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Abstract

In large-scale regression problems, random Fourier
features (RFFs) have significantly enhanced the
computational scalability and flexibility of Gaus-
sian processes (GPs) by defining kernels through
their spectral density, from which a finite set of
Monte Carlo samples can be used to form an ap-
proximate low-rank GP. However, the efficacy of
RFFs in kernel approximation and Bayesian kernel
learning depends on the ability to tractably sample
the kernel spectral measure and the quality of the
generated samples. We introduce Stein random fea-
tures (SRF), leveraging Stein variational gradient
descent, which can be used to both generate high-
quality RFF samples of known spectral densities as
well as flexibly and efficiently approximate tradi-
tionally non-analytical spectral measure posteriors.
SRFs require only the evaluation of log-probability
gradients to perform both kernel approximation
and Bayesian kernel learning that results in supe-
rior performance over traditional approaches. We
empirically validate the effectiveness of SRFs by
comparing them to baselines on kernel approxima-
tion and well-known GP regression problems.

1 INTRODUCTION

Gaussian Processes (GPs) are highly regarded in machine
learning for their nonparametric regression capabilities.
Their sustained prominence, despite the emergence of com-
petitive alternative regression frameworks, stems from their
principled approach to modeling uncertainty and the flex-
ibility to incorporate domain-specific inductive biases via
kernel covariance functions.

Despite their strengths, the Achilles heel to the GP method
is their O(N3) computational complexity with respect to
the number of data points N . To address this, numerous

low-rank and sparse methodologies have been developed
that seek to preserve GP advantages while mitigating their
computational footprint. Notably, random Fourier features
(RFFs) [Rahimi and Recht, 2008] and their use in sparse
spectrum GPs (SSGP) [Lázaro-Gredilla et al., 2010], repre-
sent leading efforts in this domain.

Applying Bochner’s theorem [Rudin, 2011], RFF methods
model stationary kernels as expectations under a spectral
density π(ω):

k(x,x′) =

∫
Rd

π(ω)e−iωT(x−x′)dω, x,x′ ∈ Rd . (1)

Given a spectral density π, k can then be approximated using
a finite set of R ≪ N Monte Carlo samples ω ∼ π(ω),
thereby enabling efficient low-rank GP inference.

Approximation of prevalent kernels with known spectral
distributions (an example of which being the radial basis
function (RBF) and Gaussian spectral measure pair) hinges
on the spectral distribution’s sampling method. Quasi Monte
Carlo (QMC) sampling, noted for its superior approximation
accuracy, is effective when π(ω) has an accessible inverse-
CDF, a condition not met by many common kernels.

RFFs also enable a flexible kernel learning scheme through
direct optimization of the R finite samples of π(ω) as hyper-
parameters, offering a pathway to empirically approximate
optimal stationary kernels directly from data. However, such
schemes are generally susceptible to overfitting [Tan et al.,
2016].

A natural remedy is to instead learn a Bayesian posterior
over frequencies p(ω|D) or spectral measure P (π|D), but
this approach in general does not yield tractable inference.
Recent advances have explored MCMC and mean-field vari-
ational inference (VI) for approximate kernel posterior infer-
ence [Hensman et al., 2018, Miller and Reich, 2022], which
respectively offer downsides in computational expense and
restricted prior selection on the spectral measure.

Separate to the rise of the RFF and SSGP paradigms has
been the growth of particle-based sampling techniques, the
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bellwether for which is Stein variational gradient descent
(SVGD) [Liu and Wang, 2016], which blends the strengths
of MC and VI methodologies. SVGD iteratively refines a set
of particles to more closely approximate a target distribution
p through gradient descent on the Kullback-Liebler diver-
gence. Crucially, SVGD leverages only gradient evaluations
of a target’s unnormalized log density. This facilitates effi-
cient sampling from complex Bayesian posteriors previously
deemed intractable.

For RFFs, where kernels are approximated through particle
samples ω of a spectral measure π(ω), the application of
SVGD presents a novel intersection of ideas. Despite their
intuitive relationship, the combination of these techniques
has received limited attention in literature. In this paper,
we make an initial step towards fusing these fields with
the presentation of Stein random features (SRFs), which
leverages SVGD for fitting, learning, and performing ap-
proximate posterior inference on RFF spectral measures
and their corresponding kernels. This approach offers novel
flexibility and performance advantages, and a significant mo-
tivation for this work is to inspire further investigation into
the confluence of these methods. We list our contributions
as follows:

Contributions

• SVGD Inference for RFFs: We propose a novel appli-
cation of Stein variational gradient descent to improve
the accuracy of low-rank kernel approximations by uti-
lizing only gradient evaluations of the kernel’s spectral
measure.

• Mixture Stein Random Features (M-SRFR): Ex-
tending beyond kernel approximation, we introduce a
Bayesian inference framework which uses SVGD to
efficiently generate diversified approximate posterior
samples of empirical kernel spectral measures.

• Empirical Benchmarks: We provide evaluations on
common benchmarks in order to demonstrate the flexi-
bility and efficacy of our methods.

2 PRELIMINARIES

This section outlines the necessary preliminaries used in
the derivation of Stein random features and mixture Stein
random feature regression, assuming a baseline familiarity
with Gaussian processes (GPs) and kernel covariances. For
a thorough review, refer to Rasmussen and Williams [2006].

2.1 GAUSSIAN PROCESSES

Gaussian processes (GPs) [Rasmussen and Williams, 2006]
are a Bayesian non-parametric regression method that de-
fine a distribution over functions. A zero-mean GP prior

f ∼ GP(0, kθ) is uniquely defined by its covariance func-
tion kθ, which is specified by its own hyperparameters.
Given observations y = f(X) + ϵ, at a set of inputs
X = {xi}Ni=1 ⊂ Rd, assuming ϵ ∼ N (0, σ2I), a GP model
predicts f∗ := f(X∗) ∼ N (µ∗,Σ∗) at any X∗ as:

µ∗ = K∗x(Kxx + σ2I)−1y, (2)

Σ∗ = K∗∗ −K∗x(Kxx + σ2I)−1Kx∗, (3)

where Kxx = kθ(x,x
′), ∀x,x′ ∈ X. Kernel and GP hy-

perparameters θ are usually estimated by minimising the
negative log-marginal likelihood (NLL)1:

L(θ) = 1

2
log |Kxx + σ2I|+ 1

2
y⊤(Kxx + σ2I)−1y

+
N

2
log(2π) .

(4)

The critical limitation of GPs is the O(N3) complexity
due to Gram matrix K inversion, which for large N grows
computationally intractable.

2.2 RANDOM FOURIER FEATURES AND SPARSE
SPECTRUM GPS

The computational disadvantages of GPs on large datasets
have led to significant interest in low-rank approximations,
among which random Fourier features (RFFs) [Rahimi and
Recht, 2008] and sparse spectrum Gaussian processes (SS-
GPs) [Lázaro-Gredilla et al., 2010] have been significant
developments. These approaches derive from Bochner’s
theorem, which establishes the connection between shift-
invariant kernels and non-negative spectral measures. The
formulation used here follows the presentation given in War-
ren et al. [2022]:

Theorem 1 (Bochner’s theorem [Rudin, 2011]). A shift-
invariant kernel k(x,x′) = k(x − x′) is positive-definite
if and only if it is the Fourier transform of a non-negative
measure.

Bochner’s theorem implies that kernels can be uniquely de-
fined through probability measures such that kernel learning
can be reframed as learning spectral measures.

