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Abstract

Reinforcement Learning agents require a distribu-
tion of environments for their policy to be trained
on. The method or process of defining these envi-
ronments directly impacts robustness and gener-
alization of the learned agent policies. In single
agent reinforcement learning, this problem is of-
ten solved by domain randomization, or random-
izing the environment and tasks within the scope
of the desired operating domain of the agent. The
challenge here is to generate both structured and
solvable environments that guide the agent’s learn-
ing process. Most recently, works have sought
to produce the environments under the Unsuper-
vised Environment Design (UED) formulation.
However, these methods lead to a proliferation of
adversarial agents to train one agent for a single
agent problem in a discretized task domain. In
this work, we aim to automatically generate en-
vironments that are solvable and challenging for
the continuous multi-agent setting. We base our
solution on the Teacher-Student relationship with
parameter sharing Students where we re-imagine
the Teacher as an environment generator for UED.
Our approach uses one environment generator
agent (Teacher) for any number of learning agents
(Students). We qualitatively and quantitatively
demonstrate that, in terms of multi-agent (≥ 8
agents) navigation and steering, Students trained
by our approach outperform agents using heuris-
tic search, as well as agents trained by domain
randomization. Our code is available at https:
//github.com/GAIDG-Lab/MASAI.
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1. Introduction
Multi-agent navigation is a well-established but difficult
problem. Recent approaches had adapted Reinforcement
Learning (RL) to the Multi-agent domain, or Multi-agent
Reinforcement Learning (MARL). However, successful nav-
igation learning requires a high degree of generalization to
potentially very different environments, which requires de-
signing distribution of tasks and environments that can be
used to train and evaluate policies. Nevertheless, manually
designing such an effective and appropriate distribution of
environments is time-consuming and challenging, as the
real-world scenarios are usually complicated and enumer-
ated all of the representative and edge scenes are impractical.
We, therefore, aim to automate this process, under the Unsu-
pervised Environment Design (UED) (Dennis et al., 2021)
framework.

UED is the problem of taking the underspecified environ-
ment and a policy, and producing a useful distribution of
fully specified environments in which that policy can be
trained, where underspecified environment means the envi-
ronment that has free parameters (e.g., in navigation, the
places for the obstacles, agents, and their goals) which con-
trol its feature and behavior (Dennis et al., 2021). After
training a policy in the distribution of environments gener-
ated by UED, an updated policy is obtained and then use
UED to generate more diverse environments such that the
updated policy can continue to be trained. Hence, the UED
formulation can be used to produce capable policies in in-
creasingly complex and difficult environments based on the
abilities of the current policy. (Dennis et al., 2021)

In this work, we proposal a novel semi-adversarial training
algorithm, MASAI, which aims to solve the UED problem
and improve generalization for MARL problems in novel
continuous environments. Our algorithm is based on the
Teacher-Student relationship with a novel reward signal for
UED, and has a simple structure: only two policies 1) the
Student (i.e., the policy to solve an environment), and 2)
the Teacher (i.e., the policy to generate free parameters).
The motivation for our algorithm is based on the intuitive
Teacher-Student relationship. How do Teachers measure
whether Students master a concept or not? In general, Teach-
ers prepare two questions of similar difficulty for Students,
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one as an example and the other as an exercise. The En-
vironment Generator (i.e., Teacher) in every iteration, will
produce two sets of environments, one for LEARNING and
one for REVIEW based on the Student’s performance in the
last iteration. The Student will collect experience in the
LEARNING environment and update its parameters. After
the parameters are updated, the Student will attempt to solve
the REVIEW environments, without updating its parameters.
Further, we argue in RL problems, there are usually two
classes of rewards: Task Completion Reward and Agent Re-
ward. Task Completion Reward contains the rewards when
the agent completes certain tasks (e.g., in navigation, pos-
itive rewards for the agent arrives at its goal), and Agent
Reward includes the cumulative rewards start from initial
states until the terminal states (e.g., in navigation, penalties
for collisions and positive rewards for moving correctly and
reaching intermediate goals). The Teacher uses the differ-
ence between the reward of the Student on REVIEW and
LEARNING environments as its reward signal, to update its
parameters, and it aims to maximize the Task Completion
Rewards while minimize the Agent Rewards. MASAI re-
quires less parameters than the current state-of-the-art by
removing the need for an additional antagonist (Dennis
et al., 2021).

