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Abstract

Foundation models must keep pace with a changing world, and test-time learning
(TTL) promises fast, label-free updates that could make this possible, yet our study
shows (a) where that promise breaks, and (b) how to rescue that even under the
challenging long context setting. Furthermore, we characterize the effect of TTL
on pretrained capabilities from a continual learning perspective via the plastic-
ity–retention trade-off (in our experiments, RULER for long-context plasticity; 3
standard LM downstream tasks for retention). We uncover a sharp pattern: TTL
reliably helps at short contexts but stalls or reverses from 8k to 32k sequence
lengths, while base knowledge is largely preserved. However, we see a medium-
strong (0.77) correlation between input perplexity and long-context plasticity. This
connects test-time improvement on long contexts to a single, measurable quantity,
and suggests that the TTL objective could be key to moving the needle further
and should not be entirely thrown out. Our method, which relies on measuring
each token’s relevance and weighting the per-token losses, rescues the performance
of TTL under longer, noisier contexts. This reframes negative TTL results not as
failures of the overall approach but of assuming that all tokens contribute equally;
when useful context is sparse, naive test-time updates cannot meaningfully improve
the model. At the same time, our method decreases the stability of the model. This
work contributes empirical results and a diagnostic that make these trade-offs evi-
dent, setting the stage for useful, frequent, and low-cost updates that keep models
current without eroding base capabilities.

1 Introduction

Modern LLMs work well on short, well-matched inputs, but accuracy drops under distribution
shift and as contexts grow [Biderman et al., 2024, Hsieh et al., 2024, Chatziveroglou et al., 2025].
Re-training with labels is slow and resource-intensive, and retrieval adds systems complexity without
adapting the model itself. Most approaches to maintaining model performance rely on labeled
feedback or substantial compute. Online fine-tuning and reinforcement/feedback pipelines require
targets or human signals; incurring nontrivial compute and supervision. While effective in such
settings, these strategies scale poorly when supervision is unavailable or under limited compute.
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We study a label-free test-time learning (TTL) protocol following [Hu et al., 2025] that uses the
input/prompt itself as supervision by minimizing input perplexity, applying small LoRA-based
parameter updates under constrained compute and memory budgets. In the long-context regime, we
assess plasticity with the RULER dataset at 4k–32k tokens, measure input perplexity on the same
sequences, and compare base model inference to TTL variants. Crucially, we ask whether under long
contexts with compute constraints, does minimizing a self-supervised objective with token salience
translate into improved retrieval/reasoning performance at test time without hurting base knowledge?

1.1 Test-Time Learning (TTL) for LLMs

Problem setup. Following the setting from [Hu et al., 2025], given unlabeled test inputs x ∼ Q(x),
adapt a pre-trained LLM by updating a small subset of parameters to better fit the test distribution:

min
Θ

L(x; Θ), x ∼ Q(x). (1)

Perplexity. For a token sequence x1:T , define perplexity

PPL(x1:T ; Θ) = exp

(
− 1

T

T∑
t=1

log p(xt | x1:t−1; Θ)

)
. (2)

Output vs input perplexity. If y denotes the model’s response to x, one can target the response
perplexity

min
Θ

PPL(y | x; Θ) = min
Θ

exp

(
− 1

T

T∑
t=1

log p(yt | x, y1:t−1; Θ)

)
, (3)

and, in practice, use input perplexity minimization as a surrogate:

min
Θ

PPL(x; Θ). (4)

We can do this as [Hu et al., 2025] showed that, under the assumption that input and output are
semantically related, the gradients of their respective losses should be aligned.

Lightweight updates via LoRA. Maintain a frozen base Θ and learn a small adapter ∆Θ such that
Θ̃ = Θ +∆Θ, optimizing

min
∆Θ

PPL
(
x; Θ +∆Θ

)
. (5)

Algorithmically, initialize ∆Θ, form Θ̃ = Θ+∆Θ, then update ∆Θ by backpropagating the standard
next-token loss on input, (minimizing 4), unlike the common supervised finetuning (SFT).

