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ABSTRACT

Recent technological advances in single-cell sequencing have enabled simultane-
ous profiling of multiple omics modalities within individual cells. Despite these
advancements, challenges such as high noise levels and information loss during
computational integration persist. While existing methods align different modal-
ities, they often struggle to balance alignment accuracy with the preservation of
modality-specific information needed for downstream biological discovery. In
this paper, we introduce scCMIA, a novel framework guided by Mutual Infor-
mation (MI) principles that leverages a VQ-VAE architecture. scCMIA achieves
robust cross-modal alignment in a unified discrete latent space while enabling high-
fidelity reconstruction of the original data modalities. Crucially, our framework
transforms the learned discrete representations into a tool for tangible biologi-
cal discovery, allowing for the quantification of regulatory programs and cross-
modal relationships. Our extensive experiments demonstrate that scCMIA achieves
state-of-the-art performance across multiple datasets. Our code is available at:
https://anonymous.4open.science/r/scCMIA-77E3.

1 INTRODUCTION

Multimodal learning is becoming increasingly crucial in the field of biology. Biological processes
within cells involve multiple regulatory levels, including DNA, RNA, and proteins Tang et al. (2023);
Li et al. (2024). The intricate interactions and influences between these levels necessitate an integrated
multimodal understanding to fully comprehend these biological processes Tu et al. (2022). In recent
years, technological advancements that enable the analysis of multimodal information at single-cell
resolution have been pivotal in cataloging cell types and states. For instance, single-cell RNA
sequencing (scRNA-seq) Picelli et al. (2013) is used to profile the transcriptomes of individual
cells, offering deep insights into cellular heterogeneity and gene expression patterns. Similarly, the
single-cell assay for transposase-accessible chromatin with high throughput sequencing (scATAC-seq)
Cusanovich et al. (2015) profiles the chromatin accessibility of individual cells, providing valuable
information about gene regulatory networks and chromatin structure.

Although data from individual modalities are readily available and easy to analyze, they offer limited
fundamental information on how different layers of genomic regulation interact within a single
cell Wu et al. (2021). With the further development of technology, various multimodal single-cell
protocols Chen et al. (2019b); Ma et al. (2020); Xu et al. (2022) have been proposed to obtain a more
comprehensive view of individual cells and simultaneously profile gene expression and chromatin
accessibility. Despite the potential benefits, integrating multimodal data often faces significant
challenges due to large differences in the modal feature spaces Chen et al. (2019a). For instance,
accessible chromatin regions in scATAC-seq and genes in scRNA-seq exhibit substantial discrepancies
Argelaguet et al. (2021), making it difficult to effectively perform a joint analysis of data from both
modalities.

Intuitively, a direct strategy for managing multimodal data involves embedding diverse modalities into
a unified representation space. Certain methodologies accomplish this by transforming multimodal
inputs directly into a shared feature space, often utilizing prior knowledge Duren et al. (2018); Zeng
et al. (2019). Conversely, alternative approaches, such as those described by Minoura et al. (2021);
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Gong et al. (2021) , integrate multiple modalities without aligning them in a shared space. This
approach, however, fails to facilitate the interaction between different modalities and consequently
cannot fully exploit potentially complementary information across modalities. Furthermore, some
techniques Cao & Gao (2022); Ashuach et al. (2023) attempt to enhance model performance by
combining cross-modal alignment with modality reconstruction tasks. Despite these efforts, there
remains significant scope for improvement in both the efficacy of cross-modal alignment and the
accuracy of modality reconstruction.

To address these challenges, we developed a novel VQ-VAE-based cell-level alignment framework,
called single-cell cross-modal mutual information (MI) alignment (scCMIA). This framework effec-
tively achieves cross-modal alignment at the single-cell level and reconstructs data in their original
modality spaces. scCMIA utilizes the RNA to ATAC (RtA) module to initially align scRNA and
scATAC sequences in a continuous shared feature space. Subsequently, it constructs a cross-modal
unified codebook in discrete space, facilitating enhanced cross-modal interaction and significantly
improving the robustness of both alignment and reconstruction processes. This approach not only
enhances the alignment accuracy but also effectively reconstruct multi-modal data, thereby addressing
the issue of unimodal information deficiency and providing a comprehensive solution for multi-modal
data integration and analysis. Our main contributions are summarized as follows:

• We propose scCMIA, a single-cell multi-omics integration framework centered on mutual
information (MI) theory. This framework achieves alignment by maximizing cross-modal
MI while minimizing intra-modal MI for feature decoupling, providing theoretical assurance
for high-precision alignment and high-fidelity data generation. To this end, we designed
a robust dual-space alignment strategy that first performs alignment in a continuous space
and then refines it in a discrete space using a unified discrete codebook. This approach
significantly enhances the model’s overall performance and robustness.

• We demonstrate that the designed unified codebook can learn structures with high biological
significance, and propose methods to quantify the conservation of regulatory programs
across cell lineages and reveal differences in regulatory coupling among distinct cell types,
providing powerful new tools for downstream biological exploration.

• Through extensive experiments across multiple benchmark datasets, we demonstrate that
scCMIA achieves state-of-the-art performance across a range of key tasks. Compared to
existing methods, our model exhibits significant advantages in cross-modal alignment, data
reconstruction, and data interpolation tasks, comprehensively validating the effectiveness
and superiority of our proposed framework.

2 RELATED WORK

Multimodal alignment is rapidly advancing in fields such as text, vision, and speech. Methods like
CLIP Radford et al. (2021), ALBEF Li et al. (2021), and GLIP Li et al. (2022) have played significant
roles in their respective domains. Concurrently, in the field of biology, multimodal alignment
and reconstruction methods are also making important contributions. In the field of biology, we
can categorize multimodal integration strategies into three types: (1). multimodal alignment, (2).
multimodal reconstruction, and (3). multimodal alignment and reconstruction.

Multimodal Alignment. Techniques such as Pamona Cao et al. (2022), UnionCon Cao et al. (2020),
Seurat V3 Stuart et al. (2019), MMD MA Singh et al. (2020), SCOT Demetci et al. (2020) and scGCL
Xiong et al. (2023) align cells from different omics layers through nonlinear flows. These methods
eliminate the need for prior knowledge and minimize information loss between modalities. However,
they suffer from poor alignment robustness when handling noisy and difficult to apply on large scale
data processing. Multimodal Reconstruction. Techniques such as scMM Minoura et al. (2021),
Cobolt Gong et al. (2021) and scButterfly Cao et al. (2024) focus primarily on reconstructing missing
or incomplete data across different modalities. However, as these methods do not explicitly align
modalities into a shared latent space, their utility for tasks requiring direct cross-modal comparison,
querying, and label transfer can be limited. By not creating a unified representation, they may also
not fully leverage complementary information across modalities for certain downstream analyses.

