11 59.78

Path-RAG

w/ BM25 70.34 56.11 58.77
w/ SentenceBert 73.45 58.41 60.45
w/ E5 77.93 62.74 65.23
w/ Openai-Emb∗ 79.32 63.12 67.34

Table 3: Performance of FiDeLiS with various embedding
methods. * refers to text-embedding-3-small from Ope-
nAI. We detail the tested embedding methods in §A.3.

components also leads to performance declines, 425

particularly when beam search is removed, causing 426

Hits@1 on WebQSP to drop sharply to 60.35%. 427

The deductive verifier and last-step reasoning show 428

moderate but noticeable impacts on performance. 429

The effects are less pronounced on CR-LT, suggest- 430

ing it is more tolerant of simpler methods. Overall, 431

the results confirm the critical roles of Path-RAG 432

and DVBS, especially beam search, in ensuring 433

robust and accurate reasoning across domains. 434

4.3 Robustness Analysis 435

Robustness of Path-RAG. Table 3 presents the 436

performance of FiDeLiS compared to a vanilla re- 437

triever with different embedding methods. The re- 438

sults consistently show that FiDeLiS outperforms 439

the vanilla retriever irrespective of the underlying 440

embedding strategy. For instance, with Openai- 441

Emb∗, the vanilla retriever achieves 72.35% on 442

WebQSP, whereas Path-RAG reaches 79.32%, in- 443

dicating a notable improvement. Similar perfor- 444

mance gains are observed with the other embed- 445

dings. These improvements suggest that integrating 446

graph connections can enhance retrieval effective- 447

ness by providing more informative and contex- 448

tually relevant information, thereby bolstering the 449

overall robustness and accuracy of the method. 450

Effectiveness of Path-RAG. We verify the ef- 451

fectiveness of the retrieval module Path-RAG with 452

two baselines: (1) a vanilla retriever and (2) KAP- 453

ING (Baek et al., 2023) method. The vanilla re- 454

triever concatenates each entity with its relation 455

to form a reasoning step and selects candidates 456

based on cosine similarity with the query embed- 457

dings. In contrast, KAPING (Baek et al., 2023) 458

converts each triple into text and retrieves the 459

top-K similar triples based on semantic similar- 460

ity. We quantify the retrieval performance using 461

the coverage ratio (CR), defined as the percent- 462

age of the ground-truth reasoning steps being re- 463

trieved throughout the reasoning path extension 464
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Method Depth = 1 Depth = 2 Depth > 3

Vanilla Retriever 59.34 52.17 47.31
KAPING (Baek et al., 2023) 65.72 60.41 53.11
Path-RAG w/ keywords 72.61 69.38 62.78
Path-RAG w/o keywords 68.78 (↓ 3.83) 65.27 (↓ 4.11) 57.13 (↓ 5.65)

Table 4: Analysis of the CR of reasoning paths over CWQ.

Methods WebQSP (hits@1) CWQ (hits@1)

Deductive Verification 79.32 63.12
Adequacy Verification (used in ToG) 74.13 57.23
Logit-based Scoring 73.47 54.78

Table 5: Analysis of different verification methods.

