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Abstract—Directed acyclic graphs (DAGs) are ubiquitous in
the design and optimizations of systems. For example, neural
networks have become a key computational workload for system
design, and neural architectures are natively DAGs. Intermediate
representations in compilers or hardware-synthesis tool to char-
acterize execution dependencies and dataflows of computation
also often take the form of DAGs. For sensitive scenarios,
we believe that learning a conditional generative model of
DAGs allows releasing synthetic data that preserves downstream
utility while protecting intellectual property (obfuscation). In
addition, such models can efficiently search the space of valid
DAGs for desired properties, which is of great potential use
to applications like compiler optimization. However, generating
realistic DAGs is challenging due to their inherent directional
and logical dependencies. This paper introduces LayerDAG,
an autoregressive diffusion model designed to address these
challenges in DAG generation. By iteratively removing the nodes
without predecessors and their outgoing edges, we can obtain
a unique tokenization that turns a DAG into a sequence of
directed bipartite graphs and its nodes into a sequence of node
layers. LayerDAG leverages autoregressive generation to model
directional dependencies and employs diffusion models to capture
logical dependencies within each bipartite graph. Empirical
studies demonstrate that LayerDAG outperforms existing DAG
generative models, particularly for generating large-scale DAGs
with up to 400 nodes—a critical scenario for system. Our
implementation will be available at https://github.com/Graph-
COM/LayerDAG.

I. INTRODUCTION

Directed acyclic graphs (DAGs) have broad applications in
ML system design. With directed edges, they can naturally
depict dataflows between operators in neural network model
architectures, enabling neural architecture search [8]. Further,
by treating subtasks as nodes and task dependencies as edges,
DAGs provides a compact representation for optimizing the
scheduling of task execution [31], compiler optimizations for
hardware accelerators like TPUs [1], [27], and for optimizing
circuit netlists [9].

There is a growing interest in leveraging AI models for
AI/ML system design/optimization [12], [16], [29], and was in
fact a key thrust of the Architecture2.0 Workshop. This neces-
sitates learning the structure of DAG datasets corresponding to
the underlying design-space (e.g., hardware design, compiler
optimization, and so on) and generating representative DAGs

for the optimized solution. To this end, this work presents
a generative model for synthesizing DAGs. We believe a
generative model for DAGs serves several purposes. First, by
learning the distribution of DAGs, a generative model allows
sampling realistic synthetic DAGs that reflect the real data
distribution. Second, in sensitive scenarios like system and
hardware design, this enables preserving data utility while
protecting intellectual property (obfuscation) [15], [32], [44].
Third, a conditional DAG generative model would be capable
of efficiently searching the space of valid DAGs for property
optimization [43]. For instance, consider distributed training
of a foundation model with data parallelism [7]; replicas of
a model can perform similar operations on a huge number of
GPUs, and the model itself often consists of repetitive layers.
This would make an execution trace of the program [21], [32]
extremely large due to redundant and repetitive patterns. In
such cases, a generative model may learn to identify com-
mon components and compress traces by generating smaller
synthetic ones [5].

Serving as an abstraction for flows and node dependencies,
DAGs pose significant challenges in developing powerful
and efficient generative models due to their intrinsic strong
directional and logical dependencies, such as control flows,
logic gates, and dimension requirements of matrix operations.
These complexities are further magnified in large-scale DAGs,
presenting a unique combination of challenges regarding both
scale and logical rules.

Motivated by the aforementioned challenges, we present
LayerDAG, a layerwise autoregressive diffusion model of
DAGs. To tackle the directional logical dependencies, inspired
by the strong capability of language models in modeling
sequential logic, we propose autoregressive generation with
the following tokenization. By iteratively removing the nodes
without predecessors and their outgoing edges, we observe
that a DAG induces a unique ordered partition of the nodes,
which we refer to as layers (Fig. 1), along with a partition of
the edges into bipartite graph structures. LayerDAG performs
autoregressive generation at the granularity of layers while
following the direction of edges. To model the node and edge
dependencies, we adopt diffusion models that have achieved
remarkable generation quality in various domains [28], [36].
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Fig. 1. Each DAG has a unique layerwise partition.