We qualitatively demonstrate that the Student agents trained
by MASAI learn and exhibit complex and highly valuable
emergent behaviours, and the learned policies also general-
ize well in unseen difficult steering and navigation scenarios
in contrast to the agents trained by classic Domain Random-
ization (DR) methods. Further, we quantitatively show that
under the same conditions, the Student agents trained by
MASAI have a lower number of collisions and complete
goals faster than the agents trained by DR in the domain of
multi-agent navigation and steering.

2. Unsupervised Environment Design
We briefly summarize the recent formalization of the UED
problem in this section (Dennis et al., 2021). The formal
definition of UED is the problem of using an underspecified
environment to produce a distribution over fully specified
environments, which offers the continued or curriculum
learning of a particular task-solving policy. We now detail
the meaning and relevant distinction of the fully specified
versus underspecfied environments.

Fully specified environments are modeled with a Partially
Observable Markov Decision Process (POMDP), repre-
sented by a tuple 〈A,O, S, T , I,R, γ〉 where A is a col-
lection of actions, O is a collection of observations, S is a
set of states, T is the transition function of S ×A→ ∆(S),
I is the observation function of S → O, R is the re-
ward function of S → R, and γ is the discount fac-
tor. This contrasts the underspecified environment which

can be modeled as an Underspecified Partially Observable
Markov Decision Process (UPOMDP) represented by a tu-
ple 〈A,O,Θ, SM, TM, IM,RM, γ〉. The only difference
here between a POMDP and a UPOMDP is that a UPOMDP
contains a set Θ representing the free parameters of the envi-
ronments, and it is these free parameters that can be selected
at each time step and integrated into the transition func-
tion TM as S × A × Θ → ∆(S). The solution to UED
proposed in (Dennis et al., 2021) then is to have an envi-
ronment policy Λ : Π → ∆(ΘT ) where Π is the set of
possible policies and ΘT is the set of possible trajectory of
environment parameters. In this formulation, UED aims to
generate a distribution of environments that caters to the
continued learning of a particular agent policy. To solve
this, the authors proposed PAIRED (Dennis et al., 2021) to
approximate the environment policy. PAIRED solves the
UED problem by introducing three agents the antagonist,
protagonist, and environment-generating adversary. The an-
tagonist is allied with the environment-generating adversary
to guide the adversary from constructing unsolvable envi-
ronments. The goal of the environment adversary is to build
environments in which the antagonist achieves high reward
and the protagonist receives a low reward. The protagonist
is the agent to be trained for solving the environments.

3. Multi-agent Summative Assessment
Improvement for Unsupervised
Environment Design

We propose a novel semi-adversarial training algorithm,
MASAI, which is designed to solve the UED problem and
improve generalization, inspired by the intuitive Teacher-
Student relationship. How do Teachers measure whether
Students master a concept or not? Generally, the Teacher
prepares two questions of similar difficulty for the Student,
and takes one of them as an example to teach (i.e., Student
will hopefully learn the concept from this example), and
then use the other as a quiz to test Student’s understanding.
MASAI formulates this relationship for multi-agent training.
MASAI is summarized in Algorithm 1 and its semantics is
shown in Figure 1.

There are two types of trainable agent policies in MASAI,
Teacher agent (i.e., Unsupervised Environment Generator)
and Student agent, where the policy is denoted by the sym-
bol π. Teacher agent aims to produce solvable and valuable
free environment parameters ~θ, and the Student agent aims
to learn specific tasks, for instance, navigation and steering.
We denote the space of all environment parameters as Θ,
and we assume for a Teacher agent policy the produced free
environment parameters ~θ follows the distribution of ΘT .
Moreover, we argue that in many RL formulations, it is pos-
sible to create two classes of rewards for the agent; the Task
Completion reward and the Agent reward. Task Completion
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Algorithm 1 MASAI

Denote |S| as the number of Student agent shares the
same Student policy πS .
Denote R(τ) as an operator that sums undiscounted re-
turn of |S| Student agents in a trajectory τ .
Randomly initialize the Student πS and the Teacher πT .
repeat