Random Fourier Features: RFFs propose that we can
form finite rank approximations to kernels using Monte
Carlo samples of their spectral measure π(ω):

k(x− x′) =

∫
Rd

π(ω)eiω
T(x−x′) dω,

=

∫
Rd

π(ω) cos(ωT(x− x′)) dω

≈ 1

R

R∑
r=1

cos(ωT
r (x− x′)) ,

(5)

1In NLL equations, π denotes the usual irrational constant
arising from the entropy of Gaussian distributions.



An alternative representation is as the dot-product between
trigonometric basis functions k(x− x′) ≈ Φ(x)TΦ(x′):

Φ(x) =

√
2√
2R


cos(ωT

1 x)
sin(ωT

1 x)
...

cos(ωT
Rx)

sin(ωT
Rx)

 . (6)

Sparse Spectrum Gaussian Processes: SSGPs leverage
the RFFs to form a low-rank GP approximation, where the
GP predictive equations and log-likelihood are given by:

µ∗ = Φ(X∗)
TA−1Φ(X)y, (7)

Σ∗ = σ2Φ(X∗)
TA−1Φ(X∗), (8)

log p(y|θ) = − 1

2σ2

[
yTy − yTΦ(X)TA−1Φ(X)y

]
− 1

2
log |A| −R log(Rσ2)

− N

2
log(2πσ2),

(9)

where Φ(X) := [Φ(x1), . . . ,Φ(xN )] is defined as in Equa-
tion 6 and A is an R×R matrix defined by:

A = Φ(X)Φ(X)T + σ2I, (10)

thus reducing the computational complexity of GP inference
to O(R3), where R≪ N is the number of Fourier features.

2.3 STEIN VARIATIONAL GRADIENT DESCENT

Stein variational gradient descent (SVGD) [Liu and Wang,
2016] represents a means of sampling complex distributions
that unifies the strengths of MC methods and variational
inference (VI) frameworks via a particle-based, gradient-
oriented strategy. VI [Bishop, 2006] seeks to approximate
an intractable target distribution p from a family of tractable
distributions q ∈ Q through minimization of the Kullback-
Leibler (KL) divergence between q and p:

q∗ ∈ argmin
q∈Q

DKL(q||p). (11)

VI’s success hinges on the choice of approximation family
Q, which must offer straightforward inference while being
adequately flexible to represent an arbitrarily complex p.

SVGD differs from VI in that it instead proposes to apply a
sequence of transformations Tht

(ω) = ω + ht(ω) to parti-
cles ω sampled from an initial distribution ω ∼ q0, steering
them towards p by following gradient flows of DKL(q||p)
[Liu et al., 2019]. Crucially, the variational approximation q
is non-parametric, and therefore not confined to a specific
familyQ. Assuming ht is a member of a reproducing kernel
Hilbert space Hd

κ, the optimal transformation Tht
has an

analytic expression, resulting in a tractable algorithm for
variational inference:

ωt+1
i = ωt

i + ϵht(ω
t
i), (12)

where ϵ is a small step-size parameter and ht is given by:

ht(ω) =
1

R

R∑
j=1

κ(ω,ωt
j)∇ωt

j
log p(ωt

j) +∇ωt
j
κ(ω,ωt

j),

(13)

in which κ : Rd × Rd → R is a positive-definite kernel
function, and ωi

0 ∼ q0, for a given base distribution q0. The
first term in Equation 13 serves as an attractive force for
particles ωi to converge on high density regions of p while
the second term serves as a repulsive force that encourages
diversity between particles and avoids mode collapse.

SVGD’s advantage over VI is that it relies only on the spec-
ification of a kernel function κ and gradient evaluations of a
target’s (unnormalized) log probability log p(ω). Such ad-
vantages make SVGD applicable in the approximation of
posterior distributions for which it could be challenging to
find a suitable variational family of parametric distributions.

2.4 FUNCTIONAL KERNEL LEARNING

In the GP framework, optimization of kernel hyperparam-
eters θ focuses on the GP log-likelihood in Equation 4,
aiming to find:

θ∗ ∈ argmin
θ

− log p(y|θ)

= argmin
θ

L(θ)
(14)

By adopting Bochner’s theorem, which allows for express-
ing kernels via their spectrum, one may shift towards op-
timizing the kernel directly via its spectral measure π(ω).
This transforms GP optimization into a functional objective
over the space P(Rd) of probability measures on Rd:

π∗ ∈ argmin
π∈P(Rd)

L[π] (15)

For a finite sample Ω0 := {ωi,0}Ri=1, where ωi,0 ∼ π0, one
approach is to follow the gradient of the GP NLL L[π̂t] =
L(Ωt) = − log p(y|Ωt), updating:

Ωt+1 = Ωt − ϵ∇Ωt
L(Ωt) . (16)

Note that Ω can be simply seen as a matrix, so that∇ΩL(Ω)
is also a matrix. This approach was proposed in the orig-
inal sparse spectrum Gaussian processes work by Lázaro-
Gredilla et al. [2010], which also included the other GP hy-
perparameters into the same optimization loop. As a result,
one obtains a maximum likelihood estimate (MLE) of the
kernel and its empirical spectral measure π̂ := 1

R

∑R
i=1 δωi ,

where δω represents the Dirac measure at ω ∈ Rd.



3 RELATED WORK

Kernel Approximation with RFFs There has been sig-
nificant focus on improving the quality of the RFF kernel
approximation presented in Equation 5. One avenue con-
siders enhancing the quality MC and QMC samples ωi

through post-hoc adjustments to reduce variance and bol-
ster approximation quality [Le et al., 2013, Yu et al., 2016,
Chang et al., 2017]. Additionally, alternative quadrature
techniques, including numerical and Bayesian quadrature,
have been proposed as alternative means for the integral
approximation of Equation 5 [O’Hagan, 1991, Mutny and
Krause, 2018]. A thorough review is available in Liu et al.
[2021]. We posit that our SVGD-based approach for kernel
approximation, detailed in Section 5.1, offers distinct bene-
fits. It simplifies implementation across spectral measures
using gradient evaluations and is underpinned by SVGD’s
robust theory.

Spectral Kernel Learning Bochner’s Theorem 1 has mo-
tivated a plethora of techniques that conceptualize kernel
learning as probabilistic inference on spectral measures. Be-
yond RFFs, spectral mixture kernels (SMKs) [Wilson and
Adams, 2013] represent kernel spectral measures as Gaus-
sian mixture models. Recent advances have generalized and
extended the SMK approach to introduce nonstationarity,
scalability, and variational inference [Samo and Roberts,
2015, Remes et al., 2017, Shen et al., 2019, Jung et al.,
2022].

Concurrently, RFFs have evolved through integration with
advanced kernel learning and GP architectures, including
deep kernels [Xie et al., 2019, Xue et al., 2019, Mallick et al.,
2021], generative adversarial networks [Li et al., 2019], and
deep Gaussian process [Cutajar et al., 2017]. To avoid over-
fitting, Bayesian inference over frequencies ω using MCMC
Miller and Reich [2022] and variational inference [Hens-
man et al., 2018, Zhen et al., 2020, Cheema and Rasmussen,
2023] has also been proposed.

The methodology we propose compliments many of these
advances. M-SRFR can be viewed as simply adding a mix-
ture dimension M to a point estimate of kernel spectral
measure parameters ω, with access to gradients of the score
function – which nearly all of the aforementioned architec-
tures calculate in training – being the only requirement for
implementation.