Fig. 2. The two edges are equally likely, but mutually exclusive. Naı̈vely
predicting their existence by independently sampling from two Bernoulli
distributions can violate the mutual exclusivity.

Specifically, the diffusion model is conditioned on previously
generated bipartite graphs to generate the next bipartite graph
consisting of node attributes and edges. Essentially, our model
is the first autoregressive diffusion model for DAG generation
(Fig. 3).

Our model advances existing DAG generative models in
multiple aspects. Methodologically, although autoregressive
models have been adopted by D-VAE [43] and GraphP-
NAS [18] for DAG generation, they treat either a single node
or a node set of constant size as a token. This tokenization
method imposes an order between nodes that should be
incomparable in the partial order defined by the directed edges,
violating the inductive bias inherent in the DAG structure. We
argue that the violation may hurt the generalization capability
of generative models. DiffusionNAG [2] employs diffusion
models to generate only node attributes given a DAG struc-
ture. Diffusion models have been used to generate undirected
graphs [14], [25], [36], but they ignore the directional infor-
mation in DAGs, while our work demonstrates the necessity
of the autoregressive component in modeling directional de-
pendencies in DAGs. From the application perspective, all
the existing works focus on generating small DAGs (with
#nodes ≤ 24) for neural architecture search (NAS), while
our model is capable of generating much larger flow graphs
(up to ∼ 400 nodes) for system and hardware.

We conduct extensive experiments to verify the effective-
ness of our model. To examine the model capability in learning
strong directional logical rules, we construct a challenging
synthetic dataset. To evaluate the conditional generation ca-
pability for the purpose of data sharing with obfuscation, we
consider three real-world datasets – computational graphs on
TPU, flow graphs on FPGA, and neural architectures deployed
on edge devices. Each dataset contains thousands of DAGs,
with individual DAGs comprising up to hundreds of nodes.
On all four datasets, LayerDAG consistently achieves a better
generation quality than the best baselines, by an average
margin of 9.1%.

II. BACKGROUND

Discrete Denoising Diffusion Probabilistic Model
(D3PM) [3] is a diffusion model for discrete data. It
has two phases, a forward diffusion process and a reverse
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Fig. 3. Layerwise autoregressive diffusion.

process. Let Z(0) ∈ RM×C be the one-hot encodings
of a categorical attribute with C possible values for M
real samples. The forward process corrupts them into
purely random samples by progressively changing the
category of more samples over T consecutive time steps.
To corrupt Z(t) into Z(t+1), it computes and samples from
a conditional distribution q(Z(t+1)|Z(t), t) = Z(t)Q(t+1),
where Q(t+1) ∈ RC×C is a pre-determined transition
matrix. A denoising network ϕθ is trained to predict
the uncorrupted data Ẑ(0) from (Z(t), t). Composing the
transition matrices across multiple time steps yields the
closed-form expression q(Z(t+1)|Z(0), t) = Z(0)Q

(t+1)
,

where Q
(t+1)

= Q(1)Q(2) · · ·Q(t+1). During the reverse
process, the trained denoising network can be used to convert
Z(T ) drawn from the prior distribution into realistic data.

DiGress [36] extends D3PM for non-autoregressive gen-
eration of undirected graphs with a single categorical node
attribute. It treats the presence or absence of an edge between
a node pair as a binary attribute. GraphMaker [19] extends
DiGress for generating multiple categorical attributes.