(i.e., CR =
Nretrieved∩Nground−truth

Nground−truth
). Table 4 illus-465

trate the experimental setup and corresponding re-466

sults. We find that compared with the baselines, our467

Path-RAG achieves a higher CR value and aligns468

better with the ground-truth paths. It demonstrates469

superior ability to capture connections that simpler470

retrieval models may overlook. This advantage is471

critical for guiding subsequent LLM processing472

toward relevant information, ultimately yielding473

more accurate and coherent answers.474

Path Error Analysis. To verify the faithfulness475

of our step-wise method, we conduct an error anal-476

ysis regarding the whole reasoning path generation477

using RoG (Luo et al., 2024a). We quantify the478

validity of reasoning path using validity ratio (VR),479

which is defined as the ratio of reasoning steps480

that existed in the KG to the total number of the481

reasoning steps in the output reasoning path (i.e.,482

VR =
Nvalid−steps

Nall-steps
). As shown in Figure 3, only483

67% of generated reasoning steps are valid, while484

the remaining 33% of reasoning steps either have485

a format error or do not exist in the KG. This il-486

lustrates that the reasoning steps generated offer487

few guarantees about feasibility especially when488

multiple consecutive steps are combined into a rea-489

soning path. While our method leverage step-wise490

verification to ensure that each of the reasoning491

step exist in the KG and logically connected.492

Effectiveness of Deductive-Verification. To ver-493

ify the effectiveness of deductive-verification men-494

tioned in §3.2, we calculate the average depths of495

the generated reasoning paths as shown in Table 6.496

We find that by considering deductive verification,497

it consistently shows shorter and closer reasoning498

depths to ground-truth across all datasets compared499

to baseline. This implies that FiDeLiS may offer500

more precise termination signals and potentially501

more accurate reasoning paths. We also compare502

deductive-verification methods with other baselines503

in Table 5, like logit-based scoring that assign soft-504

max probability scores to determine the endpoint505

Figure 3: Analysis of reasoning errors in RoG (Luo et al.,
2024a) over WebQSP.

Method WebQSP CWQ CR-LT

GT 2.3 3.2 4.7

ToG 3.1 4.1 5.2
FiDeLiS 2.4 2.8 4.6

Table 6: Average depths of the generated reasoning paths.
GT refers to ground-truth reasoning paths.

of beam search process, and adequacy verification 506

used in ToG (Sun et al., 2023). Experiments show 507

higher accuracy with deductive verification com- 508

pared to adequacy verification and logit-based scor- 509

ing, demonstrating its effectiveness in enhancing 510

reasoning accuracy. 511

Dataset Method Hits@1 Runtime Token #

WebQSP

FiDeLiS (ours) 79.32 43.83 2,452 10.7
w/o Path-RAG using vanilla retriever 72.35 48.37 2,873 10.7
w/o Path-RAG using ToG 75.11 74.26 6,437 10.7

FiDeLiS (ours) - GPT-4o 81.17 37.82 2,452 10.7
FiDeLiS (ours) - GPT-4o-mini 76.48 24.31 2,452 10.7

CWQ

FiDeLiS (ours) 63.12 74.59 2,741 15.2
w/o Path-RAG using vanilla retriever 57.11 78.41 3,093 15.2
w/o Path-RAG using ToG 59.47 132.59 5,372 15.2

FiDeLiS (ours) - GPT-4o 65.33 50.12 2,741 15.2
FiDeLiS (ours) - GPT-4o-mini 58.34 42.54 2,741 15.2

Table 7: Runtime efficiency of FiDeLiS per question.

This finding is further supported by a case 512

study regarding a complex question of Iran’s 513

government system, which blends elements of 514

religion and democracy as shown in Table 8. 515

While baseline methods such as GPT + CoT 516

and RoG predominantly identified Iran as an “Is- 517

lamic Republic” and ToG produce mixed responses, 518

our approach—enhanced by deductive verifica- 519

tion—delivers a reasoning path that is both con- 520

cise and context-aware. The proposed verifica- 521

tion mechanism not only streamlines the reason- 522

ing process but also ensures comprehensive cover- 523

age of grounded answers, demonstrating FiDeLiS’s 524

strength in handling intricate questions. 525

4.4 Efficiency Analysis 526

To investigate the runtime efficiency and cost ef- 527

ficiency of FiDeLiS, we present a comparison re- 528

garding the average runtime, average token usage, 529

average times of LLM calling per question in Ta- 530

ble 7. We find that (1) our method shows supe- 531

rior efficiency compared to the ToG (which is also 532

training-free), by reducing approximately 1.7x run- 533

time costs. (2) Path-Rag component is critical in 534

enhancing both the accuracy and efficiency of the 535
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Question What form of government is in the country that uses the Iranian Rail and was established in 1979?