Statistical Inference over Functions Statistical inference
over functions, within kernel learning and broader contexts,
is an area of active research. Others have considered per-
forming functional inference on kernels like we do here, but
differ in that they assign distributional families to the spec-
tral measure priors as GPs [Benton et al., 2019] or Gaussian
mixtures [Hamid et al., 2022].

Functional inference is in general a popular research topic

within the context of Bayesian inference and Bayesian neu-
ral networks [Wang and Liu, 2019, Sun et al., 2019, Ma
and Hernández-Lobato, 2021, D’Angelo et al., 2021, Pielok
et al., 2023]. A notable commonality between these ap-
proaches is their use of SVGD or other particle-based tech-
niques for inference. These works help to inspire the method
we now present, which is a more focused application of the
functional inference problem to kernel learning in GPs.

4 STEIN RANDOM FEATURES

We now derive our proposed methodologies for operational-
izing the theoretical and intuitive connections between RFFs
and SVGD. We specifically propose two promising routes:

1. Using SVGD as a sampling mechanism for forming
RFF approximations to kernels with known spectral
measures.

2. Extending the results of Section 2.4 to propose mix-
ture Stein random features (M-SRFR) for posterior
inference over kernel spectral measures.

The former item we leave to Section 5.1, as it represents a
straightforward, though nonetheless novel, application of
SVGD sampling routines for generating RFF kernel fre-
quencies. Instead, we focus here on motivating the use of
SVGD in kernel learning from a theoretical perspective, and
subsequently extending to posterior inference.

4.1 RECOVERING SVGD THROUGH
FUNCTIONAL KERNEL LEARNING

Mallick et al. [2021], deriving a result for deep probabilistic
kernel learning applicable in the RFF context, show that
with kernel matrices defined in the form of Equation 1, the
optimal π∗ for the functional objective of Equation 15 can
be approximated as a non-parametric particle approximation
q∗ with gradients:

∇πL [π] ≈ ∇qL [q]

≈
R∑

r=1

κ(ωr, ·)∇ωrL(ω),
(17)

We can observe that the gradient step defined in (17) equates
to a particle update similar to the SVGD update in (13), but
without a particle repulsion term ∇ωjκ(ω,ωj). To directly
recover a variant of SVGD through incorporation of the re-
pulsive term, we can use the results of Liu et al. [2019] who
show that particle repulsion can be derived from the addi-
tion of an entropy regularization term H [q] to the functional
marginal log-likelihood:

π∗ ≈ q∗ = argmin
q
L [q]−H [q] . (18)
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Figure 1: Comparison of traditional RFF Kernel Learning to an M-SRFR posterior with M = 8 components

The result of Equation 18 a kernel learning scheme with
near equivalence to SVGD, thereby signifying a theoretical
convergence between kernel learning on RFFs and SVGD
that matches their intuitive connections. Detailed deriva-
tions of these properties are provided in the supplement (see
Appendix A).

4.2 POSTERIORS OVER SPECTRAL MEASURES

Equation 18 represents entropy-regularized maximum-
likelihood inference over a kernel spectral measure π(ω),
which results in a single estimate. We propose to extend
these results to instead perform Bayesian inference over
spectral measures, leading to a posterior over kernels.

We begin by formulating the posterior over kernel spec-
tral densities π(ω). The GP likelihood of observing data
D under a kernel k characterized by spectral measure π is
denoted as p(D|π). Keeping aside measure-theoretic for-
malities and regularity conditions for now, assume we have
a prior P over the space of probability distributions P(Rd).
We can then formulate a posterior over a kernel’s spectral
measure π as:

P (π|D) ∝ p(D|π)P (π) . (19)

Taking a similar functional kernel learning approach, Benton
et al. [2019] choose to represent P (π) by placing a GP prior
on log π(ω) and applying Markov chain Monte Carlo for
inference over the latent process [Murray and Adams, 2010].
We however adopt a particle-based VI approach via SVGD.

We introduce a variational approximation Q(π) ≈ P (π|D),
which will be characterized by an empirical particle dis-
tribution. The variational objective is to minimize the KL
divergence between the approximate and the true posterior:

Q∗ ∈ argmin
Q

DKL(Q(π)||P (π|D)). (20)

Given initial particles πm ∼ Q0(π), our goal is to identify a
transformation T which through minor adjustments ϵ guides
particles towards minimizing the KL divergence. Wang and

Liu [2019] demonstrate that, even if p(D|π) is a nonlinear
functional of π, the optimal transformation of particles πm

can still be given by a Stein update rule similar to (13).

The GP likelihood in (19) is a nonlinear functional of the
spectral measure π(ω) via the kernel (1), which appears
in nonlinear relations in (4). We can thus apply SVGD to
iteratively update particles πm to minimize (20) and form an
empirical posterior approximation Q∗. The difference in this
setting versus traditional SVGD is that we view individual
particles as probability measures πm themselves, rather than
samples of a probability measure over individual points.

4.3 INFERENCE IN THE SPACE OF MEASURES

Now we describe a more formal treatment to the infer-
ence problem we have at hand. To precisely define a prior
over the space of probability measures P(Rd), we consider
transport maps and their pushforwards, instead of the in-
dividual measures directly. Similar to traditional SVGD,
let Th(ω) := ω + h(ω), but now assume that h follows
a stochastic process SP , which defines a prior PF over
the space of functions F(Rd) mapping Rd to itself. For in-
stance, we can have a vector-valued Gaussian process as
a prior h ∼ GP(0,Σ), defined by a matrix-valued kernel,
e.g., Σ(ω,ω′) := κh(ω,ω′)I [Alvarez et al., 2012]. Given
a base measure π0, each realisation of the pushforward2

πh := Th#π0 defines a probability measure in P(Rd).
Therefore, the stochastic process h ∼ SP defines a prior
over P(Rd) via the corresponding transport maps Th.

Now we formulate an SVGD perspective over the space of
vector-valued functions F := F(Rd). Given g : Rd → Rd,
let Tg : F → F define a transform on F such that
Tg(h)(ω) = h(ω) + g(h(ω)), for all ω ∈ Rd. Given a
base measure Q0 over F , associated with a stochastic pro-
cess h0 ∼ Q0, we aim to apply a sequence of transforma-
tions Tgt

to Q0, so that the pushforward Qt := Tgt
#Qt−1

2The pushforward of a measure P on X by a measurable map
T : X → Y is defined as the measure Q := T#P on Y such that
Q(A) = P ({x ∈ X | T (x) ∈ A}) for any measurable A ⊂ Y .



converges to a target measure P∗ on F as t→∞. To do so,
we follow the gradient flow of the KL divergence:

DKL(Qt||P∗) = Eh∼Qt

[
log

dQt

dP∗
(h)

]
, (21)

where dQt

dP∗
is the Radon-Nikodym derivative of Qt with

respect to P∗ [Bauer, 1981]. Assuming Q is absolutely con-
tinuous w.r.t. P∗, the derivative dQ

dP∗
is well defined. As

shown in previous works in the literature of function-space
VI [Ma and Hernández-Lobato, 2021], the KL divergence
between two stochastic processes is equivalent to:

DKL(Qt||P∗) = sup
n,Ωn

DKL(qt(Hn)||p∗(Hn)) , (22)

where Hn := h(Ωn) = [h(ω1), . . . ,h(ωn)]
T, and Ωn is

an n-element subset of Rd, or equivalently an n-by-d matrix,
and qt and p∗ are the joint probability measures on Rn×d

associated with the stochastic processes defined by Qt and
P∗, respectively. Given the above, we can now state our
theoretical result, which we prove in Appendix B.