III. LAYERDAG

In this section, we present the LayerDAG framework. We
first describe the unique layerwise DAG partition, which natu-
rally leads to a layerwise tokenization for autoregressive DAG
generation. To perform layerwise set-level predictions of node
attributes and edges, we propose layerwise diffusion that is
capable of modeling complex logical rules via refinement with
multiple denoising steps. By adopting permutation equivariant
and invariant model components, LayerDAG is also permu-
tation invariant, which benefits model generalizability and
robustness. As the cost of DAG generation is proportional to
the constant number of denoising steps, we propose to alleviate
the cost with a number of denoising steps proportional to the
layer depth for a flexible quality-efficiency trade-off.

A. Layerwise Partition and Tokenization

Consider an arbitrary DAG denoted by (V, E), where V =
{1, · · · , N} is the node set, and E = {(ue, ve)}e is the
set of directed edges. Assume the DAG has a set of nodes
without predecessors, i.e., the nodes are not destinations of
any edges, and we denote them by V(1). Iteratively, we
take V(l+1) ⊂ V \ V(≤l) to be the set of nodes whose
predecessors are in V(≤l), where V(≤l) =

⋃l
i=1 V(i). It follows

that (V(1),V(2), · · · ,V(L)) forms an ordered partition of V
the moment V(L+1) = ∅ (Fig. 1), which we refer to as
layers. For each layer depth 1 ≤ l ≤ L − 1, we also take
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E(l+1) = {(ue, ve) ∈ E|ue ∈ V(≤l), ve ∈ V(l+1)}, and
(E(2), E(3), · · · , E(L)) forms an ordered partition of E . Note
that (V(≤l) ∪ V(l+1), E(l+1)) is essentially a bipartite graph.
This layerwise partition naturally extends to arbitrary node
and edge attributes. The partition exists if |V(1)| > 0, which is
guaranteed for a DAG. Furthermore, this way of construction
is unique and allows reconstructing the original DAG from
the sequence (V(1),V(2), E(2), · · · ,V(L), E(L)). The process
of converting a raw data sample into a sequence is known
as tokenization in the context of generative models, with
notable examples being subwords for language models [30]
and patches for image generation [26]. Essentially, layerwise
partition leads to a layerwise tokenization method for DAGs.

B. A Layerwise Autoregressive Generation Framework
Motivated by the layerwise tokenization, we propose a

layerwise autoregressive framework that emulates the parti-
tion process for the purpose of DAG generation. Let G(≤l)

be a partially generated DAG with l layers, and G(≤0) =
G(0) be the initial empty graph. To generate the (l +
1)th layer, it first predicts the number of new nodes with
pθ

(
|V(l+1)| | G(≤l)

)
. Then it generates the node attributes

with pθ
(
X(l+1) | G(≤l), |V(l+1)|

)
. Finally, it generates the

edges with pθ
(
E(l+1) | G(≤l),X(l+1)

)
. The generation pro-

cess terminates when a layer size of 0 is predicted.

C. Layerwise Diffusion
The modeling of pθ

(
X(l+1) | G(≤l), |V(l+1)|

)
and

pθ
(
E(l+1) | G(≤l),X(l+1)

)
requires simultaneously sampling

all set elements. Naı̈ve sampling of set elements from
multiple conditionally independent distributions cannot model
the intra-set constraints like mutual exclusivity (Fig. 2). This
is particularly an issue for generating real-world DAGs with
heavy hard logical rules like systems and circuits, and the
rule violations can accumulate over layers of generation.

To tackle this issue, we adopt discrete denoising diffusion
for multiple rounds of set refinement. We use the empirical
marginal distribution of a categorical attribute m ∈ RC as
its corresponding prior distribution. The composed transition
matrix is chosen to be Q

(t)
= α(t)I+

(
1− α(t)

)
1m⊤, where

α(t) = cos2
(

π
2
t/T+s
1+s

)
is the cosine noise schedule [24], I ∈

RC×C is the identity matrix, and 1 ∈ RC is the one-valued
vector. We employ two separate diffusion processes for node
attribute and edge generation (Fig. 3), as suggested by Li et
al. [19]. For simplicity, we focus on categorical node attributes
in this paper. Our approach can be extended to handle real-
valued attributes [11], [37].