Answer ’Parliamentary system’, ’Presidential system’, ’Islamic republic’, ’Unitary state’, ’Theocracy’

GPT + CoT

Think step by step. First, identify the country: the country that uses the Iranian Rail is Iran. Then, retrieve the historical Context of 1979: In 1979, Iran underwent a significant
transformation with the Iranian Revolution, which led to the overthrow of the Pahlavi monarchy. Third, following the revolution, the country adopted a new form of government based
on Islamic law. The result was the establishment of the Islamic Republic of Iran, which combines elements of a theocracy and a democracy, where religious leaders have significant
influence over the state governance. So, the government form is the Islamic Republic of Iran, established in 1979 following the Iranian Revolution.

RoG
location.country.form_of_government, location.location.containedby location.country.form_of_government’
location.location.containedby → government.form_of_government.countries
The results are Islamic republic.

ToG

Path-1: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Islamic republic → government.form_of_government.countries → Iran
Path-2: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Theocracy → government.form_of_government.countries → Iran
Path-3: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Unitary state → government.form_of_government.countries → Iran
Based on the reasoning paths, the result is Iran.

FiDeLiS

Path-1: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Islamic republic
Path-2: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Theocracy
Path-3: Iranian rial → finance.currency.countries_used → Iran → location.country.form_of_government → Unitary state
Based on the reasoning paths, the results are Theocracy, Unitary state, Islamic republic.

Table 8: Case study of FiDeLiS. We highlight the wrong answers with red color, and correct answers with blue color.