Token salience Under long-context settings where relevant information is sparse and distractors
dominate, naïve TTL often fails and performs negatively relative to the base model. To address this,
we introduce token salience weighting, where each token’s contribution to the loss is reweighted
based on its last-row attention score αt, inspired by GemFilter [Shi et al., 2024]:

L = −
T∑

t=1

wt · log pθ(xt | x<t), where wt =
αt

maxTj=1 αj
. (6)

Here, αt measures the relevance of token t for the given input. Tokens with a low score receive smaller
weights, effectively reducing their contribution to gradient updates, while evidence-bearing tokens are
emphasized. This simple modification enables TTL to focus parameter updates on relevant context,
improving performance on sequences with many distractors (see Appendix for more experimental
details).

1.2 Key Contributions

• Long-context TTL evaluation. We evaluate TTL from 4K to 32K tokens across models
and sizes, measuring both RULER reasoning accuracy and downstream retention.
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Figure 1: Overview of label-free test-time learning (TTL) with token salience weighting. Given a
long test input without any labels, a frozen base model θ̂ is paired with a trainable LoRA adapter
∆θ. During adaptation, we compute token salience weights wt from αt where αt is the last-row
attention score for token t, inspired by [Shi et al., 2024]. These weights are used in a weighted
cross-entropy loss, which down-weights distractors and emphasizes evidence-bearing tokens. Only
the adapter parameters ∆θ are updated; the frozen base θ̂ remains unchanged. At inference, the
adapted model θ = θ̂ +∆θ is used for next-token prediction.

• Token salience weighting for stable TTL. Inspired by GemFilter [Shi et al., 2024], we
reweight per-token cross-entropy loss using last-row attention scores, improving reasoning
while incurring some forgetting.

• Diagnostic framework for retention-plasticity trade-off. We propose a unified analysis
combining long-context reasoning and capability preservation, revealing that naïve TTL
collapses beyond 8K tokens.

2 Empirical Study

2.1 Experimental Setup

RULER directly probes long-context behavior by placing sparse, relevant evidence amid large
amounts of distractors and scaling the context length in a controlled way [Hsieh et al., 2024]. This
makes it a good operational measure of plasticity: the model’s ability to retrieve, integrate, and reason
over long inputs at test time without changing training [Hsieh et al., 2024]. Its standardized tasks and
length sweeps let us compare models and settings on the specific failure modes that emerge between
8k–32k+ tokens [Hsieh et al., 2024].

Evaluating general downstream tasks for retention. Retention benchmarks—HellaSwag, ARC-
Challenge, and WinoGrande—act as a stable proxy for a model’s preserved, general capabilities
[Zellers et al., 2019, Clark et al., 2018, Sakaguchi et al., 2020]. Measuring them alongside RULER
lets us visualize the plasticity–retention trade-off and observe whether long-context adaptation comes
at the cost of core downstream competence [Hsieh et al., 2024].

2.2 Results

TTL consistently improves RULER accuracy at 4k context across Qwen models (Fig. 3). However,
at 8k, 16k, and 32k, TTL negatively impacts performance, which is a surprising result relative to [Hu
et al., 2025]. The scatter of RULER accuracy vs perplexity (Fig. 4) shows a clear pattern across all
models and lengths: lower input perplexity aligns with higher retrieval accuracy on short and long
contexts. For the Llama 3.2 1B model, we saw an improvement over the baseline at 4k, as well as
some improvement at 8k-32k context lengths with TTL. However, when combined with the token-
salience weighted loss, we get a boost at all context lengths over the baseline and standard TTL. The
frontier-style plot in Fig. 2 shows that increasing (mostly irrelevant) context within a fixed model size
mainly reduces RULER accuracy, although TTL + token salience rescues long context performance
while also reducing general base knowledge retention, demonstrating the stability-plasticity tradeoff.
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Figure 2: Trade-off between downstream retention and long-context reasoning accuracy. We evaluate
test-time learning (TTL) and TTL + token salience weighting across context lengths (4K, 8K, 16K) on
LLaMA 3.2 1B. The x-axis measures retention (averaged) after TTL, while the y-axis reports RULER
accuracy on long-context reasoning tasks under distractors. Vertical dashed line indicates pretrained
knowledge. Connector lines group models by context length, illustrating within-context trade-offs:
naïve TTL improves reasoning but incurs retention loss (with the exception of 4k), especially at 8K
and 16K, while TTL + token salience further improves plasticity at the cost of stability.