Autoregressive layerwise diffusion may be more efficient
than non-autoregressive counterparts for DAG generation.
Non-autoregressive diffusion models use a constant number of
denoising steps in generation. A single denoising step involves
refining the whole graph structure and node attributes, which
is already very costly. In contrast, autoregressive layerwise
diffusion only refines node attributes and edges for one layer in
a single denoising step, and the total number of denoising steps
naturally scales with respect to the number of DAG layers.

D. Implementation
pθ

(
|V(l+1)| | G(≤l)

)
, pθ

(
X(l+1) | G(≤l), |V(l+1)|

)
, and

pθ
(
E(l+1) | G(≤l),X(l+1)

)
are shared across layers, and

involve a DAG encoder. We use an off-the-shelf bidirectional
message passing neural network (MPNN) [38], which
allows efficient parallel training over DAGs and layer
depths. A single bidirectional MPNN layer updates node
representations with synchronous message passing over
both the directed edges and their revered counterparts:
σ
(
AHWforward +A⊤HWreverse +HWself

)
, where σ is a

non-linear layer, A is the adjacency matrix for a DAG, H is
the node representation matrix, and W’s are learnable weight
matrices. Both layer size prediction pθ

(
|V(l+1)| | G(≤l)

)
and

node attribute prediction pθ
(
X(l+1) | G(≤l), |V(l+1)|

)
involve

computing graph representations with a set pooling operator
like sum or mean over the updated node representations.

To generate X(l+1), the node attribute prediction module
first samples X(l+1,TX) ∈ R|V(l+1)|×C from its prior dis-
tribution, where TX is the maximum number of denoising
steps. Then iteratively, it samples X(l+1,t) with a denoising
network ϕθX

(
G(≤l),X(l+1,t+1), t+ 1

)
for t = TX − 1, TX −

2, · · · , 0. To predict the set of denoised node attributes, ϕθX

integrates the representations of G(≤l) and t + 1 into the
embeddings of X(l+1,t+1), and then employs a set trans-
former, a transformer without positional encodings [35], over
them for the final predictions. Similarly, the edge prediction
module iteratively samples E(l+1,t) with a denoising network
ϕθE

(
G(≤l),X(l+1), E(l+1,t+1), t+ 1

)
, which augments G(≤l)

by (X(l+1), E(l+1,t+1)) for computing the node representations
of V(≤l+1). To predict the probability of edge (u, v) ∈ V(≤l)×
V(l+1), it concatenates and transforms the representations of
node u, node v, and t+ 1 with an MLP.

Bidirectional MPNNs and transformers without positional
encoding are permutation equivariant, while set poolings are
permutation invariant. Consequently, all three modules are
permutation invariant, and hence LayerDAG is also permu-
tation invariant. In theory, sufficiently powerful permutation
non-invariant models are capable of memorizing the training
data without capturing the underlying directional and logi-
cal dependencies. Consequently, they may have much worse
performance in generating unseen DAGs than LayerDAG
(generalizability). This is particularly an issue for applications
like obfuscation, where the goal is to release useful synthetic
DAGs in replacement of the original DAGs.

E. Layer-Index-Based Denoising Schedule
While refinement with multiple denoising steps improves

the generation quality, the amount of time taken for generation
also grows linearly in the number of denoising steps. Training
multiple LayerDAG models with a variety of denoising steps
does natively enable a trade-off between generation quality and
efficiency, but is cumbersome and costly. A natural follow-up
question is: Can we achieve flexible quality-efficiency trade-
off with a single trained LayerDAG model?

As l increases, both |V(≤l)| and |E(l+1)| increase in general,
resulting in more complex edge dependencies. To effectively
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handle this pattern, we introduce a non-uniform denoising
schedule for better allocation of the time budget. Specifically,
we propose to set the total number of denoising steps to
linearly increase in l.