model. Its ability to constrain potential path can-536

didates effectively reduces unnecessary computa-537

tional overhead, leading to quicker and more ac-538

curate results. To address concern regarding our539

method’s potential application in real-time scenar-540

ios, we also test our method using faster and more541

advanced LLMs. Table 7 shows that our method542

could be further accelerated with newer, faster mod-543

els like GPT-4o or GPT-4-mini. The potential of544

the ongoing advancements in LLMs are expected545

to further enhance the scalability and efficiency546

of FiDeLiS, making it a practical development in547

challenging environments. More detailed analysis548

of bottleneck of computation of FiDeLiS can be549

further found in Appendix B.550

5 Related Work551

LLM Reasoning & Role of KGs. Large lan-552

guage models (LLMs) demonstrate impressive ca-553

pabilities in reasoning tasks but often generate hal-554

lucinated or factually incorrect outputs, particu-555

larly in complex, multi-step scenarios (Huang et al.,556

2025; Li et al., 2024). This unreliability reduces557

their effectiveness in knowledge-intensive applica-558

tions. Knowledge graphs (KGs) have emerged as a559

solution by offering structured, verifiable data that560

supports transparent and multi-hop reasoning (Sui561

et al., 2024). Unlike document-based retrieval-562

augmented generation approaches, KGs provide563

direct access to relational facts, enhancing both564

interpretability and traceability (Chen et al., 2024).565

KG-enhanced LLM Reasoning. KG-enhanced566

reasoning methods are generally categorized into567

retrieval-based and agent-based models. Retrieval-568

based approaches, such as DeCAF (Yu et al., 2023),569

rely on text-based retrieval to select relevant infor-570

mation from KGs and jointly generate answers and571

logical forms, but their performance can degrade572

without precise retrieval mechanisms. In contrast,573

agent-based models, like ToG (Sun et al., 2023), 574

iteratively explore reasoning paths but suffer from 575

high computational overhead. To address these 576

limitations, recent methods like RoG (Luo et al., 577

2024a) and GCR (Luo et al., 2024b) have sought 578

to integrate KG structure into LLM training or de- 579

coding to improve reasoning fidelity and explana- 580

tion generation. To improve the faithfulness of the 581

LLM reasoning, KD-CoT (Wang et al., 2023) ver- 582

ifies sub-reasoning steps through external KGs to 583

prevent errors during inference, while NSM (He 584

et al., 2021) employs a teacher-student architecture 585

to learn intermediate supervision signals that guide 586

reasoning. 587

6 Conclusion 588

This paper proposes a retrieval-exploration interac- 589

tive method specifically designed to enhance inter- 590

mediate steps of LLM reasoning grounded by KGs. 591

The Path-RAG module and the use of deductive 592

reasoning as a calibration tool effectively guide 593

the reasoning process, leading to more accurate 594

knowledge retrieval and prevention of misleading 595

reasoning chains. Extensive experiments demon- 596

strate that our method, being training-free, not only 597

reduces computational costs but also offers superior 598

generality. We believe this study will significantly 599

benefit the integration of LLMs and KGs, or serve 600

as an auxiliary tool to enhance the interpretability 601

and factual reliability of LLM outputs. 602

Limitations 603

Our work demonstrates a promising advancement 604

by integrating KGs with LLMs to reduce hallucina- 605

tions and promote deep, faithful reasoning through 606

deductive verification. However, the method ex- 607

hibits certain limitations. Its reliance on external 608

KGs means that the overall effectiveness is contin- 609

gent on the quality and comprehensiveness of these 610
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resources, and challenges may arise when encoun-611

tering incomplete, inconsistent or outdated infor-612

mation. Despite these limitations, the open-KGs613

like Wikidata and DBpedia used in our study are614

of high quality, benefiting from years of updates by615

an extensive community. For domain-specific KGs,616

although there may currently be gaps in quality, we617

are optimistic about future enhancements. Given618

the significant societal impact and the noticeable619

boosts in LLM performance facilitated by KGs, it620

is likely that community efforts will continue to621

refine and expand these resources.622
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A Experiment Details791

A.1 Baselines792

We consider the following methods including793

training-free (highlighted with *) and training-794

based methods as baselines:795

• NSM (He et al., 2021) propose a teacher-student796

approach for KGQA task, where the student net-797

work aims to find the correct answer to the query,798

while the teacher network tries to learn interme-799

diate supervision signals for improving the rea-800

soning capacity of the student network.801

• KD-CoT (Wang et al., 2023) propose to verify802

the sub-reasoning process of LLMs through the803

external KGs to facilitate faithful reasoning.804

• DeCAF (Yu et al., 2023) use a text-based retrieval805

instead of entity linking to select question-related806

information from the KG, and generate logical807

forms and direct answers respectively. They808

combine the logical-form-executed answers and809

directly-generated answers to obtain the final out-810

put.811

• KAPING∗ (Baek et al., 2023) proposes a zero-812

shot knowledge-augmented prompting method.813

It first retrieves triples related to the question814

from the graph, then prepends them to the input815

question in the form of a prompt, which is then816

forwarded to LLMs to generate the answer.817

• ToG∗ (Sun et al., 2023): conduct the reasoning on818

KGs by iteratively exploring multiple potential819

reasoning paths and concludes the final answer820

by aggregating the evidence from retrieved rea-821

soning paths.822

• RoG (Luo et al., 2024a): incorporate the under-823

ling structure of KGs into LLMs throught pre-824

training and fine-tuning to generate the reasoning825

path and explanation.826

• GCR (Luo et al., 2024b) propose to integrate827

KG structure into the LLM decoding process to828

conduct graph-constrained reasoning.829

A.2 Datasets & Metrics830

We consider three KGQA benchmark: WebQues-831

tionSP (WebQSP) (Yih et al., 2016), Complex We-832

bQuestions (CWQ) (Talmor and Berant, 2018) and833

CR-LT-KGQA (Guo et al., 2024) in this work. We834

follow previous work (Luo et al., 2024a) to use the835

same training and testing splits for fair compari-836

son over WebQSP and CWQ. The questions from837

Dataset 1 hop 2 hop ≥ 3 hop

WebQSP 65.49 % 34.51% 0.00%
CWQ 40.91 % 38.34% 20.75%
CR-LT 5.31 % 43.22% 51.57%

Table 9: Statistics of the question hops in WebQSP, CWQ
and CR-LT-KGQA.