Use πT to generate LEARNING environment parame-
ters: θL ∼ ΘT

Use πT to generate REVIEW environment parameters:
θR ∼ ΘT

Collect the LEARNING trajectory τL using πS , and
compute Agent Reward RAgent(τL) and Task Com-
pletion RewardRTask(τL).
Train policy πS with RL update and discounted return
from trajectory τL.
Collect the REVIEW trajectory τR using πS , and com-
pute Agent RewardRAgent(τR) and Task Completion
RewardRTask(τR).
Compute GAINAgent =RAgent(τR)−RAgent(τL).
Compute GAINTask =RTask(τR)−RTask(τL).
Train policy πT with RL update and minimize
GAINAgent while maximize GAINTask.

until convergence

reward is an instant reward, to signal the agent whether it
completes the desirable tasks or not. Agent reward con-
tains the cumulative rewards from the initial states until the
terminal states, to guide the agent away from low value
behaviours (e.g., in the multi-agent navigation problem, col-
lisions with other agents and static/dynamic obstacles need
to avoided), and encourage the agent toward the preferable
actions and emergent behaviour policies (e.g., in the multi-
agent navigation problem, reaching the intermediate way-
points toward the final target should be incentivized, laminar
flows and vortices should emerge in conflicting flows).

To train the Teacher agent and the Student agents, we first let
the Teacher agent construct n LEARNING environments and
n REVIEW environments. Based on the assumption that the
produced free environment parameters ~θT follows the distri-
bution of ΘT , the LEARNING and REVIEW environments
share a similar difficulty, and if n is large enough, the diffi-
culty of the constructed environments would be equivalent.
DenoteR(τ) as an operator that sums undiscounted return
of all Student agents in a trajectory τ . The Student agents
will interact with the LEARNING environments, collect the
experience and trajectories τL, and receive the Task Comple-
tion RewardsRTask(τL) and Agent RewardsRAgent(τL).
The weights of the Student agent are then updated with
the collected trajectories by, for instance, Proximal Pol-
icy Optimization (Schulman et al., 2017) or Twin Delayed
Deep Deterministic policy gradient algorithm (Fujimoto
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Figure 1. Semantics of the MASAI algorithm. The Teacher agent
first designs the LEARNING and REVIEW environments, and the
Student agent is updated on the LEARNING environment and ap-
plies the learned policy to the REVIEW environment. The Teacher
agent optimizes its policy with the novel reward signal GAIN. See
Algorithm 1 and Section 3 for more details.

et al., 2018). With the updated weights, the Student agent
will apply the learned knowledge from LEARNING envi-
ronments to the REVIEW environments, and also obtain
the Task Completion Rewards RTask(τR) and the Agent
RewardsRAgent(τR).

Our main contribution is the MASAI methodology to train
the Teacher agent. We introduce the following novel re-
ward signals, the difference between the Task Completion
Rewards and the Agent Rewards of the Student agents ob-
tained from the REVIEW and LEARNING environment:

GAINAgent = RAgent(τR)−RAgent(τL)

GAINTask = RTask(τR)−RTask(τL)

GAIN = GAINTask − GAINAgent

(1)

The Student agent always tries to maximize its Task Comple-
tion Rewards and Agent rewards, as defined in the RL for-
mulation. To generate solvable environments, the Teacher
agent also needs to maximize the GAINTask, as it needs to
produce environments that can teach the Student agent to
complete more tasks. However, if the Teacher agent where
to simply maximize the GAINTask this would lead to gener-
ating trivial environments for the Student agent. Thus, we
argue that it is essential for the Teacher agent to, in addition,
minimize GAINTask. In other words, as long as the Teacher
agent is capable of generating solvable environments (by
maximize GAINTask), it should “set up” the Student agent
in the produced environments, to construct more edge cases
and hard scenarios at the local and global level, to motivate
the Student agents to deviate from its current parameter dis-
tribution to further explore better weight structure, ideally
leading to a generalization of skills. The sequence of free
parameters ~θ in each step the Teacher agent produced form
the training trajectories, with the addition of GAINTask (i.e.,
maximize) and −GAINAgent (i.e., minimize) as its reward
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signal. To complete the approach, we train the Student
agents and Teacher agent alternatively until convergence or
after a certain number of iterations.

4. Experimental Setup
The proposed MASAI is a general algorithm to improve the
generalization of any policy. We test MASAI on the task of
navigation and steering due to its popularity in the MARL
application and its sensitivity to unseen environments.