Theorem 2. Let Tg be as above, where g : Rd → Rd is
an element of the vector-valued reproducing kernel Hilbert
spaceHd

κ associated with a positive-definite kernel κ. Given
a probability measure P∗ on F , the direction of steepest
descent in the KL divergence DKL(Qg||P∗) is given by:

∇gDKL(Qg||P∗)
∣∣
g=0

=

− Eh∼Q[κ(·,H∗)∇H∗ log p∗(H
∗) +∇H∗κ(·,H∗)],

(23)

where H∗ := h(Ω∗
n∗), assuming the supremum is reached

at n∗ and Ω∗
n∗ in Equation 22. In particular, for an em-

pirical base measure π̂ := 1
R

∑R
i=1 δωi

supported on
ΩR = {ωi}Ri=1, we have that:

∇gDKL(Qg||P∗)
∣∣
g=0

=

− EH∼q(H)[κ(·,H)∇H log p∗(H) +∇Hκ(·,H)] ,
(24)

where H := h(ΩR) ∈ RR×d.

This result allows us to apply SVGD steps in the space
of measures P(Rd) by following the gradient flow of the
KL divergence between stochastic processes. We can then
identify P∗ with P (π|D) in the previous section to learn
an approximation to the posterior distribution over spectral
measures. Moreover, this result also shows us that we can
treat inference in the space of measures as inference over
matrices, when restricted to empirical measures. Further
discussion about the theoretical result in Theorem 2 and
its application to our problem formulation is deferred to
Section B.3 in the appendix.

Algorithm 1 Mixture Stein Random Feature Regression
(M-SRFR)

Require: Dataset D, GP kernel k parametrized by M RFF
frequency matrices {Ωm}Mm=1, SVGD kernel κ, parti-
cle prior p(Ω), step size ϵ, hyperparamter α, and num-
ber of iterations T .

1: for t = 1 to T do
2: Compute gradient ∇Ωm log p(D|Ωm)p(Ωm) with

p(D|Ωm) from (9) for all m ∈ {1, . . . ,M}.
3: for each Ωm,m ∈ {1, . . . ,M} do
4: for each Ωj , j ∈ {1, . . . ,M} do
5: Compute the kernel value κ(Ωm,Ωj) from (66)

and gradient∇Ωj
κ(Ωm,Ωj) from (67)

6: end for
7: Apply M-SRFR update rule Ωt+1

m ← Ωt
m accord-

ing to 26
8: end for
9: end for

10: Output: Learned kernel k with frequencies {ΩT
m}Mm=1

4.4 MIXTURE STEIN RANDOM FEATURE
REGRESSION

As above, let Ωm represent a set of samples {ωi,m}Ri=1

drawn from a spectral measure πm. In the finite-particle
setting, we can associate the spectral measure posterior in
(19) with a posterior over the empirical representation of π
by a frequency matrix Ω:

P (π|D) ≈ P (Ω|D),

p(Ω|D) ∝ p(D|Ω)p(Ω).
(25)

Now we have a prior over matrices p(Ω), which can be con-
structed by applying priors over the individual row vectors
in it, each representing a spectral frequency. For example,
standard Gaussians and mixtures of them can be trivially ex-
tended to the matrix-variate setting. In any case, the method-
ology we derive is agnostic to the choice of prior, as long
as it is differentiable with respect to Ω, making it flexible
to incorporate a variety of prior knowledge or smoothness
assumptions on the spectral distribution.

With the theoretical underpinnings of Theorem 2, we can
substitute π with Ω into the Stein update rules in Equation
13. This forms the key component of our proposed method,
Mixture Stein Random Feature Regression (M-SRFR).

Definition 3 (Mixture Stein Random Feature Regression).
Given an initial set of M frequency matrices Ωm ∈ RR×d,
where each ωi,m ∼ q0(ω), M-SRFR defines an update:

Ωt+1
m = Ωt

m +
ϵ

M

M∑
j=1

[κ(Ωm,Ωj)∇Ωj
log p(Ωj)

+ α∇Ωjκ(Ωm,Ωj)],

(26)



where α is a temperature parameter, and the score gradient
∇Ωm log p(Ωm) can be separated into:

∇Ωm log p(D|Ωm) +

R∑
i=1

∇ωi,m log p(ωi,m), (27)

which represents the gradient of the SSGP likelihood (9)
given the RFF frequency matrix Ωm and the sum of
a frequency prior p(ω) over the component frequencies
{ωi,m}Ri=1 = Ωm. The inter-particle kernel is given by the
kernel between the rows of each matrix of frequencies:

κ(Ω,Ω′) =

κ(ω1,ω
′
1) . . . κ(ω1,ω

′
R)

...
. . .

...
κ(ωR,ω

′
1) . . . κ(ωR,ω

′
R)

 . (28)

M-SRFR is summarized in Algorithm 1, and we provide
further implementation and gradient calculation details in
Appendix B.4. The construction of Ωm via frequencies
{ωi,m}Ri=1 implies that gradient updates to Ωm directly
modify its constituent frequencies. Collectively, the parame-
ters of the M-SRFR model form a tensor with dimensions
M ×R× d. An example comparison of M-SRFR and tradi-
tional RFF learning is presented in Figure 1.

M-SRFR performs approximate Bayesian posterior infer-
ence over P (π) when the temperature parameter α = 1.
However, when working with a small number of mixture
components M , we observed empirical benefit to includ-
ing α in the hyperparameter training routine to regulate the
strength of the repulsive force.

For making predictions with M-SRFR, summarized in Al-
gorithm 2, we combine the M individual mixture predictive
means and covariances into a single predictive distribution.
We do so using properties of Gaussian mixtures, which al-
lows for calculation of an overall mean and covariance as a
uniformly-weighted aggregate of the mixture components.

4.5 COMPLEXITY AND EXTENSIBILITY

Conceptually, M-SRFR orchestrates an ensemble of M SS-
GPs, promoting diversity through kernel repulsion term
∇Ωjκ(Ωm,Ωj) and preventing mode collapse. The spar-
sity of SSGPs ensures computational feasibility, with an
increase in complexity from O(R3) to O(MR3), and in
practice we find that performance increases are present even
when using a small number of M ≪ R mixture components.
Additionally, empirical evidence in Section 5 suggests that
the mixture approach of M-SRFR outperforms RFFs with
an equivalent complexity using R∗ =

3
√
MR3 features.

M-SRFR’s versatility extends to a broad spectrum of ker-
nel learning applications, including nonstationary Fourier
features [Ton et al., 2018], spectral kernel learning [Wilson
and Adams, 2013], and GPs with non-Gaussian likelihoods.

Algorithm 2 M-SRFR Prediction on New Inputs

Require: Dataset D, new inputs X∗, and trained M-SRFR
GP kernel k parametrized by M RFF frequency matri-
ces {Ωm}Mm=1.