T (l) = Tmin + ⌊(Tmax − Tmin) ·min {l/Lmax, 1}⌋ (1)

where Tmin and Tmax are the minimum and maximum number
of denoising steps to use during generation and allow users to
make a flexible quality-efficiency trade-off. l is the current
layer index, Lmax is the maximum number of layers in the
training data, and ⌊·⌋ is the floor function.

IV. RELATED WORK

GraphRNN [41] and Li et al. [20] propose autoregressive
models to sequentially generate an undirected graph, one
node/edge at a time. D-VAE [43] extends this approach to
DAGs, and adopts topological orderings of nodes based on em-
pirical studies. Although topological orderings respect the con-
straint of edge directions, they are not unique. Consequently,
unlike LayerDAG, autoregressive models using topological
orderings are not permutation invariant. For better efficiency,
GRAN [22] proposes to sequentially generate node sets of a
constant size and their incident edges, where the edges for the
new node set are predicted simultaneously using a mixture of
Bernoullis, potentially with intra-set connections.

V. EXPERIMENTS

With empirical studies, we aim to answer the following
questions. Q1) In terms of generation quality, how well does
LayerDAG perform against the existing methods when applied
to DAGs with hard logical rules and real-world applications
in system and hardware design? Q2) Does layer-index-based
denoising schedule enable an effective trade-off between qual-
ity and efficiency? If so, how well does LayerDAG perform
against the existing methods with a comparable time budget?

A. Datasets and baselines

Datasets. We construct a synthetic dataset of latent pref-
erential DAGs (LP) with hard logical constraints including
mutual exclusivity for layer size, node attributes, and edges,
which allows directly evaluating the proportion of the gener-
ated DAGs that are valid (validity). Each node is associated
with a binary label 0 or 1. The first layer of a DAG consists
of a single node, whose label is drawn from a Bernoulli
distribution with p = 0.5. Let n

(l)
i be the number of nodes

with attribute i in layer l for i ∈ {0, 1}. n(l+1)
i is sampled from

U
(
max

{
0, n

(l)
i − (l + 1)

}
, n

(l)
i + (l + 1)

)
. Each new node

can have one or two predecessors, and at least one of them
belongs to the previous layer. In the case of two predecessors,
they need to have distinct labels (mutual exclusivity).

In addition, we repurpose and adapt three representative
real-world datasets, originally developed for DAG property
prediction, to serve as testbeds for conditional DAG genera-
tion. The datasets are associated with computation workloads
executed on diverse hardware platforms, and they well fit the
end scenario of synthetic data sharing for system/hardware

TABLE I
DATASET STATISTICS. |V|, |E|, AND L ARE AVERAGED OVER GRAPHS.

|V(l)| IS AVERAGED OVER LAYERS.

Dataset # graphs |V| max |V| |E| max |E| L maxL |V(l)| max |V(l)| # attributes

TPU Tile 6, 301 40.8 394 42.9 711 11.2 72 3.6 21 1
HLS 2, 062 88.6 356 110.7 477 27.75 78 3.2 28 7
NA-Edge 2, 000 231.1 339 265.8 385 149.1 185 1.5 4 14

benchmarking. Originally released as part of the TpuGraphs
dataset, TPU Tile is a collection of kernel graphs for machine
learning workload on Tensor Processing Units (TPUs), with
graph labels indicating the runtime averaged over a set of
compilation configurations [27]. High-level synthesis (HLS)
is a collection of data flow intermediate representation graphs
for compiled C programs, with each DAG labeled according
to the resource usage of look up table measured on Field
Programmable Gate Arrays (FPGAs) [39]. NA-Edge is a
collection of DAGs representing neural architectures, with
labels indicating their inference latency on mobile CPU [8],
[42]. Table I presents the dataset statistics.