Dataset #Ans = 1 2 ≥ #Ans ≤ 4 5 ≥ #Ans ≤ 9 #Ans ≥ 10

WebQSP 51.2% 27.4% 8.3% 12.1%
CWQ 70.6% 19.4% 6% 4%

Table 10: Statistics of the number of answers for questions
in WebQSP and CWQ.

both WebQSP and CWQ can be reasoned using 838

Freebase KGs1. To address the bias in WebQSP 839

and CWQ, which predominantly feature popular 840

entities and there is a likelihood that their data 841

might have been incorporated into the pre-training 842

corpora of LLMs, we further test our method on 843

CR-LT-KGQA (discussed in §A.2). We use the 844

complete dataset from CR-LT-KGQA in our exper- 845

iments, as it comprises only 200 samples. Each of 846

the question can be reasoned based on the Wiki- 847

data2. The statistics of the datasets are given in 848

Table 10 and Table 9. To streamline the KGs, we 849

follow RoG (Luo et al., 2024a) and utilize a sub- 850

graph of Freebase by extracting all triples that fall 851

within the maximum reasoning hops from the ques- 852

tion entities in WebQSP and CWQ. Similarly, we 853

construct the corresponding sub-graphs of Wiki- 854

data for CR-LT-KGQA. We assess the performance 855

of the methods by analyzing the F1 and Hits@1 856

metrics for CWQ and WebQSP, and by evaluating 857

the accuracy for CR-LT-KGQA. The statistics of 858

the datasets can be found in Table 9 and Table 10. 859

Motivation of CR-LT-KGQA. The motivation 860

for evaluating over CR-LT-KGQA is that the major- 861

ity of existing KGQA datasets, including WebQSP 862

and CWQ, predominantly feature popular entities. 863

These entities are well-represented in the training 864

corpora of LLMs, allowing to often generate cor- 865

rect answers based on their internal knowledge, 866

potentially without external KGs. Moreover, since 867

WebQSP and CWQ have been available for several 868

years, there is a likelihood that their data might 869

have been incorporated into the pre-training cor- 870

pora of LLMs, further reducing the need for exter- 871

nal KGs during question-answering. To this end, 872

we utilize the CR-LT-KGQA benchmark, which 873

1https://github.com/microsoft/FastRDFStore
2https://www.wikidata.org/wiki/Wikidata:

Main_Page
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Figure 4: Distribution of CR-LT-KGQA dataset.

Figure 5: Parameter tuning for α for scoring function
over WebQSP

features queries specifically crafted to target ob-874

scure and long-tail entities. Figure 4 illustrates875

the distribution of entity frequency and popularity876

in CR-LT, underscoring the inherent challenges of877

these queries. In such scenarios, knowledge graphs878

are indispensable as they offer a reliable, verifiable879

source of information, particularly for entities that880

are poorly represented in the training data of large881

language models. By testing our methods on CR-882

LT-KGQA, we investigate the extent to which inte-883

grating KGs can bolster LLM performance in less884

common knowledge domains, where their effective-885

ness typically declines. This evaluation not only886

demonstrates the potential synergy between LLMs887

and KGs but also clarifies the critical role that KGs888

continue to play in supporting LLMs across diverse889

query scenarios.890

A.3 Backbone LLMs & Embedding Methods891

Backbone LLMs. We assess our approach on892

closed- and open-source LLMs. We consider893

closed-source models like GPT-4-turbo (between894

Feb, 2024 to July, 2024), GPT-3.5-turbo (between895

Feb, 2024 to July, 2024), GPT-4o, GPT-4o-mini896

(between Nov, 2024 to Jan 2025) from OpenAI,897

and open-sourced models like meta-llama-2-13B898

from Meta and mixtral-7B from Mixtral AI. The899

experiment results of open-source models can be900

found in Table 11. We set all the inference configs901

using temperature T = 0.3 and p = 1.0.902

Embedding Methods. We assess the robustness903

of the retrieval module Path-RAG on different em-904

Backend Models
WebQSP CWQ CR-LT

Hits@1 (%) F1 (%) Hits@1 (%) F1 (%) Acc (%)