1: for each frequency matrix Ωm,m ∈ {1, . . . ,M} do
2: Given inputs X∗, compute SSGP prediction mean

µ∗
m from (7) and covariance Σ∗

m from (8) using an
RFF kernel defined by frequencies Ωm

3: end for
4: Calculate µ∗ and Σ∗ with:

µ∗ =
1

M

M∑
m=1

µ∗
m

Σ∗ =
1

M

M∑
m=1

Σ∗
m + (µ∗

m − µ∗)(µ∗
m − µ∗)T

5: Output: predictions y∗ ∼ N (µ∗,Σ∗|X∗, D)
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Figure 2: Kernel approximation error and standard devia-
tions over 10 random seeds.

This adaptability stems from SVGD’s sole reliance on gra-
dient evaluations of the score function, readily facilitated by
widely used auto-differentiation tools.

5 EXPERIMENTS

We now demonstrate the efficacy of both the SVGD ap-
proach to approximating kernels with known spectral mea-
sures as well as the performance of our M-SRFR method on



Table 1: UCI Regression Benchmarks RMSE and NLPD with standard deviations over 10 random seeds.

airfoil concrete energy wine
R = 100,M = 6 R = 100,M = 6 R = 50,M = 10 R = 100,M = 10

RMSE
SVGP 2.36 ± 0.24 6.35 ± 0.69 2.72 ± 0.17 0.62 ± 0.04
SSGP-RBF 2.90 ± 0.60 5.74 ± 0.58 0.48 ± 0.03 0.82 ± 0.08
SSGP 2.41 ± 0.53 5.03 ± 0.74 0.37 ± 0.05 0.87 ± 0.04
SSGP-R∗ 2.54 ± 1.09 4.88 ± 0.65 0.36 ± 0.03 0.69 ± 0.06
SSGP-SVGD 2.50 ± 0.59 5.51 ± 0.54 0.40 ± 0.09 0.76 ± 0.06
M-SRFR (Ours) 1.88 ± 0.27 4.13 ± 0.72 0.29 ± 0.04 0.59 ± 0.04

Negative Log Predictive Density (NLPD)
SVGP 487.0 ± 203.4 272.8 ± 120.3 993.6 ± 205.3 2334.9 ± 457.0
SSGP-RBF 780.5 ± 457.0 36.3 ± 11.8 -249.4 ± 8.7 791.1 ± 160.7
SSGP 216.0 ± 159.9 23.1 ± 14.0 -288.0 ± 23.9 783.9 ± 82.3
SSGP-R∗ 213.4 ± 369.6 20.2 ± 12.0 -293.9 ± 17.0 404.0 ± 74.3
SSGP-SVGD 4166.6 ± 2885.5 29.4 ± 10.0 -261.7 ± 58.8 16924.9 ± 2615.7
M-SRFR (Ours) 454.3 ± 134.5 113.9 ± 77.3 -283.7 ± 38.4 1882.5 ± 205.3

common GP regression UCI benchmarks [Dua and Graff,
2017]. Code has been made available3.

5.1 STEIN RANDOM FEATURES FOR KERNEL
APPROXIMATION

A notable yet less-emphasized contribution we introduce
is leveraging SVGD-generated samples as frequencies ω
in RFFs for accurately reconstructing kernels with known
spectral distributions. While QMC [Morokoff and Caflisch,
1995] sampling typically yields high-quality reconstructions
by necessitating tractable inverse-CDFs of kernel spectral
measures – a requirement not met by many common kernels
– SVGD circumvents this by merely requiring the spectral
measure’s score gradient.

In a comparative experiment focused on the Gaussian (RBF)
kernel, we evaluate the approximation quality of randomized
kernel Gram matrices K using RFFs with varied sampling
techniques as well as other common low-rank kernel ap-
proximation methods. Specifically, we benchmark Matrix-
SVGD [Wang et al., 2019] sampling against MC, QMC,
orthogonal random features (ORF) [Yu et al., 2016], and
Nyström approximation (NYS) [Yang et al., 2012]. Results
are demonstrated in Figure 2, where we use as a metric the
Frobenius norm ||K−K̂||

||K|| between Gram approximation K̂

and true Gram matrix K.

The results underscore SVGD’s strong approximation ca-
pabilities over other sampling techniques across different
ranks R, and notably, SVGD outperforms data-dependent
methods like Nystroem as R increases. Across data dimen-
sionality d, SVGD scales better than existing sampling

3
https://github.com/houstonwarren/m-srfr/

based approaches, though not as efficiently as Nyström.
Nonetheless, given the challenges kernel methods face in
high-dimensional spaces, practitioners likely resort to di-
mensionality reduction before applying kernel techniques
in such high-dimensional settings.

5.2 UCI REGRESSION BENCHMARKS

We evaluate M-SRFR on a variety of regression problems
from the UCI data repository [Dua and Graff, 2017], with
baselines of sparse variational Gaussian processes [Hens-
man et al., 2015] (SVGP), SSGPs with an RFF Gaussian
kernel (SSGP-RBF), an SSGP with frequencies as hyperpa-
rameters, and an SSGP trained using the entropy-regularized
functional kernel learning approach described in Section 2.4
(SSGP-SVGD), for which more details can be found in
Wang and Liu [2019]. Additionally we introduce SSGP-
R∗, which has R∗ =

3
√
MR3 frequency samples, matching

M-SRFR’s computational complexity for M mixture com-
ponents.

All models and baselines are given a proper hyperparam-
eter optimization treatment. The results in Table 1, where
M represents the number of mixture components used in
the M-SRFR model, highlight M-SRFR’s superior RMSE
performance, particularly when contrasted with SSGP-R∗,
underscoring the mixture approach’s advantage over simply
enhancing RFF feature count. We employed wide Gaussian
priors on the M-SRFR frequencies, and posit that specialized
priors tailored to data characteristics may further enhance
performance.

Limitations in Uncertainty Calibration NLPD, which
measures uncertainty calibration, results vary. All models
exhibit high variance across seeds, hence we do not bold

https://github.com/houstonwarren/m-srfr/
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Figure 3: AUSWAVE dataset and error with contributed methods labeled in blue.

results. M-SRFR is competitive in NLPD on many datasets
but is outperformed by simpler baselines that tend to make
wider and less mean-accurate predictions, as we demonstrate
in Appendix D. The drop-off in performance from RMSE
to NLPD for M-SRFR may be due to the non-standard
predictive methodology defined in Algorithm 2, suggesting
potential refinements for future investigations.

5.3 LARGE-SCALE OCEAN MODELING

Lastly, we evaluate our methods on a real-world problem us-
ing public data sourced from the AUSWAVE physics model
produced by the Australian Bureau of Meteorology [2016].
The task is to predict significant wave height across the spa-
tial domain, shown in Figure 3, using N = 5000 randomly
sampled locations and an input dimension d = 8 consisting
of the spatial coordinates with additional physical model
covariates.

We chose this setting as it is an inherently non-stationary
domain, both due to the complexity of oceanographic mod-
eling, as well as the fact that the distribution is not supported
over the entire spatial domain. As such, we demonstrate the
flexibility of M-SRFR to adapt to alternative kernel learning
methodologies by introducing a non-stationary M-SRFR
variant through the use of deep kernels [Wilson et al., 2016].
Specifically, we jointly train a neural network with 3 hidden
layers and 32 activations per layer to first project the data
before an M-SRFR kernel mixture of RFFs is applied. The
neural network is trained jointly with the M-SRFR RFF pa-
rameters, but does not receive the same “mixture” treatment
– ie. all M M-SRFR kernels share the same input network.