Multimodal Alignment and Reconstruction. Most methods in this category are based on au-
toencoders. These approaches not only align data from different modalities but also reconstruct
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Figure 1: The pipeline of scCMIA. The scCMIA framework is designed to perform intra-modal
decoupling and cross-modal alignment, thereby enabling dynamic interaction between modalities
while reconstructing individual modalities to capture their intrinsic semantic information.

the original input data from the aligned representations. GLUE Cao & Gao (2022) utilizes graph
variational autoencoders (VAE) to model known regulatory relationships between open chromatin
regions and genes, enabling efficient cross-modal feature translation. However, it can only reconstruct
the original spatial data of the scATAC that is related to the scRNA. MutiVI constructs multiple VAE
models employing a joint latent representation to integration embedding spaces Ashuach et al. (2023).
The performance on alignment and refactoring tasks still has room for further improvement.

Feature Decoupling. Feature decoupling plays an important role in many fields, such as Peng et al.
(2019) proposed decoupled representation learning framework for multigraphs to capture complete
and clean common information. The decoupling of class-independent features is proposed Mo et al.
(2023) and the alignment of source domain and target domain is realized. Uni-code Xia et al. (2024)
proposed dual cross-modal information uncoupling and multimodal EMA, which unified expression
in audio and video, audio text, and even audio - video - text three modes, and realized cross-modal
generalization of various tasks in the downstream. Our approach has similar ideas to Uni-code, but
we have adopted a completely different strategy in terms of framework and unified codebook design,
making it more suitable for the single-cell multi-omics field.

3 METHOD

3.1 PRELIMINARY

In this section, we first introduce preliminary work on the design of the scCMIA framework (Fig. 1).
Our objective is to balance the model in terms of alignment and reconstruction performance. However,
unimodal data contains both modality-specific features and semantic characteristics, where modality-
specific features may hinder cross-modal alignment. To address this challenge, we propose decoupling
and alignment methods that leverage the bounds of MI. This approach facilitates achieving our goal by
effectively managing these modality-specific features while preserving semantic consistency across
different modalities.

MI is a measure of mutual dependence between two random variables. Intuitively, MI represents
the amount of information contained in one random variable about another. Given random variables
X and Y , the MI is defined as the Kullback-Leibler (KL) divergence between its joint distribution
p(x, y) and the product p(x)p(y) of the marginal distributions:

I(X;Y ) = DKL(p(x, y)∥p(x)p(y)) = Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
= H(Y )−H(Y | X) = H(X)−H(X | Y ).

(1)

where H(X) and H(Y ) are marginal entropies, and H(X|Y ) and H(Y |X) are conditional entropies.
WhenX and Y correspond to each other, I(X;Y ) = H(X) = H(Y ); whenX and Y are independent
of each other, I(X;Y ) = 0.

3
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In single-cell scRNA and scATAC, let’s define random variables x and x̂ ∈ XRNA, and y and ŷ ∈
YATAC representing the semantic and modality-specific features of scRNA and scATAC, respectively,
the upper bound of the intra-modal mutual information can be expressed as Lintra = I(x; x̂) + I(y; ŷ).

To achieve the decoupling of modality-specific and semantic features, our objective is to minimize
this upper bound. However, relying solely on minimizing the upper bound of MI within modalities
is insufficient for effectively decoupling modality-specific and semantic information in a directed
manner. Therefore, to efficiently decouple modality-specific and semantic features, it is necessary to
leverage the correlations between cross-modal semantics as guidance. Our objective is to maximize
the lower bound of cross-modal MI Linter = I(x; y) to bring the cross-modal semantic relationships
closer together.

Therefore, our overall optimization objective combines minimizing the upper bound of MI within
modalities to achieve intra-modal decoupling, and maximizing the lower bound of MI across modali-
ties to achieve cross-modal semantic alignment (ψ is the decoupling module parameter).

min
ψ
Lintra − Linter. (2)

3.2 INTRA-MODAL DECOUPLING LEARNING

When two modes are very different, forcing the two modes to align directly will lead to semantic
information loss in the shared space of each mode Niu et al. (2024). To mitigate this tradeoff between
alignment and modal information loss, we introduce the following assumption:

Given sequencing data of two modalities from the same single cell, scRNA, and scATAC, represented
byX and Y respectively, we can decouple them into modality-specific x̂ and modality-agnostic seman-
tic representations x. Y is decoupled into modality-specific representation ŷ and modality-agnostic
semantic representation y. The distance between the decoupled scRNA semantic representations x
and y should satisfy the following condition:

max (I(x, x̂), I(y, ŷ)) < I(x, y). (3)

On the basis of this assumption, we uses Contrastive Log-ratio Upper Bound (CLUB) Cheng
et al. (2020) to estimate the upper bound of the MI between x̂ and x within the scRNA modality:
I(x; x̂) ≤ ICLUB(x; x̂). Similarly, the upper bound on the MI of modality-specific and modality-
agnostic representation in scATAC is estimated by I(y; ŷ) ≤ ICLUB(y; ŷ). Therefore, in the context
of a single modality, CLUB is defined as:

IvCLUB(x; x̂) :=Ep(x,x̂) [log qθ(x̂ | x)]− Ep(x)Ep(y) [log qθ(x̂ | x)] . (4)

where qθ (x̂|x) is a variational distribution with parameter θ to approximate p (x̂|x). To achieve the
decoupling of scRNA and scATAC modality-specific representations and modality-agnostic semantic
representations, we constructed two dual modality-specific and semantic encoders (as shown in Fig.
1) and then optimized the MI upper bound between the modality feature representation m̂ and the
semantic representation m (m ∈ (RNA,ATAC):

ÎvCLUB =
1

N2

N∑
i=1

N∑
j=1

[log qθ(m̂i|mi)− log qθ(m̂j |mi)] . (5)

However, it is difficult to obtain meaningful semantic representations for the semantic encoder by
relying solely on this module. Therefore, according to the previous assumption, cross-modal mutual
information (MI) should be maximized, as higher cross-modal MI helps the CLUB module achieve
better decoupling.