Llama-2-13B 72.34 69.78 58.41 54.78 60.87
Mistral-7B 74.11 70.23 60.71 56.87 63.12

Table 11: Performance over Open-sourced LLMs.

bedding models. We consider probabilistic ranking 905

function like BM253, dense retrieval using smaller 906

language models like SentenceBERT4 and E55, 907

and more advanced embedding model like text- 908

embedding-3-small from OpenAI6. 909

A.4 Implementation Details 910

We set the default beam width as 4 and depth as 4 911

without specific annotation. We set the α in Eq 2 as 912

0.3 to ensure reproducibility. For hyper-parameter 913

tuning regarding α for Eq 2 and beam search width 914

and length, we conduct experiments as shown in 915

Figure 5 and Figure 6. 916

Analysis of Beam Search. We investigate the ef- 917

fect of hyper-parameters like beam width and depth 918

in beam search, as illustrated in Figure 6. By vary- 919

ing the width and depth from 1 to 4, we observe that 920

overall performance improves as both parameters 921

increase, peaking when the search depth exceeds 922

3 for the WebQSP and CWQ datasets. However, 923

beyond a depth of 3, performance begins to decline, 924

likely because only a small fraction of questions in 925

these datasets require reasoning at greater depths. 926

In contrast, increasing the beam width consistently 927

enhances performance, highlighting the benefits of 928

broader exploration in search. 929

A.5 Robustness Analysis Across Different 930

Domains and KGs 931

KGs vary in structure and domain-specific char- 932

acteristics, so consistent performance across both 933

general and specialized KGs can reflect a method’s 934

adaptability to diverse real-world applications. To 935

this end, we conduct robustness analysis of Fi- 936

DeLiS across different domains and KGs to verify 937

the generalizability. To perform this analysis, we in- 938

troduced a new dataset, MedQA-USMIE, sourced 939

from MedQA (Jin et al., 2020), which is designed 940

to require domain-specific biomedical and clini- 941

cal knowledge. The dataset is a 4-way multiple- 942

choice question-answering task, and we extracted 943

3https://en.wikipedia.org/wiki/Okapi_BM25
4https://sbert.net
5https://huggingface.co/intfloat/e5-large
6https://platform.openai.com/docs/guides/

embeddings
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(a) RD over CWQ (b) RD over WebQSP

(c) BW over CWQ (d) BW over WebQSP

Figure 6: Analysis of various beam search width (BW) and
reasoning depth (RD).