In this sense, we are measuring M-SRFR’s ability to slot
in as a modular component to alternative kernel learning
schemes, and whether the benefits of the mixture approach
extend to such a setting. We include an SSGP with a deep
kernel, SSGP-Deep, as an additional baseline in order to

differentiate the effect of the M-SRFR mixture from the
neural network projection.

The results, shown in Figure 3 (right), show that M-SRFR’s
flexibility offers significant benefit. Most the of the station-
ary baselines, including traditional M-SRFR, have difficulty
adjusting to the non-stationary domain. However, the deep
M-SRFR variant significantly outperforms even the SSGP-
Deep variant, as well as all baselines, demonstrating that
there is unique value to the mixture approach. These results
highlight that with little change of methodology, M-SRFR
can be injected into alternative kernel learning schemes to
improve performance and flexibility.

6 CONCLUSION

This study introduces Stein variational gradient descent to
kernel approximation and Bayesian inference over spectral
measures with random Fourier features and sparse spectrum
Gaussian processes. We establish a theoretical framework
linking these areas through functional inference, highlight-
ing their coherence as particle-based methods. We derive a
method for approximate inference of kernel spectral mea-
sures using only gradient evaluations of mixture compo-
nents, which is straightforward to extend to many spectrum-
based kernel learning methods. Empirical evaluations show-
case the potential of integrating these methodologies to
augment kernel approximation and sparse GP regression.

This work paves way for future research exploring the in-
tegration of RFFs and SVGD. One such avenue is the im-
plementation of M-SRFR into other spectral kernel learning
techniques of Section 3 to address challenges involving
nonstationary processes, high-dimensional data, and non-
Gaussian likelihoods. Future theoretical work will also focus
on error and convergence analysis of our methods, which
depend on further development of theoretical frameworks
for the analysis of SVGD over infinite-dimensional spaces.
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A FUNCTIONAL KERNEL LEARNING WITH ENTROPY REGULARISATION

We can derive functional gradients from the definition of Fréchet derivatives and an analogous of Taylor’s theorem for Hilbert
spaces. Let Hd

κ :=
⊗d

i=1Hκ be the vector-valued reproducing kernel Hilbert space defined by a positive semi-definite
kernel κ : Ω× Ω→ R, for Ω ⊆ Rd, which has the following reproducing property:

∀h ∈ Hd
κ, ∀v ∈ Rd, ⟨h, κ(·,ω)v⟩κ = h(ω)Tv , (29)

where ⟨·, ·⟩κ denotes the inner product inHd
κ. Following the SVGD setup, at each time step t, we consider a given variational

probability distribution qt on Rd and apply a smooth transformation Tht
: Rd → Rd to its samples xt ∼ qt:

ωt+1 = Tht
(ωt) = ωt + ht(ωt) , (30)

where h ∈ Hd
κ, so that the next variational distribution is the pushforward of the former, i.e., qt+1 := qht

:= Tht
#qt.

We want to transform the GP kernel in its Fourier domain in order to minimise the GP negative log marginal likelihood. At
the same time, to prevent overfitting, we may include an entropy-regularisation term into our objective, which allows for
modeling uncertainty about the optimal q when data is limited. This leads us to the following functional objective for the
transform of the variational frequencies distribution qh = Th#q:

F [h] := L[qh]− ηH[qh] , (31)

for η > 0. Applying an SVGD-inspired approach, the optimal q results from taking a sequence of optimal transformations in
the RKHSHd

κ. The direction of steepest descent inHd
κ is given by the functional gradient ∇hF [h], which is such that:

Definition 4 (Functional gradient). The gradient of a functional F : Hd → R at a point h ∈ Hd, defined over a Hilbert
spaceHd equipped with inner product ⟨·, ·⟩, is the vector∇hF [h] ∈ Hd such that:

F [h+ ϵg] = F [h] + ϵ⟨∇hF [h], g⟩+O(ϵ2) . (32)

Given an initial q, applying an infinitesimal step in the direction of steepest descent means we only need to know∇hF [h] at
the limit when h→ 0.

A.1 STATIONARY COVARIANCE FUNCTIONS

To calculate the functional gradient, we will follow the steps of Mallick et al. [2021] in the derivation of their functional
gradient for the GP NLL. We start by noticing that, by the chain rule, we have:

∇hL[qh] =

n∑
i,j=1

∂L

∂Kij
∇hKij [h] , (33)
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where:

Kij [h] := kh(xi,xj), i, j ∈ {1, . . . , n} (34)

kh(x,x
′) :=

∫
Rd

qh(ω)eιω
T(x−x′) dω, ι :=

√
−1 (35)

Let ρij(ω) := eιω
T(xi−xj), for i, j ∈ {1, . . . , n}. Applying Taylor’s expansion and the reproducing property leads us to:

ρij(ω + h(ω) + ϵg(ω)) = ρij(ω + h(ω)) + ϵ∇ρij(ω + h(ω)) · g(ω) +O(ϵ2∥g(ω)∥22)
= ρij(ω + h(ω)) + ϵ⟨κ(·,ω)∇ρij(ω + h(ω)),g⟩κ +O(ϵ2) ,

(36)

noting that O(ϵ2∥g(ω)∥22) is O(ϵ2), given that ∥g(ω)∥2 ≤ ∥g∥κ
√

κ(ω,ω) is bounded for any ω ∈ Rd, assuming a
bounded kernel. Since Kij [h] = Eqh(ω)[ρij(ω)] = Eq(ω)[ρij(ω + h(ω))], we have that:

Kij [h+ ϵg]−Kij [h] = Eq(ω)[ρij(ω + h(ω) + ϵg(ω))− ρij(ω + h(ω))]

= ϵEq(ω)[⟨κ(·,ω)∇ρij(ω + h(ω)),g⟩κ] +O(ϵ2)
= ϵ⟨Eq(ω)[κ(·,ω)∇ρij(ω + h(ω))],g⟩κ +O(ϵ2)

(37)

Applying Equation 32 to Kij [h], the functional gradient of the kernel is then given by:

∇hKij [h]
∣∣
h=0

= Eq(ω)[κ(·,ω)∇ωρij(ω)] , (38)

and, for the NLL, we have:

∇hL[qh]
∣∣
h=0

=

n∑
i,j=1

∂L

∂Kij
Eq(ω)[κ(·,ω)∇ωρij(ω)]

= Eq(ω)

κ(·,ω)

n∑
i,j=1

∂L

∂Kij
∇ωρij(ω)

 .

(39)

For a particle-based approximation of the kernel K̂ij ≈ 1
R

∑R
r=1 cos(2πω

T
r (xi − xj)), the equations above simplify to:

∇hKij [h]
∣∣
h=0
≈ ∇hK̂ij [h]

∣∣
h=0

=
1

R

R∑
r=1

κ(·,ωr)∇ωr
cos(2πωT

r (xi − xj))

=

R∑
r=1

κ(·,ωr)∇ωrK̂ij ,

(40)

and, for the NLL with the particle-based kernel, we have:

∇hL[qh]
∣∣
h=0
≈ ∇hL̂[qh]

∣∣
h=0

=

R∑
r=1

κ(·,ωr)

n∑
i,j=1

∂L̂

∂K̂ij

∇ωr
K̂ij

=

R∑
r=1

κ(·,ωr)∇ωr
L̂[q] ,

(41)

which follows by another application of the chain rule.