3.3 INTER-MODAL CONTRASTIVE LEARNING

The RtA module maximizes a lower bound on the MI between different “views” of the semantic
representation of an scRNA-scATAC pair. This is achieved by symmetrically calculating a contrastive
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loss from the RNA-to-ATAC direction and the ATAC-to-RNA direction. Formally, we defined x and
y to be the semantic representations of the outputs of the scRNA and scATAC semantic encoders,
respectively. We aimed to maximize the MI between x and y. In practice, we maximized the MI
between x and y by minimizing the InfoNCE loss, which is defined as

LInfoNCE = −Ep(x,y)

[
log

exp(x · y)∑
y∈Ŷ exp(x · y)

]
. (6)

where Y contains the positive sample y and ||y|| − 1 negative samples drawn from a proposal
distribution. Next, we reformulate the loss term for the RtA module based on InfoNCE as follows:

LRtA =− 1

2
Ep(R,A)

[
log

exp(R ·A/τ)∑M
m=1 exp (R ·Am/τ)

+ log
exp(A ·R/τ)∑M

m=1 exp (A ·Rm/τ)

]
. (7)

where τ is the temperature coefficient. Minimizing LRtA is, by contrast, equivalent to maximizing
Linter. Thus, the RtA module can be treated as two perspectives on the semantic representation of
scRNA-scATAC pairs, which can be maximized by training the RtA module to maximize I(x; y).

3.4 CROSS-MODALITY UNIFIED CODEBOOK

Properties such as scRNA and scATAC, which are inherently discrete data types and possess charac-
teristics somewhat inconsistent with Gaussian assumptions, present a challenge when it comes to
understanding cellular heterogeneity quantitatively. This is especially true given that the potential
embeddings generated by existing methods are often continuous and may lack direct biological
significance Cui et al. (2024). Therefore, to improve the performance of the model in different
downstream tasks, we constructed a cross-modal discrete unified codebook. Inspired by SimVQ
Zhu et al. (2024), it only adds a simple and efficient linear transformation to the codebook of VQ,
which can achieve accelerated convergence and improve the coding utilization rate. We designed
Cross-modal VQ (CrossVQ). CrossVQ first initializes a cross-modal shared codebook e where
e ∈ {e1, e2, . . . , ek}, along with a randomly initialized learnable weight matrix W . For an individual
scRNA, its representation after VQ is formulated as:

zRNA
q = zRNA + sg[qRNAW − zRNA],

qRNA = argmin
e∈{e1,e2,··· ,eK}

∥zRNA − eW∥. (8)

Here, zRNA represents the encoding obtained from the scRNA data. To enable the update of the
codebook for better cross-modal alignment, we further designed Cross-modal VQ to update the
learnable weight matrix W . Focusing on a single modality, the process can be described as follows:

LRNA
VQ = ∥qRNAW − sg[zRNA]∥2 + β∥qRNAW − sg[zATAC]∥2. (9)

Additionally, the loss function for updating the scRNA encoder is formulated as follows:

LRNA
encoder =

β

2

∥∥zRNA − sg[qRNAW ]
∥∥2 . (10)

Here, β is used to weight the codebook and encoder loss terms, respectively. For scATAC in cross-
modal settings, the loss function is similar. Therefore, the overall loss term for CrossVQ can be
expressed as follows:

LCrossVQ = Lmencoder + LmVQ,m ∈ {RNA,ATAC} . (11)
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3.5 OVERALL TRAINING OBJECTION

scCMIA is divided into three main components: decoupling, cross-modal alignment, and reconstruc-
tion of the original space data. The scCMIA’s framework is shown in Fig. 1. First, intra-modal
maximization of mutual information upper bound (Eq. 5) is performed to achieve effective decoupling.
Next, RtA and CrossVQ are used for cross-modal alignment in continuous (Eq. 7) and discrete spaces
(Eq. 11), facilitating efficient interaction between modalities. Finally, each modality is efficiently
reconstructed in the original space.

LscCMIA = ÎvCLUB + LRtA + LCrossVQ + Lrec. (12)
Here Lrec represents the reconstruction loss for each modality.

4 EXPERIMENTS

In this section, we systematically evaluate the performance of scCMIA. We begin by describing
the datasets and evaluation metrics. We then demonstrate the superiority of our framework on the
primary tasks of cross-modal alignment and data reconstruction, and verify the efficacy of its key
components through ablation studies. To provide a more comprehensive validation, we present
additional experiments in the Appendix, which cover reconstruction quality, imputation accuracy,
biological discovery, and model convergence.

4.1 DATASETS AND METRICS

Datasets Single-cell multi-omics data are often hindered by complex and sophisticated techniques,
low throughput, and high noise levels. Therefore, in this paper, we use well-studied single-cell
multimodal data from the community for testing purposes. Including 10x Multiome PBMC Genomics
(2020), SHARE-seq Ma et al. (2020), SNARE-seq Chen et al. (2019b), and ISSAAC-seq Xu et al.
(2022). Detailed information on these datasets is shown in Appendix Table 6.

Evaluation Metrics The fraction of samples closer than the true match (FOSCTTM) Singh et al.
(2020) was used to assess the accuracy of the alignment of the single cell level. A lower FOSCTTM
value indicates a higher accuracy in correctly identifying that two modalities originate from the same
cell. Additionally, we use Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) to
evaluate the reconstruction performance of the model, of which the lower value indicates a better
reconstruction performance. Finally, we also verify that the representations obtained from the latent
space contain cell identity information using several clustering metrics including Adjusted Rand
Index (ARI), Normalised Mutual Information (NMI), Adjusted Mutual Information (AMI) and the
Homogeneity (HOM) metric items.

4.2 ALIGNMENT EXPERIMENTS

The core objective of multi-modal alignment is to precisely match corresponding cells across modal-
ities like scRNA-seq and scATAC-seq, a task challenged by their inherently heterogeneous data
distributions. To systematically evaluate how different alignment strategies preserve this biological
correspondence, we conducted extensive comparative experiments, with quantitative results detailed
in Table 1.

The results of the multimodal alignment experiment show that our method achieved the best perfor-
mance in most datasets, and on average, it reduced the error of the best competing alignment method
by 26.60%. To evaluate cross-modal label transferability between scRNA-seq and scATAC-seq
data, we performed bidirectional cell type annotation transfer experiments. Specifically, we trained
a kNN classifier to transfer cell type labels from scRNA-seq to scATAC-seq data (RNA-to-ATAC
transfer) and vice versa (ATAC-to-RNA transfer). The comparative results, as summarized in Fig. 2,
demonstrate that our scCMIA method significantly outperformed existing methods in both transfer
directions. Notably, the high concordance observed between transferred labels across modalities
provides strong evidence for successful cross-modal alignment. These findings highlight scCMIA’s
exceptional capability to preserve biological consistency while integrating heterogeneous single-cell
omics data, thereby establishing its effectiveness for multimodal data harmonization tasks.
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Table 1: Alignment performance measured by FOSCTTM (mean ± std, lower is better ↓). Bold =
best, italic = second best. Average is mean across non-NA datasets.