4.1. Teacher

In this section, we outline the details of the Teacher agent,
including the architecture and state observations in terms
of navigation and steering. In our experiments, the Teacher
agent works in a 16m × 16m environment, with a fixed
number of agents (16 agents, coloured in red), their goals
(16 coloured in green), and static obstacles (28 coloured in
black). In total, there are 60 objects in an environment. See
Figure 2 for example generated environments.

(a) (b) (c)

(d) (e) (f)

Figure 2. Sample environments constructed by the Domain Ran-
domization (top row) and MASAI (bottom row) approaches. The
locations to place objects are uniformly randomly selected, without
taking the policy of the agent into consideration.

The observation of the Teacher agent in each frame are an
84× 84× 3 image which captures the whole environment
(e.g., Figure 2a), and a scalar k that enumerates the class
of the object it should place. Let k = 1 for static obstacle,
k = 2 for goal, and k = 3 for agent. Figure 3 illustrates
the observations and actions of the Teacher agent. In each
time step, the Teacher agent takes a visual observation of
the environment, and a scalar observation to indicate the
class of objects it should place next. The action of the the
Teacher agent is a two-dimensional coordinate within the
environment. The Teacher agent at Time Step 0 takes an

empty environment and a scalar k = 3 to place the first
agent. At Time Step 1, the Teacher agent takes the visual
observation of the environment (currently only one agent)
and a scalar k = 2 to determine the place of the goal for this
agent. This process continues after a fixed number of agents
and their goals. Finally, the Teacher agent starts to place
static obstacles by observing the current environment, with
scalar k = 1 as its input (see Time Step 33). We note the
first visual observation is always the same at the beginning
of the environment construction. Thus, the policy gradient
method is employed to sample actions from the policy.

4.1.1. ARCHITECTURE

The Teacher agent network architecture consists of a single
convolutional layer that connects to an LSTM and then to
two fully connected layers which connected to the policy
outputs. The additional scalar observation k is connected
directly to the LSTM layer. A second network with identical
architecture is used to estimate the value function (Dennis
et al., 2021). The convolutional layer contains 128 filters
with 3× 3 kernel, and an LSTM size of 256 cells, two fully
connected layers of size 64 each, and a fully connected
layer of size 9 to process the object class and connects to
the LSTM. The policy output is a 2-dimensional location to
place the next object in the current environment.

4.2. Student

In this section, we describe the Student agent for learning
local steering and collision avoidance for navigating multi-
agent environments, or a synthetic crowds agents. The obser-
vation of the Student agent in each frame is a 24 dimension
vector, consisting of depth detection, relative velocity to
the maximum allowed speed, and relative position to the
next intermediate waypoint. Moreover, we stack the past 4
frames (temporally widen the observation), which results
in a 96-dimensional observation vector for each agent as its
policy network input. The policy output is a 2-dimensional
virtual force to be applied to the Student agent rigidbody.
The Student agent updates at 12.5Hz. The reward function
for the Student agent is taken from (Haworth et al., 2020b),
which is defined as a combination of distance-based rewards.
Let ∆ = ||pos(agenti) − gHi ||, where pos computes the
current location of agent i and gHi denotes the location of
the goal of agent i:

rgoal =

{
20 if ∆ < 1
exp

(
−∆2

)
otherwise. (2)

The instantaneous reward signal places a large reward value
when reaching goals as soon as possible, while the continu-
ous component guides learning policies toward its goals. A
second penalty term rcollision checks agent-agent or agent-
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Figure 3. Visualization of the input observations and output actions for the Teacher agent. The Teacher agent takes the current view of the
environment and a conditional variable k that indicates the object to place for the next step. In this experiment, we set k = 1 for Obstacle,
k = 2 for Goal and k = 3 for Agent. Note the first visual observation will be the same so policy gradient is used to sample actions from
the policy. The action of the Teacher agent is a two-dimensional coordinate in the environment. See Section 3 for more details.

obstacle collisions.

rcollision =

{
−1 if collision occurs
0 otherwise (3)

4.2.1. ARCHITECTURE

The Student agent network architecture consists of a LSTM
and then to two fully connected layers which connect to the
policy output. A second network with identical architecture
is used to estimate the value function (Dennis et al., 2021).
The LSTM is of size 256 cells, and two fully connected
layers of 64 which connect to either the policy outputs or
the value estimate.