Now, for the entropy-regularisation term, we have:

H[qh] = Eqh(ω)[− log qh(ω)]

= Eq(ω)[− log qh(ω + h(ω))]
(42)

By the change-of-variable formula for qh = Th#q, we also have:

log qh(ω + h(ω)) = log q(ω)− log|det(I+∇ωh(ω))| , (43)



where∇ωh(ω) denotes the Jacobian matrix of h. Applying the functional gradient formula (Equation 32) then yields:

H[qh+ϵg] = Eqh+ϵg(ω)[− log qh+ϵg(ω)]

= Eqh(ω)[− log qh+ϵg(ω + ϵg(ω))]

= Eqh(ω)[− log qh(ω) + log |det(I+ ϵ∇ωg(ω)|]
= H[qh] + Eqh(ω)[log |det(I+ ϵ∇ωg(ω)|]

= H[qh] + ϵEqh(ω)

[
Tr

(
∂ log |detM|

∂M

∣∣∣∣∣
M=I

∇ωg(ω)

)]
+O(ϵ2)

= H[qh] + ϵEqh(ω)[Tr (∇ωg(ω))] +O(ϵ2)
= H[qh] + ϵEqh(ω)[∇ω · g(ω)] +O(ϵ2)
= H[qh] + ϵ⟨Eqh(ω)[∇ωκ(·,ω)],g⟩κ +O(ϵ2) ,

(44)

where applied Taylor expansion to the log-determinant term around the identity matrix I and then the reproducing property
of the kernel to extract the kernel gradient out of the divergent of g. As a result, we have:

∇hH[qh]
∣∣
h=0

= Eq(ω)[∇ωκ(·,ω)] ≈ 1

R

R∑
r=1

∇ωrκ(·,ωr) (45)

Combining the results above finally yields:

∇hF [h]
∣∣
h=0

= Eq(ω)

κ(·,ω)

n∑
i,j=1

∂L

∂Kij
∇ωρij(ω)− η∇ωκ(·,ω)


≈

R∑
r=1

κ(·,ωr)∇ωr L̂[q]−
η

R
∇ωrκ(·,ωr)

= −
R∑

r=1

κ(·,ωr)∇ωr
log p(y|ω1, . . . ,ωR) +

η

R
∇ωr

κ(·,ωr) .

(46)

Note that the factor 1
R can further be absorbed into the regularisation factor η, which is a hyper-parameter of the algorithm.

Frequency update steps. Given the functional gradient formulation above, the resulting update steps are given by:

ω
(t+1)
i = ω

(t)
i − ϵ∇hF [h](ω

(t)
i )
∣∣
h=0

≈ ω
(t)
i + ϵ

R∑
r=1

κ(ω
(t)
i ,ωr)∇ωr

log p(y|ω1, . . . ,ωR) +
η

R
∇ωr

κ(ω
(t)
i ,ωr) ,

(47)

for i ∈ {1, . . . , R}.

B DISTRIBUTIONAL GRADIENT

In this section, we present a proof for Theorem 2 and a discussion on how we go from the theorem’s result to operations
over matrices of spectral frequencies.

B.1 AUXILIARY NOTATION

We make use of notation shortcuts to express our main result in a compact form. We consider an RKHSHΣ of vector-valued
functions associated with a positive-definite matrix-valued kernel Σ : Ω × Ω → B(Ω), where B(Ω) denotes the space
of bounded-linear operators mapping Ω to Ω. When Ω ⊆ Rd, this simplifies to B(Ω) = Rd×d, i.e., the space of d-by-d
real-valued matrices. Furthermore, we will focus on the case of Σ(ω,ω′) := κ(ω,ω′)I, where κ : Ω × Ω → R is
positive-definite scalar-valued kernel, for all ω,ω′ ∈ Ω. In this case, it is not hard to show that HΣ = Hd

κ :=
⊗d

i=1Hκ,
i.e., the Cartesian product of d copies of the scalar-valued RKHSHκ.



Point evaluation and inner product. The reproducing property of a kernel Σ associated with a vector-valued RKHS
states that [Alvarez et al., 2012]:

∀s ∈ HΣ, ⟨s,Σ(·,ω)v⟩Σ = ⟨s(ω),v⟩2 = s(ω)Tv ,∀v ∈ Rd , (48)

where ⟨·, ·⟩2 denotes the inner product associated with the 2-norm, i.e., the dot product in this case. If Σ(ω,ω′) := κ(ω,ω′)I,
∀ω,ω′ ∈ Ω, we then have that s(·)Tv : Ω→ R is an element ofHκ, so that s(ω)Tv = ⟨s(·)Tv, κ(·,ω)⟩κ. Therefore, we
will denote inner products in this vector-valued RKHS with the same notation subscript as for the scalar-valued case:

⟨s, κ(·,ω)v⟩κ := ⟨s, κ(·,ω)v⟩Σ = ⟨s,Σ(·,ω)v⟩Σ . (49)

Matrix-valued evaluations. Evaluating a function s ∈ Hd
κ on a matrix of inputs Ωn := [ω1, . . . ,ωn]

T ∈ Rn×d yields
s(Ωn) := [s(ω1), . . . , s(ωn)]

T ∈ Rn×d. By the reproducing property of the kernel, we also have that:

∀M := [m1, . . . ,mn]
T ∈ Rn×d, ⟨s(Ωn),M⟩2 = Tr(s(Ωn)

TM)

= Tr

(
n∑

i=1

s(ωi)m
T
i

)

=

n∑
i=1

s(ωi)
Tmi

=

n∑
i=1

⟨s, κ(·,ωi)mi⟩κ

=

〈
s,

n∑
i=1

κ(·,ωi)mi

〉
κ

,

(50)

where ⟨·, ·⟩2 corresponds to the Frobenius inner product when applied to matrices. We therefore denote κ(·,Ωn) as the
operator mapping matrices in Rn×d to functions inHd

κ which is such that:

κ(·,Ωn)M =

n∑
i=1

κ(·,ωi)mi ∈ Hd
κ (51)

κ(Ω′
m,Ωn)M =

κ(ω
′
1,ω1) . . . κ(ω′

1,ωn)
...

. . .
...

κ(ω′
m,ω1) . . . κ(ω′

m,ωn)

M (52)

for any Ω′
m := [ω′

1, . . . ,ω
′
m]T ∈ Rm×d.

Jacobians. The reproducing property also allows us to express Jacobians of a function in terms of kernel gradients as:

∀s ∈ Hd
κ, ∇vs(v) = ⟨s,∇vκ(·,v)⟩κ , ∀v ∈ Rd . (53)

For matrix-valued transformations Ωn 7→ s(Ωn) [Gupta and Nagar, 1999, Ch. 1], we further have that:

∇Ωn
s(Ωn) :=

∇ω1
s(ω1) . . . ∇ω1

s(ωn)
...

. . .
...

∇ωn
s(ω1) . . . ∇ωn

s(ωn)

 =


∇ω1s(ω1) 0 . . . 0

0 ∇ω2
s(ω2) . . . 0

...
...

. . .
...