Method 10X Multiome ISSAAC-seq SHARE-seq SNARE-seq Average

MultiVI 0.2482±0.092 0.3679±0.01 0.1989±0.003 0.2567±0.008 0.2346
Seurat v3 0.0777±0.0002 0.0778±0.0002 0.1214±0.001 0.2501±0.0004 0.1318

GLUE 0.0172±0.002 0.0111±0.002 0.0343±0.003 0.0127±0.006 0.0188
MMD-MA 0.2998±0.014 0.4027±0.049 — 0.5280±0.0138 0.4102

Pamona 0.4968 0.5007 — 0.5025 0.5000
UnionCom 0.5041±0.029 0.4875±0.059 — 0.4800±0.027 0.4905

scCMIA 0.0132±0.008 0.0027±0.001 0.0165±0.003 0.0227±0.006 0.0138

10X PBMC SHARE-seq

(a) 10× PBMC

10X PBMC SHARE-seq

(b) SHARE-seq

Figure 2: Bidirectional label transfer accuracy across integration methods.

4.3 RECONSTRUCTION EXPERIMENTS

For the data reconstruction evaluation, we performed systematic experiments to validate scCMIA’s
capability to accurately reconstruct both the scRNA-seq and scATAC-seq data spaces. As evidenced
in Tables 2 and 3, scCMIA demonstrates superior multimodal reconstruction performance compared
to benchmark methods, achieving the lowest error metrics across both scRNA and scATAC modalities.

Table 2: Reconstruction performance (mean ± std) on scRNA across four random seeds. Lower is
better (↓). Bold = best, italic = second best.

Method Align Recon Metric SHARE-seq SNARE-seq 10×PBMC ISSAAC-seq

GLUE ✓ ✓ RMSE 0.5214±0.013 0.8298±0.278 1.8103±0.005 1.3244±0.001
MAE 0.0978±0.001 0.0272±0.136 0.1494±0.001 0.4807±0.001

MultiVI ✓ ✓ RMSE 0.9385±0.001 0.9322±0.003 0.9508±0.001 3.5434±0.154
MAE 0.3018±0.02 0.2665±0.005 0.3061±0.004 2.4638±0.111

Cobolt ✓ RMSE 0.3832±0.021 0.8319±0.003 1.8127±0.001 1.3261±0.001
MAE 0.0300±0.001 0.0268±0.005 0.1499±0.013 0.4814±0.001

scMM ✓ RMSE 0.4824±0.003 0.6309±0.008 1.7939±0.014 1.2817±0.035
MAE 0.0905±0.0003 0.1228±0.0003 0.2945±0.007 0.2525±0.04

scButterfly ✓ RMSE 2.1405±0.048 1.3840±0.033 3.7336±0.050 1.2452±0.027
MAE 0.1464±0.041 0.0750±0.001 0.2756±0.024 0.1918±0.012

scCMIA ✓ ✓ RMSE 0.3213±0.025 0.5490±0.003 1.0140±0.013 0.8931±0.001
MAE 0.0624±0.014 0.0919±0.046 0.1591±0.080 0.0750±0.043

Notably, while scCMIA maintained top-2 ranking on the 10× PBMC dataset reconstruction task, it
exhibited marginally higher error metrics compared to GLUE and MultiVI. The observed performance
differences were quantitatively minimal, with MAE and RMSE discrepancies of merely 0.0097 and
0.0632 respectively against GLUE. This narrow performance gap suggests comparable reconstruction
fidelity among the top-performing methods, while scCMIA maintains a distinct advantage in its
capability for simultaneous multimodal reconstruction. Furthermore, the comprehensive cross-modal
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Table 3: Reconstruction performance (mean ± std) on scATAC across four random seeds. Lower is
better (↓). Bold = best, italic = second best.

Method Align Recon Metric SHARE-seq SNARE-seq 10×PBMC ISSAAC-seq

MultiVI ✓ ✓ RMSE 0.3148±0.001 0.2784±0.003 1.4572±0.0002 1.7726±0.005
MAE 0.1655±0.001 0.2045±0.010 0.9447±0.004 0.4512±0.004

Cobolt ✓ RMSE 0.2621±0.001 0.2460±0.001 1.5283±0.002 2.1371±0.161
MAE 0.0406±0.0003 0.0623±0.001 0.7039±0.013 0.7646±0.005

scMM ✓ RMSE 0.3730±0.0002 0.3451±0.0004 1.6689±0.0002 3.0510±0.103
MAE 0.1202±0.0001 0.0998±0.0002 0.8064±0.002 0.4316±0.0001

scButterfly ✓ RMSE 0.4942±0.001 0.5001±0.022 1.4746±0.016 1.6950±0.008
MAE 0.4924±0.024 0.4995±0.131 0.4688±0.021 0.4931±0.011

scCMIA ✓ ✓ RMSE 0.2607±0.003 0.2459±0.001 1.2086±0.016 1.1996±0.0001
MAE 0.0532±0.145 0.0561±0.123 0.6713±0.019 0.2404±0.0167

Table 4: Comparison of dependency and direction consistency metrics across multi-omics datasets.
Higher values indicate stronger semantic alignment.

Metric Dataset

Category Type SHARE-seq SNARE-seq 10× PBMC ISSAAC-seq

Dependency (MI)
Sem-Sp (scRNA) 0.0181 0.0127 0.0791 0.0484
Sem-Sp (scATAC) 0.0030 0.0037 0.0048 0.0113
Sem-Sem (RtA) 0.2466 0.1761 0.2751 0.2226

Direction Consistency
(Cosine Sim.)

Sem-Sp (scRNA) 0.0264 0.0134 -0.0097 -0.0044
Sem-Sp (scATAC) 0.0026 0.00001 0.0090 0.0007
Sem-Sem (Raw) -0.0049 -0.0017 -0.0039 -0.0052
Sem-Sem (RtA) 0.6087 0.5070 0.6013 0.6818

reconstruction performance across all evaluated datasets confirms scCMIA’s methodological strength
in preserving data integrity during integration processes.

4.4 MODEL VALIDITY EXPERIMENTS

Decoupling Effectiveness The effectiveness of our model’s decoupling mechanism is validated
through two quantitative approaches. Our primary validation directly assesses the objective of our
training strategy by measuring the MI between the resulting latent variables. This confirms that
MI was successfully minimized between semantic and modality-specific representations within a
modality, while being maximized between the semantic representations across modalities. As an
auxiliary method, we also calculate the cosine similarity between these vectors to further verify their
statistical independence.