Method WebQSP MedQA-USMIE

ToG 81.84 42.37

Path-RAG w/ Si
r + Si

e 83.15 44.31
Path-RAG w/ Si

r + Si
e + αmax∀j∈Ni

(Sj
r + Sj

e) 84.39 46.45

Table 12: Robustness analysis of our method across different
domains

300 examples from its test set for evaluation. The944

corresponding biomedical KG is based on Dis-945

ease Database and DrugBank (Zhang et al., 2022).946

The results, presented in Table 2, indicate that our947

method exhibits consistent robustness across differ-948

ent types of KGs. Our scoring function, enhanced949

by incorporating next-hop neighbor information950

Si
r + Si

e + αmax∀j∈Ni
(Sj

r + Sj
e), achieves higher951

performance gains in both WebQSP and MedQA-952

USMIE, particularly improving accuracy in the spe-953

cialized biomedical domain. These findings vali-954

date that our method can effectively handle the chal-955

lenges posed by both general and domain-specific956

knowledge graphs, indicating strong adaptability957

and robustness.958

B Bottleneck of Beam Search Efficiency959

The bottleneck of computation is the beam search960

process, which contributes to N ∗ D times LLM961

calling, where D is the depth (or equivalently962

length) of the reasoning path, and N is the width963

of the beam-search (how many paths are remained964

in the pool in each iteration). Specifically, we need965

to call ND + D + C times LLM for each sam-966

ple question, where C is a constant (equals to 1 if967

there is no error occurs when calling the API). Sun 968

et al. (2023) indicate that the computational effi- 969

ciency can be alleviated by replacing LLMs with 970

small models such as BM25 and Sentence-BERT 971

for the beam search decision since the small mod- 972

els are much faster than LLM calling. In this way, 973

we can reduce the number of LLM calling from 974

ND+D+C to D+C. However, this may sacri- 975

fices the accuracy due to the weaker scoring model 976

in decision making (Sun et al., 2023). 977

We noted that ND + D + C is the maximal 978

computational complexity. In most cases, FiDeLiS 979

does not need ND+D+C LLM calls for a ques- 980

tion because the whole reasoning process might be 981

early stopped before the maximum reasoning depth 982

D is reached if LLM determines the query can be 983

deductive reasoning by the current retrieved rea- 984

soning paths. As an illustration, Table 7 shows the 985

average numbers of LLM calls per question needed 986

by FiDeLiS on different datasets. It can be seen 987

that in three KGQA datasets, the average numbers 988

of LLM calls (ranging from ) are smaller than 21, 989

which is the theoretical maximum number of LLM 990

calls calculated from ND +D + C when N = 4 991

and D = 4. We can also see that this average num- 992

ber gets even smaller for dataset covering a lot of 993

single-hop reasoning questions, such as WebQSP. 994
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C Prompt List995