4.3. Training

The experiments were conducted on a server with 48 In-
tel Xeon E5-2650 CPUs. To improve reproducibility, we
control the random seed for all training and experiments.
For instance, the initialization of neural networks in each
experiment will be the same. The inputs and rewards were
normalized for both the Student agents and the Teacher
agent, and both were trained with Proximal Policy Opti-
mization (PPO) (Schulman et al., 2017) algorithm with a
discount factor of 0.99, a learning rate of 0.0001 with Adam
optimizer (Kingma & Ba, 2017), and an 8 parallel train-
ing environments to collect a batch of episodes, which was
used to complete on training update In other words, Teacher
agent creates 8 LEARNING and REVIEW environments each
iteration. All Student agents shared the same policy net-
work, i.e., parameter sharing for multi-agent reinforcement
learning. We empirically set the maximum allowed steps of
the Student agents during training to 250.

5. Experiments
We qualitatively demonstrate that the Student agent trained
by MASAI generalizes better in unseen environments than

by DR and heuristic search, which are supported by the
quantitative evaluation. We use the DR technique as our
primary baseline representing how environments have been
generated in past solutions to the multi-agent navigation
problem. In the navigation and steering task, DR is em-
ployed by uniformly and randomly choosing a location to
place objects. In the following experiments, the only differ-
ence is the training algorithm, i.e., DR versus MASAI.

5.1. Qualitative Evaluation

Sample environments constructed by DR and using MASAI
are shown in Figure 2. In a small environment, such as
16m× 16m, there is an infinite number of configurations,
but the computational resource is limited. It is crucial to
reduce the free parameter space and produce environments
that can instruct the Student agent to learn (not simply mem-
orize) quickly. MASAI solves this issue precisely. From
Figure 2, we can observe that the DR places objects that
are spread around across the environment, due to the uni-
form distribution sample space. Moreover, there are cases
(Figure 2a 2c) the goals are overlapped with the static ob-
stacles and some agents are stuck between static obstacles
(Figure 2b), which result in unsolvable cases. While MA-
SAI tends to cluster the objects and put goals near the static
obstacles, and create challenging scenarios, as shown in Fig-
ure 2. For instance, in Figure 2d and Figure 2e, the central
agents are surround by static obstacles, forming challenging
training scenario caves. In Figure 2f, MASAI creates nearly
a wall-like configuration in the left to separate agents and
their goals.

To evaluate the learned Student agent policy, we create sev-
eral common navigation and steering scenarios. At the
smaller scale, these include Egress, Simple wall, Cross-
ing with obstacles, Crossing groups, Surprise, and Rooms
egress. At the larger scale, we use Bi-directional hallway
and Diametric goals scenarios which contain forty-nine dy-
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namic agents, as shown in Figure 5. In all evaluations, we
use the weights of the Student agent saved at the highest
average return (see Figure 7) in both DR and MASAI to
solve the evaluation scenarios.

Results for the six smaller scale common steering and navi-
gation scenarios are shown in Figure 4. In these scenarios
we show that MASAI guides the learning of high value poli-
cies for emergent behaviours. In particular, Student agent
learns to side step and wait for other Student agents to reduce
collisions. This is a complicated behaviour that extends over
time that even industry standard steering simulators strug-
gle with or do not produce. However, DR policies never
discover this policy. We also show that polices learned from
DR can lead to equilibrium cases where the net force on
competing agents reaches equilibrium and the agents never
complete the scenario (see Surprise and Crossing with Ob-
stacles in Figure 4). Policies learned from MASAI avoid
this problem through side-stepping and stop-and-wait be-
haviours. These represent real courtesies people give to
each other in such low density scenarios.

From Figure 5 and Figure 6, Student agent policy and DR
agent policy are able to solve the environments. From the
simulation, we notice that the Student agent trained by MA-
SAI demonstrates important emergent steering skills. In
Figure 5, initially, the lower group and upper group are
aiming to avoid collision by steering far right and far left.
Moreover, both MASAI Student agent and the DR policies
cluster in the Diametric Goals scenario and created a large
number of collisions, but the Student agent trained by MA-
SAI reduces the amount of time of clustering much faster
than the agent trained by DR through an emergent vortex
behaviour. These are unseen environments in the training
environment distribution, showing MASAI trains more gen-
eralized agents.