The experimental results are shown in Table 4, which shows that the modal specificity and semantic
MI in the single mode are close to 0, which also means that the more independent the two random
variables are. The semantic mutual information of the two modalities after RtA has increased by
789. 19% significantly compared to the mutual information within a single modal. Furthermore, the
cosine similarity calculated between modality-specific and semantic representations is also nearly
zero. The decoupled semantic representation has a higher cosine similarity, which also indicates the
consistency of the two representations in terms of direction. These findings strongly validate that
the disentangled variables are independent and uncorrelated, which confirms the effectiveness of our
decoupling approach. It is also consistent with the assumptions of Eq. 3.

Additionally, we further investigated decoupled modality-specific and semantic representations using
clustering tasks. The experimental results are shown in Fig. 3. The results suggest that the semantic
representations contain more information related to cell identity, whereas the modality-specific
portion of the representations contain less or almost no (vs. scATAC) information related to cell
identity. In particular, both the semantic representations of scRNA and scATAC are rich in cell identity

8
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Figure 3: Comparison of clustering results of decoupled modality-specific and semantic representa-
tions across different datasets.

information. Since modality-specific data include unique information pertinent to each modality, this
information is essential for subsequent reconstruction tasks to achieve better performance.

Ablation Study We also conducted ablation studies on each module of the scCMIA by constructing
models that include different combinations of modules. Specifically, the CLUB module is used for
intra-modal decoupling, while the RtA and CrossVQ modules are employed for modal alignment and
to address the issue of insufficient information within individual modalities. We constructed ablation
experiments with different components (in the SHARE-seq dataset) and the experimental results
are shown in Table 5. The experimental results were able to observe that the inclusion of the RtA
module significantly improves cross-modal alignment, while the inclusion of CrossVQ improves the
performance in terms of reconstruction. In addition, the model containing all components (CrossVQ,
CLUB, RtA) is able to achieve good performance in both alignment and reconstruction performance.

In addition, we also compare the performance of CLUB+RtA and Full model on the label migration
and clustering tasks, and the experimental results are shown in Fig. 4, which shows that scCMIA with
Full model is able to have better performance, and the experiments also validate the reasonableness of
the individual modules that we have designed. Together, these modules provide a robust framework
for handling multi-modal data integration and analysis.

Table 5: Ablation experiments of different modules, among
which scCMIA is a full model, including CLUB+RtA+CrossVQ.
(FOSCTTM↓, RMSE↓, MAE↓)

Components FOSCTTM scRNA scATAC

RMSE MAE RMSE MAE

VQ-VAE (Baseline) 0.4801 0.4557 0.1060 0.2634 0.1195
+ CrossVQ, CLUB 0.4945 0.3125 0.0629 0.2677 0.0544
+ CrossVQ, RtA 0.0231 0.3666 0.0612 0.2625 0.0539
+ CLUB, RtA 0.0178 0.3234 0.0641 0.2612 0.0592
scCMIA 0.0132 0.3213 0.0624 0.2607 0.0532

Figure 4: Compare the perfor-
mance of scCMIA and CLUB
+ RtA modules on the label
transfer task.

5 CONCLUSION

This paper introduces scCMIA, a novel self-supervised framework designed to address the challenges
of integrating single-cell multi-omics data. Based on mutual information principles and a unified
discrete codebook, this model not only outperforms existing methods in alignment and reconstruction
tasks but also pioneers the use of its interpretable latent space for biological exploration. It successfully
quantifies regulatory conservation and coupling differences across distinct cell lineages, demonstrating
its immense potential as a tool for biological discovery.

9
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A TECHNICAL APPENDICES AND SUPPLEMENTARY MATERIAL

This appendix provides a comprehensive overview of the technical implementation of scCMIA. This
section includes detailed diagrams of the model architecture, a complete list of training hyperparame-
ters, a description of the data preprocessing pipeline, and the algorithm’s pseudocode to ensure full
reproducibility.

A.1 MORE RELATED WORKS

Maximize Mutual Information Lower Bound. MI The mutual information neural estimator (MINE)
Belghazi et al. (2018b) relies on kernel density estimation of random variables and estimates MI
through a neural network to fit the expectation of two distributions. Deep InfoMax (DIM) Hjelm et al.
(2019) utilizes autoencoders to learn latent representations of two variables, then estimates MI by
maximizing the consistency between the representations. InfoNCE Oord et al. (2018) estimates a
lower bound on MI by contrasting the similarity of representations between positive and negative
samples. InfoNCE can be combined with deep neural networks to learn complex representations and
estimate highly nonlinear MI relationships.

Minimize Mutual Information Upper Bound. MI minimization has found wide applications in the
disentangled representation learning Von Kügelgen et al. (2021), domain adaptation Vettoruzzo et al.
(2024), and information bottleneck methods Tian et al. (2020). However, these methods require closed-
form density functions and tractable log-density ratios between the joint and marginal distributions,
which limits the exact computation of MI to a few special cases. To address this challenge, sample-
based MI estimators Belghazi et al. (2018a); Cherti et al. (2023) have been proposed. For example,
L1out Poole et al. (2019) can provide more accurate MI estimates with large sample sizes. However,
when applied to MI minimization models, it suffers from high numerical instability. The contrastive
log-ratio upper bound (CLUB) Cheng et al. (2020) is a reliable MI estimator that can also be trained
within a gradient descent framework. To obtain a tighter upper bound on the MI Yang et al. (2024),
we use CLUB to evaluate the upper boundary for better intra-modal decoupling.

A.2 SCCMIA ALGORITHM

Algorithm 1 provides a clear step-by-step outline of the scCMIA algorithm, emphasizing the key
steps such as intra-modal decoupling, cross-modal alignment using contrastive learning and VQ
operations, and the calculation and minimization of the total loss term LscCMIA to optimize the model
parameters θ.

Algorithm 1 scCMIA

1: Input: scRNA X , scATAC Y , epoch N ,
2: scRNA modality-specific encoder Φ and semantic encoder Φ̂,
3: scATAC modality-specific encoder Ψ and semantic encoder Ψ̂,
4: model parameter θ.
5: Initialize codebook e ∈ {e1, e2, . . . , ek}, learnable parameters W
6: for i = 1 to N do
7: ÎvCLUB, x, x̂, y, ŷ ← CLUB(X,Y,Φ, Φ̂,Ψ, Ψ̂)
8: LRtA, x

′, y′ ← RtA(x, y)
9: LCrossVQ, x

′′, y′′ ← CrossVQ(x′, y′)
10: Lrec ← Reconstruct decoder(x′′, x̂, y′′, ŷ)
11: end for
12: LscCMIA ← ÎvCLUB + LRtA + LCrossVQ + Lrec

13: θ ← argminθ LscCMIA
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A.3 MORE EXPERIMENTAL SUPPLEMENTS

A.4 DATASETS

Each dataset contains variable sample sizes with different number of cell-types and the dimensions of
both scRNA and scATAC are high. In Table 6, we present detailed information about the datasets
used in this work, including sample size, dimensions of paired modalities, and cell types.