(a) Qwen2.5 0.5B (b) Qwen2.5 1.5B (c) Qwen2.5 7B

Figure 3: RULER accuracy vs context length for Qwen2.5 models: 0.5B (a), 1.5B (b), 7B (c). Blue =
base; orange = TTL (averaged over seeds). TTL delivers clear gains at 4k across all sizes, but the
advantage vanishes at 8k and often reverses at 16–32k, indicating failure to adapt in long contexts.

3 Discussion

Our results reveal that test-time learning (TTL) operates along a fragile retention–adaptation frontier:
while naïve TTL improves local perplexity, it often collapses beyond 8K tokens where relevant signals
become sparse and gradients are dominated by distractors. Incorporating token salience weighting
shifts models toward the upper-left regime in our diagnostic plots, improving long-context reasoning
but sacrificing downstream retention.

This finding complements recent advances in self-adaptive language models such as SEAL [Zweiger
et al., 2025], which trains models to generate synthetic data and self-edit their parameters via
reinforcement learning. Unlike SEAL’s global updates, our approach highlights the importance
of local selectivity during adaptation when evidence is sparse. Alternatively, Titans-like models

(a) Input perplexity vs RULER accuracy (b) Output perplexity vs RULER accuracy

Figure 4: Perplexity–accuracy relationship across context lengths. Lower perplexity aligns with
higher accuracy on long contexts in both panels. The correlation is surprisingly stronger for input
perplexity (r ∼ -0.77) than for output perplexity (r ∼ -0.43), indicating that reducing uncertainty on
the input side is more predictive of long-context success.
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[Behrouz et al., 2024, Zhang et al., 2025] enable persistent, iterative reasoning over million-token
contexts by integrating dedicated memory modules at pretraining time. However, this design comes at
a cost: memory-augmented reasoning must be architecturally baked in and cannot be retrofitted onto
arbitrary pretrained LLMs at test time. Together, these approaches hint at a spectrum of strategies
for scalable, stable test-time learning: 1) Global self-adaptation (SEAL), 2) Local, selective TTL
(our approach), and 3) Architectural memory integration (Titans). Bridging these paradigms offers
a promising path toward foundation models capable of iterative reasoning over extended contexts
while maintaining general capabilities.
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.1 Experiment Hyperparameters

We ran test time learning (TTL) on the Hotpot QA (QA2) subtask of RULER with various configura-
tions. Unless otherwise specified, we fix most hyperparameters and only vary the context length,
random seed, adaptation strategy, and model family. For experiments using token salience,
we run a preliminary forward pass as in GEMFILTER, fixed at layer 13. Table 1 summarizes the fixed
hyperparameters, and Table 2 enumerates the evaluated experimental configurations. All experiments
are run for 3 seeds, conducted on a single GPU (NVIDIA L40S, A100, or H100), with the longest
runs (TTL + Token Salience, 16K context) taking up to 2.5 hours, while shorter runs (4K–8K
context) typically complete within 15–45 minutes.

Table 1: Fixed hyperparameters for LLaMA experiments.
Hyperparameter Value Description
Dataset RULER (QA2) long-context benchmark
Optimizer AdamW Weight-decay regularized Adam
Epochs 3 Number of training epochs
LoRA rank r 8 Low-rank adaptation dimension
LoRA α 32 Scaling factor for LoRA updates
LoRA dropout 0.1 Dropout applied to LoRA layers
Weight decay 0.01 ℓ2 regularization
Batch size 4 Number of sequences per step
Learning rate 2× 10−4 Peak learning rate
Context length {4096, 8192, 16384, 32768} Varied across runs
GemFilter layer 13 Token salience extraction layer
–input_only True TTL enabled

Table 2: Varied experimental configurations. Token salience is applied only for LLaMA-3.2-1B due
to limited compute resources.

Model Adaptation Strategy Context Lengths
LLaMA-3.2-1B-Instruct [Meta AI, 2024] TTL-only {4K, 8K, 16K}
LLaMA-3.2-1B-Instruct TTL + Token Salience {4K, 8K, 16K}
Qwen2.5-0.5B-Instruct [Qwen et al., 2024] TTL-only {4K, 8K, 16K, 32K}
Qwen2.5-1.5B-Instruct TTL-only {4K, 8K, 16K, 32K}
Qwen2.5-7B-Instruct TTL-only {4K, 8K, 16K, 32K}
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