5.2. Quantitative Evaluation

To quantitatively estimate the performance of the trained
Student agent policies, we compute the number of collisions
and the elapsed time of agents to reach its goal. We also
compare the results for agents follows the path planned by
Heuristic Search (i.e., A* path planning) due to its wide
usage in synthetic crowds applications.

Based on Table 1 and Table 2, it is clear the Student agents
trained by MASAI has a superior generalization performance
than the agent trained by DR in various metrics regarding
the quality of steering in a multi-agent navigation setting.
We note the mean of time used to reach goals by the agents
that are driven by heuristic search is the lowest is due to the
fact the agents will move straight up to their goals, without
any consideration of steering. This will result in the fastest
navigation and the least pleasant steering.
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Figure 4. Six common navigation and steering evaluation scenar-
ios. Agents trained by Domain Randomization takes 11.92 seconds
to complete Egress, 14.16 seconds to complete Simple Wall, 40
seconds and not complete Crossing with Obstacles, 13.04 seconds
to complete Crossing Groups, and 40 seconds and not complete
Surprise, and 24.72 seconds to complete Room Egress. Student
agent trained by MASAI takes 7.52 seconds to complete Egress,
15.44 seconds to complete Simple Wall, 11.20 seconds to com-
plete Crossing with Obstacles, 9.44 seconds to complete Crossing
Groups, and 23.36 seconds to complete Surprise, and 17.68 sec-
onds to complete Room Egress.
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Figure 5. Bi-directional hallway with forty-nine agents. Agents
trained by DR takes 35.36 seconds to complete whereas Student
agent trained by MASAI takes 28.96 seconds.
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Figure 6. Diametric goals with forty-nine agents. Agents trained
by DR takes 47.28 seconds to complete whereas Student agent
trained by MASAI takes 31.68 seconds.

Table 1. Quantitative evaluation in the six common navigation sce-
narios (see Figure 4) of the Student agents trained by MASAI, the
agents trained by Domain Randomization (DR), and the perfor-
mance of the agent following the Heuristic Search (HS) plan is
provided. Unit of time is second.

METRICS HS DR MASAI

AGENTS COMPLETED 48 40 48
TOTAL COLLISIONS 325 232 151
MEAN COLLISIONS 6.9148 5.8 3.1458
STD COLLISIONS 4.9156 5.1613 2.2172
MEAN TIME TO GOAL 7.92 43.64 39.34
STD TIME TO GOAL 6.93 25.07 21.54

Table 2. Quantitative evaluation in the two forty-nine agents eval-
uation scenarios (see Figure 5) of the Student agents trained by
MASAI, the agents trained by Domain Randomization (DR), and
the performance of the agent following the Heuristic Search (HS)
plan is provided. Unit of time is second.

METRICS HS DR MASAI

AGENTS COMPLETED 98 98 98
TOTAL COLLISIONS 1294 1024 970
MEAN COLLISIONS 13.2041 10.449 9.8980
STD COLLISIONS 5.4510 5.6715 4.5546
MEAN TIME TO GOAL 7.80 27.79 21.83
STD TIME TO GOAL 0.93 7.76 3.27

Figure 7 illustrates the average undiscounted return curve
during training of the Student agents trained by MASAI
is higher than and trained by DR, which aligns with the
quantitative metrics in Table 1 and qualitative evaluation.
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Figure 7. Average undiscounted return curves during training of
the Student agents trained by MASAI and agents by Domain Ran-
domization. We note that the average return curve is not an ideal
quantitative evaluation metric as the environments during training
are different.

6. Related Work
Prior works on automating the process of generating envi-
ronments include DR and Minimax Adversary. DR aims
to generate fully specified environments, without taking
the current learning agent policy into consideration (Jakobi,
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1997; Savage, 1951; Graves et al., 2017). These environ-
ment parameters are randomly sampled for each episode,
and then a policy is trained over the generated environment.
Nevertheless, this does not guarantee policy performance
on a carefully designed configuration of free parameters.
Minimax adversary training aims to produce environments
by minimizing the reward of the current learning agent pol-
icy, i.e., minimax training (Pinto et al., 2016; Morimoto &
Doya, 2005; Shen et al., 2019). Although these approaches
have demonstrated the capability of producing compelling
environments, they can fail to generate truly valuable en-
vironments. Uniformly random environments will usually
fail to generate challenging and sometimes solvable envi-
ronments, while minimax adversary is incentivized to create
environments that are impossible to solve. In many appli-
cations, both of these algorithms fail to produce valuable
and solvable structures. The recently introduced PAIRED
algorithm is a middle ground of environment generators
which maximize regret, producing difficult but solvable
tasks (Dennis et al., 2021). We discuss PAIRED in detail in
Section 2.