Table 6: Composition of the experimental datasets.

Datasets Sample Size scRNA Dimension scATAC Dimension Cell Type
10x Multiome 9,631 29,095 107,194 19
SHARE-seq 32,231 21,478 340,341 22
SNARE-seq 9,190 28,930 241,757 22
ISSAAC-seq 10,361 32,285 169,180 23

Given the high dimensionality and sparsity issues prevalent in both scRNA and scATAC data, it is
necessary to perform feature selection beforehand to better handle the data. For scRNA data, we
select 2000 highly variable genes, while for scATAC data, we choose 30,000 high-variance regions as
features.

A.5 EVALUATION METRICS

A.5.1 PERFORMANCE EVALUATION METRICS

This section introduces the calculation formulas for the Fraction of Samples Closer Than the True
Match (FOSCTTM) and matching accuracy (MA).

FOSCTTM is a core alignment performance metric. It is specifically designed to evaluate whether
data from two different modalities at the single-cell level has been accurately matched together. A
lower FOSCTTM value indicates higher alignment precision of the model. If N cells have true
pairwise information, FOSCTTM is defined as

FOSCTTM = 1
2N

(∑N
i=1

n
(i)
1

N +
∑N
i=1

n
(i)
2

N

)
,

n
(i)
1 = |{j | d (xj ,yi) < d (xi,yi)}| ,
n
(i)
2 = |{j | d (xi,yj) < d (xi,yi)}| .

(13)

The parameters in the formula are explained as follows:

• d(·, ·): A function used to calculate the Euclidean distance.

• n(i)1 and n(i)2 : Denote the number of cells that are closer to the i-th sample than their true
match in the opposite dataset.

• The value of FOSCTTM is in the range of [0, 1]. Smaller values of FOSCTTM indicate
better performance.

Additionally, we tested the accuracy of correctly matching paired samples of another modality under
given batch samples from different modal perspectives. We use the MA as a measure, which is
defined by the formula:

MA =
1

N

1

B

N∑
k=1

B∑
i=1

B∑
j=1

I

 ∑
m∈{x,y}

Cossim (mi,mi) >
∑

m∈{x,y}

Cossim (mj ,mi) for all j ̸= i

 .

(14)

The parameters in the formula are explained as follows:

• N : Total number of samples in the dataset.
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• B: Batch size (number of samples in each batch).

• xi and yi: Represent the two modalities (e.g., scRNA and scATAC) of the i-th sample.

• Cossim(·, ·): Cosine similarity function.

• I(·): Indicator function, which takes the value 1 if the condition is true, and 0 otherwise.

• Range of values: [0, 1].

A.5.2 BIOLOGICAL INTERPRETABILITY METRICS

CTSI (Cell Type Specificity Index) and Conservation Score are used to reveal whether components
such as the model’s latent space and encoding capture meaningful patterns consistent with biological
knowledge.

Conservation Score measures the frequency with which both scRNA and scATAC modalities map to
the same discrete code within the same cell. It reveals the degree of coupling in multimodal regulation
within different cell types. Variations in its values constitute biological discoveries, demonstrating
that the model has learned deep insights into the distinct regulatory logic of different cell types. It
combines two parts: the overlap of codes used and the similarity of their usage frequency distributions.
A higher score indicates that two cell types utilize the VQ codebook in a more similar or conserved
manner.

Overlap Score Measures the similarity between the sets of VQ codes used by two cell types, Ci and
Cj .

Overlap(Ci, Cj) =
|Ci ∩ Cj |
|Ci ∪ Cj |

. (15)

Distribution similarity measures the similarity between the VQ code frequency vectors, Fi and Fj ,
for two cell types.

DistSim(Fi, Fj) =
Fi · Fj
∥Fi∥∥Fj∥

=

∑N
k=1 FikFjk√∑N

k=1 F
2
ik

√∑N
k=1 F

2
jk

. (16)

Conservation Score is a weighted average of the Overlap Score and the Distribution Similarity. The
α is a weighting factor, we set α = 1

2 .

Conservation(i, j) = α · Overlap(Ci, Cj) + (1− α) · DistSim(Fi, Fj). (17)

Additionally, CIST measures the specificity with which different cell types utilize specific codes
within a unified codebook. A high CTSI value indicates the codebook has successfully learned
discrete states that distinguish distinct cellular identities, providing a biological interpretation for the
model’s black-box interior. It aims to quantify how specific the VQ code usage is for a particular cell
type compared to all other cell types. A high CTSI score for a cell type suggests it uses at least one
VQ code with a much higher frequency than any other cell type does, indicating a specific signature
in the codebook space.

Let Fi be the frequency vector of VQ codes for cell type i, and T be the set of all cell types. The
CTSI for cell type i is defined as:

CTSIi =
max(Fi)−max

(
1

|T |−1

∑
j∈T ,j ̸=i Fj

)
max(Fi)

. (18)

The parameters in the formula are explained as follows:

• max(Fi) is the maximum frequency of any single code for cell type i.

• 1
|T |−1

∑
j∈T ,j ̸=i Fj is the average frequency vector across all other cell types.
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Linear(in_features=128, 
out_features=64, bias=True)
  GELU(approximate='none')

  Linear(in_features=64, 
out_features=64, bias=True)

  Dropout(p=0.1, inplace=False)

Norm(64, eps=1e-05, momentum=0.1, 
affine=True, 

track_running_stats=True)

Linear(in_features=64, 
out_features=128, bias=True)
 GELU(approximate='none')

Linear(in_features=64, 
out_features=128, bias=True)
 GELU(approximate='none')

Linear(in_features=128, 
out_features=128, bias=True)
Dropout(p=0.1, inplace=False)

Norm((128,), eps=1e-05, 
elementwise_affine=True)

RtA module

Linear(in_features=256, 
out_features=128, bias=True)

ReLU()

   Linear(in_features=128, 
out_features=128, bias=True)

ReLU()

Specific encoder

Linear(in_features=256, 
out_features=128, bias=True)

ReLU()

Semantic encoder

Multi-Head Attention
(in_features=128, 
out_features=128)

specific latent
Linear(in_features=384, 

out_features=gene or peak size, 
bias=True)

ReLU()

Linear(in_features=128, 
out_features=256, bias=True)

ReLU()

Output 
(scRNA-seq or scATAC-seq)

Latent 

Decoder

⊕specific latent

Figure 5: Model structure details. The model architectures and parameter configurations of the
domain-specific encoder, semantic encoder, RtA module, and decoder in our proposed framework.