In this section, we show all the prompts that need to996

be used in the main experiments. The In-Context997

Few-shot refers to the few-shot examples we used998

for in-context learning.999

C.1 Plan-and-solve1000

You are a helpful assistant designed to output JSON1001

that aids in navigating a knowledge graph to answer1002

a provided question. The response should include1003

the following keys:1004

(1) ’keywords’: an exhaustive list of keywords1005

or relation names that you would use to find the1006

reasoning path from the knowledge graph to answer1007

the question. Aim for maximum coverage to ensure1008

no potential reasoning paths will be overlooked;1009

(2) ’planning_steps’: a list of detailed steps re-1010

quired to trace the reasoning path with. Each step1011

should be a string instead of a dict.1012

(3) ’declarative_statement’: a string of declar-1013

ative statement that can be transformed from the1014

given query, For example, convert the question1015

’What do Jamaican people speak?’ into the state-1016

ment ’Jamaican people speak *placeholder*.’ leave1017

the *placeholder* unchanged; Ensure the JSON ob-1018

ject clearly separates these components.1019

In-Context Few-shot1020

Q: {Query}1021

A:1022

C.2 Deductive-verification1023

You are asked to verify whether the reasoning step1024

follows deductively from the question and the cur-1025

rent reasoning path in a deductive manner. If yes1026

return yes, if no, return no".1027

In-Context Few-shot1028

Whether the conclusion ’{declara-1029

tive_statement}’ can be deduced from1030

’{parsed_reasoning_path}’, if yes, return1031

yes, if no, return no.1032

A:1033

C.3 Adequacy-verification1034

You are asked to verify whether it’s sufficient for1035

you to answer the question with the following rea-1036

soning path. For each reasoning path, respond with1037

’Yes’ if it is sufficient, and ’No’ if it is not. Your1038

response should be either ’Yes’ or ’No’.1039

In-Context Few-shot1040

Whether the reasoning path ’{reasoning_path}’1041

be sufficient to answer the query ‘{Query}’, if yes,1042

return yes, if no, return no. 1043

A: 1044

C.4 Beam Search 1045

Given a question and the starting entity from a 1046

knowledge graph, you are asked to retrieve reason- 1047

ing paths from the given reasoning paths that are 1048

useful for answering the question. 1049

In-Context Few-shot 1050

Considering the planning context {plan_context} 1051

and the given question {Query}, you are asked 1052

to choose the best {beam_width} reasoning paths 1053

from the following candidates with the highest 1054

probability to lead to a useful reasoning path for 1055

answering the question. {reasoning_paths}. Only 1056

return the index of the {beam_width} selected rea- 1057

soning paths in a list. 1058

A: 1059

C.5 Reasoning 1060

Given a question and the associated retrieved rea- 1061

soning path from a knowledge graph, you are asked 1062

to answer the following question based on the rea- 1063

soning path and your knowledge. Only return the 1064

answer to the question. 1065

In-Context Few-shot 1066

Question: {Query} 1067

Reasoning path: {reasoning_path} 1068

Only return the answer to the question. 1069

A: 1070
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C.6 Demonstration of Deductive Verification1071

Deductive Verification Example

Question: Who is the ex-wife of Justin Bieber’s father?

After one round of beam searching, the current reasoning path is:
Justin_bieber → people.person.father → Jeremy_bieber.

The next step candidates are:
1. people.married_to.person → Erin Wagner
2. people.person.place_of_birth → US, . . .

The deductive reasoning can be formulated as follows:

Premises:

- Justin_bieber → people.person.father → Jeremy_bieber
(from the current reasoning path)
- Jeremy_bieber → people.married_to.person → Erin Wagner
(from the next step candidates)

Conclusion:

Erin Wagner is the ex-wife of Justin Bieber’s father.
(Using a large language model (LLM) zero-shot approach to reformat the question into a cloze
filling task, we use the last entity from the next step candidates, "Erin Wagner", to fill the cloze.)

The prompt will ask whether the conclusion can be deduced from the given premises. If the answer
is "yes", return “yes”, otherwise return “no.”

1072
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Algorithm 1 Path-RAG Initialization and Retrieval Process
1: Initialization:
2: for all ei ∈ E , ri ∈ R do
3: zie = LM(ei) ▷ Embed entities
4: zir = LM(ri) ▷ Embed relations
5: end for
6: Populate nearest neighbor index with {zie} and {zir} ▷ Facilitate retrieval
7: procedure RETRIEVE(query q)
8: Ki = LM(‘prompt’, q) ▷ Generate keywords
9: for all km

i ∈ Ki do
10: ki ← concatenate(km

i )
11: zk = LM(ki) ▷ Embed concatenated keywords
12: Ek = argtopki∈E cos(zk, z

i
e) ▷ Retrieve top-k entities

13: Rk = argtopki∈R cos(zk, z
i
r) ▷ Retrieve top-k relations

14: end for
15: return Ek,Rk

16: end procedure
17: procedure SCOREPATH(Ek,Rk)
18: Initialize Score← 0
19: for each ek ∈ Ek and rk ∈ Rk do
20: Calculate Si

e, S
i
r ← cos(zk, z

i
e), cos(zk, z

i
r) ▷ Compute similarity scores

21: S(p) = Si
r + Si

e + αmax∀j∈Ni(S
j
r + Sj

e) ▷ Score path using Eq. 2
22: Score← max(Score, S(p)) ▷ Update max score
23: end for
24: return Score, p
25: end procedure

Algorithm 2 Deductive-Verification Guided Beam Search
Require: User query x, Beam width B
Ensure: Reasoning path s1:T

1: InitializeH0 = {∅}
2: Utilize LLM to generate from x:
3: Planning steps.
4: Declarative statement x′.
5: for t = 1 to T do
6: for each h ∈ Ht−1 do
7: Generate possible next steps st ∈ S using Path-RAG.
8: for each st do
9: Compute C(x′, st, s1:t−1) using LLM:

10: C(x′, st, s1:t−1) =

{
1 if x′ can be deduced from st and s1:t−1,

0 otherwise.

11: if C(x′, st, s1:t−1) = 1 then
12: Append st to h to form new hypothesis h′.
13: Add h′ toHt.
14: end if
15: end for
16: end for
17: Ht = TopB(Ht) based on scoring function (like plausibility or likelihood).
18: end for
19: return the best hypothesis fromHT .
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