Curriculum Learning is a well-studied and widely applied
solution to difficult training problems in RL (Bengio et al.,
2009; Matiisen et al., 2017; Leibo et al., 2019; Graves et al.,
2017; Florensa et al., 2017). In basic curriculum learning,
the learning agents is exposed to increasingly difficult tasks
to learn or environments to train in. However, it is increas-
ingly difficult to decide what is ‘difficult’ as well as when,
where, and how much a particular element of a curriculum
should be used during training. Teacher-Student Curriculum
Learning (TSCL) is a framework designed for automatic
curriculum learning, where the Student tries to learn a com-
plex task and the Teacher automatically chooses sub-tasks
from a given set for the Student to train on (Matiisen et al.,
2017). The Teacher algorithms rely on the intuition that
the Student should practice more of those tasks on which
it makes the fastest progress. Nevertheless, the Teacher in
the proposed algorithm is not parameterized or trainable, it
maintains an array of probability for each sub-task, i.e., only
the Student is trainable. The Teacher proposes tasks through
an epsilon-greedy policy on that probability array. Another
Teacher-Student approach for predicting hospital inpatient
admission location separates the Teacher and Student into
two neural networks where the Teacher learns to select items
from a dataset for the Student to learn on (El-Bouri et al.,
2020).

Our work proposes to address the shortcomings of prior
methods when applied to a more difficult problem domain.
We apply a novel Teacher-Student approach top the UED
problem for continuous multi-agent reinforcement learn-
ing. MASAI fully parameterizes both the Teacher agent
and Student agent using deep neural networks, where the
proposed tasks for Student agents are produced directly

without any prior selection algorithms. In this work, we pro-
pose incentivize the Teacher agent, (i.e., the Unsupervised
Environment Generator), to produce free parameters that,
when a policy is trained on it, can observe novel reward
signals, GAIN, which guides the Teacher agent to construct
environments that are not only as difficult as possible but
also catered for automatically improving the sophistication
of the policy of the Student agents. To test our approach,
we look to the local steering and collisions avoidance in
multi-agent navigation literature for a difficult problem do-
main. Navigation and steering is a burgeoning application of
MARL, especially in terms of crowd simulation (Haworth
et al., 2020a; Berseth et al., 2020; Lee et al., 2018; Lowe
et al., 2017; Lan et al., 2020; Sun et al., 2019; Bisagno
et al., 2019). The problem is continuous, multi-agent, and
often semi-chaotic. Additionally, earlier work in compara-
tive crowds analysis proposed a carefully crafted rule-based
algorithm to generate challenging environments to evalu-
ate steering algorithms (Kapadia et al., 2011). However,
the space of rule based procedural content (environment)
generation is beyond the scope of this paper. The proposed
MASAI approach is not limited to navigation and steering
and ideally can be applied to many other difficult continuous
MARL problems.

7. Discussion
In this work, we proposed an algorithm for solving the un-
supervised environment design problem in the continuous
multi-agent reinforcement learning domain. Our method
estimates the environment generator policy by carefully
formulating a training procedure informed by the Teacher-
Student approach and guided by a novel reward signal de-
signed to produce compelling, challenging, and solvable
environments in an automatic curriculum for training agents
in difficult problem domains. Our method produces such
environments and that the resultant training regime leads
to highly valuable policies. We showed that the approach
solves the UED problem for training multi-agent navigation
and the the trained agents learn valuable emergent polices
which generalize in entirely unseen environments.

Limitations of the method are mainly related to the under-
lying methodology for training in the MARL domain. We
utilize parameter sharing which has high utility and mit-
igates issues like non-stationarity. However, there exists
many approaches to multi-agent training which may or may
not be adapted into this framework. Additionally, it remains
to be seen how successful such a method would be in a real
world setting with highly uncertain or noisy inputs.

For future work, we plan to propose extensions to the
PAIRED algorithm for the multi-agent continuous domain.
Moreover, we also want to test MASAI on other tasks, such
as computer vision and natural language processing.
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