• max(·) of that average vector gives the highest frequency achieved for any code on average
by other cell types.

A.6 MODEL ARCHITECTURE AND IMPLEMENTATION DETAILS

In order to improve the reproducibility of the algorithm for easy understanding, we show the
architecture of the modal model and the parameter settings in detail in Fig. 5. This includes the
modality-specific and semantic coders, the RtA module, and the decoders for each modality.

We implemented scCMIA on an NVIDIA RTX A6000. First, to reduce the model parameters and
remove redundant information, we preprocessed scRNA (Principal Component Analysis, PCA) and
scATAC (Latent Semantic Indexing, LSI) using a linear-dimensionality reduction method. The raw
scRNA and scATAC data are reduced to 256 dimensions and used as input for the scCMIA model.
We use Adam as the optimizer with the learning rate set to 0.00001. In the training phase, 10% of the
cells were used as a validation set, the number of training iterations was set to 500, we implemented
an early stopping mechanism that halts training if the loss does not decrease for 20 consecutive
epochs. In addition, to validate the robustness of our method, we set up four different random seeds
for the experiments.

The experimental design accounted for methodological differences among comparative frameworks:
1) GLUE exclusively relies on RNA-derived association graphs for cross-modal integration, inher-
ently limiting its scATAC reconstruction capacity (RNA reconstruction metrics only reported); 2)
The original Cobolt implementation lacked intrinsic reconstruction functionality, necessitating our
implementation of a dedicated reconstruction module to enable fair performance comparison.

To assess the preservation of local structural correspondence between RNA and ATAC modalities,
we conducted bidirectional label transfer experiments (RNA→ATAC and ATAC→RNA) following
established protocols from reference methods (e.g., Pamona, UnionCom). A k-nearest neighbors
(KNN) classifier was trained on low-dimensional embeddings of the source modality to ensure
consistency with benchmark implementations. The trained model was then applied to predict cell-
type labels using the target modality’s embeddings, thereby enabling cross-modality prediction. Label
transfer accuracy was systematically quantified across all annotated cell types to evaluate alignment
fidelity between modalities. This rigorous framework not only facilitates direct comparison with prior

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

studies but also objectively measures the mutual translatability of cellular state representations across
distinct data types, providing critical insights into multimodal integration performance.

B SUPPLEMENTARY EXPERIMENTAL RESULTS

This includes a quantitative analysis of how data reconstruction improves data quality, a masking
experiment to verify the model’s imputation accuracy, a deeper exploration of the biological insights
enabled by our model’s interpretable discrete codebook, and a visualization of the total loss curves to
demonstrate stable model convergence across all datasets.

B.1 RECONSTRUCTION TASKS CAN EFFECTIVELY ENHANCE DATA QUALITY

To evaluate whether the reconstruction module of scCMIA can effectively improve the quality of raw
single-cell data, we compared key data metrics before and after model reconstruction, with particular
focus on the issue of data sparsity.

Table 7: Key metrics of scRNA and scATAC data were compared before and after scCMIA recon-
struction.

Data Type Metric Raw Reconstructed Improvement (%)

scRNA
Density (%) 9.3123 9.4842 +1.8

Avg. expressed genes/cell 186 189 +1.7
Avg. expressed cells/gene 896 913 +1.9

scATAC
Density (%) 20.2984 38.3894 +89.1

Avg. expressed peaks/cell 6089 11516 +89.1
Avg. expressed cells/peak 1954 3697.3 +89.2

As shown in the Table. 7, after reconstruction by scCMIA, the data quality of both scRNA-seq and
scATAC-seq modalities was significantly improved. The experimental results clearly demonstrate
that the reconstruction process effectively reduces data sparsity. For scRNA-seq data, all metrics
showed modest yet robust improvements. For scATAC-seq data, which suffers from more severe
sparsity, both data density and feature detection rates increased by approximately 89%, demonstrating
particularly significant effects. This confirms that our reconstruction module can generate a more
complete and information-rich cellular landscape by filling in technologically lost information.

Although the above experiments demonstrate that reconstruction can increase data density, we must
verify that this improvement stems from accurate data imputation rather than the filling of random
noise. To this end, we designed a masking experiment to directly evaluate the model’s imputation
capability. We conducted simulations on the 10x PBMC dataset. For each cell, we randomly masked
10% to 30% of its feature values. To ensure fairness in evaluation, masked positions were strictly
balanced: half were original non-zero values (to test false negatives/recall), and half were original
zero values (to test false positives). The model’s task is to predict these masked values. We framed
this as a binary classification problem and used Recall and AUROC as evaluation metrics.

Table 8: Interpolation performance under varying masking ratios.

Masking Ratio scRNA Recall scRNA AUROC scATAC Recall scATAC AUROC

10% 0.7361 0.8344 0.9643 0.8119
15% 0.7325 0.8333 0.9643 0.8114
20% 0.7330 0.8323 0.9642 0.8108
25% 0.7261 0.8289 0.9641 0.8106
30% 0.7244 0.8283 0.9640 0.8103

As shown in the Table. 8 , scCMIA demonstrates robust and powerful interpolation performance
even under varying masking ratios. This experiment provides direct quantitative evidence that the
increased data density observed earlier is not an artifact but rather a reflection of the model’s strong
and precise interpolation capabilities. Particularly on scATAC-seq data, the model correctly recovered
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approximately 96% of genuinely open chromatin regions (peaks) that were artificially obscured. This
robustly confirms that our reconstruction process provides an enhanced, biologically more accurate
representation of cellular states by recovering true signals from technical noise.

B.1.1 BIOLOGICAL SIGNIFICANCE VALIDATION AND APPLICATION EXPLORATION OF
UNIFIED CODEBOOKS

To validate the biological significance and practical value of the VQ-VAE framework and unified
codebook in this study, we designed two supplementary experiments. The first experiment aimed
to verify whether the discrete representations learned by the codebook itself possess interpretable
biological structures. The second experiment further explored the potential of leveraging these
structures for downstream biological knowledge discovery.

First, we quantitatively assessed the intrinsic properties of the unified codebook by introducing
two novel metrics: CTSI and Consistency Rate. Experimental results (Fig. 9) demonstrate that
high CTSI values (most > 0.8) confirm the codebook learned highly specialized, non-generalized
discrete encodings for different cell types. Simultaneously, the substantial variation in Consistency
Rate across cell types (e.g., as high as 0.98 in memory B cells versus as low as 0.33 in plasma
cells) reveals the model’s ability to successfully capture diverse regulatory coupling relationships
between transcriptomes and chromatin accessibility across cell types, effectively avoiding excessive
or forced alignment across different biological states Liggett & Sankaran (2020); Chi et al. (2024).
This analysis fundamentally validates the unified codebook as a structured, interpretable layer of
biological representation.