Performing ground truth evaluations for conditional gen-
eration of DAGs in system and hardware design requires
direct measurements on specific computational platforms. For
example, the HLS dataset requires program implementation
and measurement on FPGAs [39]. Such evaluations are com-
putationally costly or infeasible due to limited access. Addi-
tionally, they demand specialized domain knowledge that often
exceeds the expertise of general machine learning practition-
ers. Recently, employing ML-based surrogate cost models has
emerged as a popular and effective alternative to direct mea-
surement in various system and hardware optimizations [4],
[6], [10], [13], [17], [23], [27], [33], [34], [45]. In light of these
achievements, we propose to evaluate the quality of generated
DAGs with ML-based surrogate models. Specifically, we parti-
tion the real labeled DAG datasets into training/validation/test
subsets. After developing a DAG generative model using
the training and validation subsets, we use the real training
and validation labels as conditions for DAG generation. The
generated labeled DAGs essentially form synthetic training
and validation subsets. Inspired by previous practices [19],
[40], we develop two DAG property prediction models based
on bidirectional MPNN using the same automated pipeline
respectively on the real and synthetic train/val subsets. We
then compare the performance of the two models on the real
test set using Pearson correlation coefficient. A generative
model is considered better if its corresponding model achieves
a performance closer to that of the model developed on the
real subsets.

Baselines. GraphRNN, D-VAE, and GRAN were previously
introduced in Section IV. Both GraphRNN and GRAN origi-
nally tackle the generation of non-attributed undirected graphs,
and we extend them for attributed DAGs following the existing
practices [18], [43], including the use of random topological
orderings due to superior empirical performance. To compare
the capability in set generation of LayerDAG against GRAN,
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TABLE II
EVALUATION RESULTS. BEST RESULTS ARE IN BOLD. THE PEARSON

VALUE OBTAINED WITH THE REAL DATA IS ALSO LISTED FOR REFERENCE.

LP TPU Tile HLS NA-Edge

Model Validity ↑ Pearson Pearson Pearson
(Real: 0.761) (Real: 0.976) (Real: 0.996)

LayerDAG 0.907 0.676 0.831 0.994
D-VAE 0.640 0.437 0.796 0.898
GraphRNN 0.367 0.619 0.751 0.989
GRAN 0.117 0.307 0.603 0.656

Fig. 4. Quality-efficiency trade-off. x-axis is the time budget divided by the
raw generation time of LayerDAG. y-axis is the generation quality metric
divided by the raw generation quality metric of LayerDAG.

we set the number of new nodes to generate in GRAN to
be the averaged layer size, and extend mixture of Bernoullis
into mixture of multinoullis for the set generation of node
attributes. We extend all baselines and LayerDAG for condi-
tional generation by augmenting the input data representations
with sinusoidal embeddings [35] of the label.

B. Evaluation for generation quality (Q1)

Table II presents the evaluation results. LayerDAG con-
sistently outperforms all baselines across datasets, where the
largest margin is for the LP dataset with hard logical rules.
The experiment results demonstrate the aggregated benefit of
permutation invariance and multiple rounds of refinement.

C. Evaluation for layer-index-based denoising schedule (Q2)

Figure 4 presents the evaluation of layer-index-based de-
noising schedule in quality-efficiency trade-off on LP and
TPU Tile. For an ablation study, we also experiment with
a constant denoising schedule that simply utilizes a constant
number of denoising steps smaller than the original number for
all layers. Both schedules allow an effective quality-efficiency
trade-off, while the generalized linear schedule often yield a
better generation quality with the same time budget.

For comparison, we also evaluate the generation time of the
baselines using the same batch size. When the GPU memory
is insufficient, we use the largest feasible batch size instead.
We plot all cases whose generation time is shorter than the
original generation time of LayerDAG. Using layer-index-
based denoising schedule, LayerDAG exhibits a better trade-
off than most baselines except GraphRNN.

VI. CONCLUSION

We propose LayerDAG, a layerwise diffusion model of
DAGs. LayerDAG consistently outperforms the existing gen-
erative models of DAGs on four synthetic and real-world
datasets. Utilizing a number of refinement rounds proportional
to layer depth allows a better or comparable quality-efficiency
trade-off compared with the baselines.
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