0 0 . . . ∇ωns(ωn)

 , (54)

so that the following holds for the trace and the determinant of the Jacobian:

Tr(∇Ωn
s(Ωn)) =

n∑
i=1

Tr(∇ωi
s(ωi)) (55)

|∇Ωns(Ωn)| =
n∏

i=1

|∇ωis(ωi)| , (56)

where | · | denotes the absolute value of the determinant. Considering the reproducing property of the kernel, we have that:

Tr(∇Ωns(Ωn)) =

n∑
i=1

Tr(∇ωis(ωi)) =

〈
s,

n∑
i=1

∇ωiκ(·,ωi))

〉
κ

= ⟨s,∇Ωnκ(·,Ωn)⟩κ . (57)



B.2 PROOF OF MAIN RESULT

Proof of Theorem 2. Let g, s ∈ Hd
κ, where κ : Rd × Rd → R is a positive-definite kernel over Rd. Define a transform

Tg : F → F as a mapping such that Tg(h)(ω) = h(ω)+g(h(ω)), for all ω ∈ Rd. Considering the definition of functional
gradient (Definition 4) and the KL divergence between the measures Qg := Tg#Q and P∗, we have:

DKL(Qg+ϵs||P∗) = sup
n,Ωn

DKL(qg+ϵs(Hn)||p∗(Hn))

= DKL(qg+ϵs(H
∗)||p∗(H∗))

= Eh∼Qg [log qg+ϵs(H
∗ + ϵs(H∗))− log p∗(H

∗ + ϵs(H∗))] ,

(58)

where H∗ := h(Ω∗
n∗), as defined in the theorem statement, assuming the supremum is achieved at a finite n∗ and that Ω∗

n∗

exists. Now applying the change-of-variable formula and a Taylor expansion on the resulting log-determinant, for the first
term in the supremum, taking any n ∈ N and Ωn ⊂ Ω, with Hn := h(Ωn), h ∼ Qg, we have:

log qg+ϵs(Hn + ϵs(Hn)) = log qg(Hn)− log |I+ ϵ∇Hns(Hn))|

= log qg(Hn)− log |I| − ϵ

〈
∇M log |M|

∣∣∣∣
M=I

,∇Hn
s(Hn)

〉
2

+O(ϵ2)

= log qg(Hn)− ϵTr(∇Hn
s(Hn))) +O(ϵ2)

= log qg(Hn)− ϵ⟨s,∇Hn
κ(·,Hn)⟩κ +O(ϵ2)

(59)

where ⟨·, ·⟩2 here denotes the Frobenius inner product between matrices, and we applied the reproducing property of κ to
derive the last term.

For the second term in the supremum, also applying Taylor’s theorem and the reproducing property yields:

log p∗(Hn + ϵs(Hn)) = log p∗(Hn) + ϵ⟨∇Hn
log p(Hn), s(Hn)⟩2 +O(ϵ2)

= log p∗(Hn) + ϵ⟨κ(·,Hn)∇Hn log p(Hn), s⟩κ +O(ϵ2) .
(60)

Combining the two equations above into the KL divergence, and applying the definition of functional gradient leads us to:

∇gDKL(Qg||P∗) = −Eh∼Qg [κ(·,H∗)∇H∗ log p(H∗) +∇H∗κ(·,H∗)] , (61)

which yields the first result in Theorem 2 by letting g→ 0.

When applied to transforms over a finite set ΩR = {ωi}Ri=1 ⊂ Rd, the KL divergence simplifies to:

DKL(Q||P ∗) = sup
n≤R,Ωn⊂ΩR

DKL(q(h(Ωn))||p∗(h(Ωn))) = DKL(q(h(ΩR))||p∗(h(ΩR))) . (62)

The second result in Theorem 2 then arises by setting H∗ := h(ΩR) in Equation 61 and letting g→ 0.

B.3 FROM STOCHASTIC PROCESSES TO DISTRIBUTIONS OVER MATRICES

As a note, we here discuss how Theorem 2 gives rise to our algorithmic setting, which operates over matrices of frequencies,
representing empirical spectral measures. For any fixed ΩR ∈ RR×d and i.i.d. samples {hi}Mi=1

i.i.d.∼ Q, note that
Ω

(i)
R := hi(ΩR) corresponds to the realisation of a random matrix. The corresponding matrix distribution is given by

qR := EΩR
#Q, where EΩR

is the matrix-valued evaluation operator defined as:

EΩR
: Hd

κ → RR×d

h 7→ h(ΩR) ,
(63)

recalling that h(ΩR) := [h(ω1), . . . ,h(ωR)]
T ∈ RR×d. Therefore, we can rewrite an expectation over Q as an expectation

over qR when it takes the following form:

Eh∼Q[f(h(ΩR))] = EΩ∼qR [f(Ω)] , (64)

for any integrable f : RR×d → R. The initial distribution is arbitrary, and subsequent SVGD steps operate directly on the
samples. Hence, we can replace H in Theorem 2 with the matrix particles in the empirical approximations used by SVGD.



B.4 SVGD UPDATE

Theorem 2 results in the following SVGD M -particle update rule:

Ωt+1
m = Ωt

m +
ϵ

M

M∑
j=1

κ(Ωt
m,Ωt

j)∇Ωt
j
log p(Ωt

j) +∇Ωt
j
κ(Ωt

m,Ωt
j) , (65)

where, according to the notation for Theorem 2, for any Ω,Ω′ ∈ RR×d, we have the kernel matrix as:

κ(Ω,Ω′) =

κ(ω1,ω
′
1) . . . κ(ω1,ω

′
R)

...
. . .

...
κ(ωR,ω

′
1) . . . κ(ωR,ω

′
R)

 ∈ RR×R, (66)

and the kernel matrix-valued gradient is given by:

∇Ω′κ(Ω,Ω′) =


∑R

j=1∇ω′
j
κ(ω1,ω

′
j)

T

...∑R
j=1∇ω′

j
κ(ωR,ω

′
j)

T

 =

R∑
j=1

∇ω′
j

κ(ω1,ω
′
j)

...
κ(ωR,ω

′
j)

 =

R∑
j=1

∇ω′
j
κ(Ω,ω′

j) ∈ RR×d, (67)

which is the sum of Jacobian matrices of the vector-valued map κ(Ω, ·) : ω 7→ κ(Ω,ω) := [κ(ω1,ω) . . . κ(ωR,ω)]T ∈ RR.

C EXPERIMENTAL DETAILS

All experiments were performed on a single desktop using a AMD Ryzen 7 5800X CPU, 32GB of RAM, and an NVIDIA
3080 Ti GPU. Dataset sizes are as follows:

Dataset N d Ntrain Ntest

airfoil 1503 5 1353 150
concrete 1030 8 824 206
energy 768 16 615 153
wine 1599 11 1440 159
AUSWAVE 1787594 8 5000 1000

C.1 HYPERPARAMETER TRAINING

We perform the following number of hyperparameter runs for all experiments, increasing the number of runs as hyperparam-
eter count grows

Model Runs # of Hyperparameters

SVGP 30 1
SSGP-RBF 30 2
SSGP/SSGP-R∗ 30 2
SSGP-SVGD 50 5
M-SRFR 75 6

D VISUALIZATIONS OF MIXTURE KERNELS AND PREDICTIONS

We provide a visualization of the learned M-SRFR kernels, as well as a selection of the predictive mixture and combined
distributions, for the UCI datasets.
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Figure 4: airfoil Learned Kernels by Dimension.
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Figure 5: Selection of Single SSGP and M-SRFR Predictive Distributions for airfoil Test Points.
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Figure 7: Selection of Single SSGP and M-SRFR Predictive Distributions for concrete Test Points.
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Figure 8: energy Learned Kernels by Dimension.
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Figure 9: Selection of Single SSGP and M-SRFR Predictive Distributions for energy Test Points.
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Figure 10: wine Learned Kernels by Dimension.
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Figure 11: Selection of Single SSGP and M-SRFR Predictive Distributions for wine Test Points.
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