Table 9: Cell-type-specific integration (CTSI) scores and consistency rates across modalities.

Cell Type scRNA CTSI scATAC CTSI Consistency Rate

CD14 Mono 0.7299 0.6116 0.3751
CD4 Naive 0.8448 0.8133 0.8603
CD8 Naive 0.8569 0.8365 0.0185

CD8 TEM 1 0.7848 0.7578 0.6429
HSPC 0.8127 0.8473 0.6471

Intermediate B 0.8664 0.8684 0.8500
Memory B 0.8685 0.8449 0.9765

NK 0.8577 0.8378 0.9280
Naive B 0.8747 0.8716 0.8560
Plasma 0.7931 0.8632 0.3333

Second, building upon the validated unified codebook, we introduced the regulatory Conservation
Score (CS) to quantify the similarity of regulatory programs across cell types, aiming to test the
model’s capability for biological knowledge discovery. This results ((Fig. 10)) successfully repro-
duced known cellular lineage relationships, cells within the same lineage (e.g., B cell subpopulations)
obtained high RCS scores, while scores between different lineages (e.g., lymphoid and myeloid)
were lower. More importantly, this approach reveals finer biological insights, such as quantitatively
distinguishing functional differences among distinct monocyte subpopulations and capturing shared
cytotoxic programs between NK cells and CD8 TEM 1 cells. This experiment demonstrates that our
model transcends mere data integration, serving as a quantitative exploration tool to generate novel
insights into cellular regulatory networks.

To sum up, these two complementary experiments form a complete chain of reasoning. The first
experiment establishes the structural validity and interpretability of the discrete code book in our
method, demonstrating it is not a complex component designed for novelty’s sake. The second
experiment demonstrates the functional utility of this structure, proving it can serve as a powerful tool
for discovering and quantifying cellular regulatory logic. Together, they confirm that our proposed
scCMIA framework not only excels at alignment and reconstruction tasks but also delivers profound
biological insights, opening new analytical dimensions for single-cell multi-omics research.
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Table 10: Conservation scores (CS) and biological interpretation across cell type pairs. Higher CS
indicates stronger cross-modality alignment.

Category Cell Type Pair RNA CS ATAC CS Interpretation

High Conservation (B cell) Naive B vs. Plasma 0.774 0.847 Strong conservation in
B-cell development

High Conservation (T cell) CD8 Naive vs. CD8 TEM 1 0.510 0.551 Conservation across T-cell
subtypes

Low Conservation (Distant) CD4 Naive vs. CD14 Mono 0.180 0.095 Lymphoid vs. myeloid
programs

Nuanced Insights CD14 Mono vs. CD16 Mono 0.361 0.365 Subtle differences between
monocyte subtypes

NK vs. CD8 TEM 1 0.410 0.509 Shared cytotoxic program

B.1.2 MODEL CONVERGENCE ANALYSIS

The overall training objective function of the cCMIA framework comprises multiple components,
resulting in a complex training process. To validate the model’s convergence, we visualized the
evolution of the total training loss across epochs on all four benchmark datasets (10x Multiome
PBMC, SHARE-seq, SNARE-seq, ISSAAC-seq).

(a) 10× PBCM (b) ISSAA-seq (c) SHARE-seq (d) SNARE-seq

Figure 6: Total loss (LscCMIA) convergence curve of scCMIA across four datasets.

As shown in Fig. 6, the model’s training process remains stable even across datasets with varying
complexity and feature differences. This provides robust assurance for scCMIA’s broad applicability
across diverse single-cell multi-omics datasets.

B.1.3 ALIGNMENT PERFORMANCE EXPERIMENT SUPPLEMENT

In experiments with a fixed batch size of 56, we compared various contrastive methods based on their
top1 and top5 matching accuracy for two modalities. The results in Table 11 indicate that our method,
scCMIA, demonstrates robust alignment performance in both top1 and top5 across multiple datasets
under this batch size. These findings further confirm the effectiveness of scCMIA.

Table 11: Performance comparison of different methods on multi-omics datasets.

Methods Modality 10X Multiome ISSAAC-seq SHARE-seq
Top1 Top5 Top1 Top5 Top1 Top5

GLUE RNA→ATAC 0.6732 0.9662 0.7692 0.9775 0.1510 0.4120
ATAC→RNA 0.6282 0.9575 0.7264 0.9705 0.1686 0.4271

Pamona RNA→ATAC 0.0184 0.0881 0.0163 0.0836 NA NA
ATAC→RNA 0.0195 0.0927 0.0174 0.0847 NA NA

UnionCon RNA→ATAC 0.0171 0.0817 0.0148 0.0217 NA NA
ATAC→RNA 0.0080 0.0590 0.0736 0.0953 NA NA

MMD MA RNA→ATAC 0.0430 0.1791 0.0676 0.2676 NA NA
ATAC→RNA 0.0304 0.1642 0.0633 0.2697 NA NA

scCMIA RNA→ATAC 0.7146 0.9855 0.8595 0.9958 0.6073 0.9552
ATAC→RNA 0.7191 0.9840 0.8632 0.9967 0.6137 0.9548
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B.1.4 CROSS-DATASET ZERO-SHOT EXPERIMENTS

In order to apply the pre-trained model in a realistic scenario, we performed the zero-shot task. The
experiment was set up as a zero-shot experiment on SNARE-seq (Cortex tissue of mouse) with
data trained on SHARE-seq (Skin tissue of mouse). And we used the results obtained by Pamona,
UnionCon, and MMD MA trained on SNARE-seq data as Baseline. The experimental results are
shown in Fig. 7. scCMIA demonstrates optimal matching accuracy on doing the zero-shot task,
although there is a gap compared to directly on the original dataset, which may be due to the variability
between datasets, tissues, and cell types resulting in the limited migration ability of the model, which
requires a larger scale and diversity of data to train the model in order to effectively improve the
transfer ability of the model.

Figure 7: SHARE-seq trained models are made into pair matching zero-shot experiments on the
SNARE-seq dataset.

C USE OF LLMS

We utilized a large language model (LLM) to assist in the writing and editing of this paper. The
LLM’s role was strictly limited to improving grammar, phrasing, and overall readability. All scientific
contributions, including the core ideas, methodology, and interpretation of results, are solely the work
of the authors.
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