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ABSTRACT

The homophily (heterophily) ratio in a graph represents the proportion of edges
connecting nodes with similar (dissimilar) class labels. Existing methods for esti-
mating the homophily ratio typically rely on knowing the class labels of each node
in the graph. While several algorithms address both homophilic and heterophilic
graphs, they necessitate prior knowledge of the homophily ratio to choose the ap-
propriate one. To address this limitation, we propose a novel metric for measuring
homophily ratio without information about node labels. In our approach, we de-
fine learnable affinity vectors for each node, characterizing the expected feature
relationships with its neighbors. Our method, Affinity-based Homophily, derives
the homophily ratio using these affinity vectors, eliminating the need for prior
node label information. We conducted experiments on various benchmark ho-
mophilic and heterophilic graphs, demonstrating the commendable performance
of our homophily measure.

1 INTRODUCTION AND RELATED WORKS
Graph Neural Networks (GNNs) have gained popularity due to their immense success in learning
from graph-structured data. The existing models like GCN (Kipf & Welling (2016), GraphSage
Hamilton et al. (2017), SGC Wu et al. (2019), GCNII Chen et al. (2020)) blend messages received
from neighbors by taking into account of homophily assumption where connected nodes have iden-
tical class labels. The performances decline when they are applied on the heterophilic graphs where
connected may have different class labels. Various methods were developed for tackling both ho-
mophilic and heterophilic graphs like (Pan & Kang (2023), Bo et al. (2021), Cavallo et al. (2023),
Chen et al. (2023)). The homophily ratio may play a decisive role in choosing the most well-suited
algorithm for the input graph. However, in real-world semi-supervised settings, we only have class
labels of a few nodes, making it impossible to estimate the homophily ratio. The fact motivates us to
design a novel approach Affinity-based Homophily or AH which estimates homophily ratio without
having prior information regarding the node labels.

The features of the connected node pairs may not sufficiently represent the actual relationship be-
tween them. Therefore, we define a set of learnable vectors attributed to represent the true charac-
teristics of the corresponding neighbors. These vectors are termed as affinity vectors. The affinity
vectors are sourced from the same domain of the raw input features. In addition, the affinity vector
should represent the characteristics of the neighbors and input features denote the properties of the
node itself. A more detailed discussion on affinity vectors is available in Appendix A. The affinity
vectors are employed to compute self-affinity values of individual nodes i.e. cosine similarity be-
tween affinity vector and feature vector. The final homophily ratio is estimated as the combination
of self-affinity values of the individual nodes.

2 PROPOSED METHOD

Consider an attributed graph G = (V, E), where V is the set of nodes, E ⊆ V × V is the set of
edges, with |V| = n. Let A ∈ Rn×n be the adjacency matrix and X ∈ Rn×m is the feature matrix
containing m-dimensional feature vectors for each node. Let us assume Z ∈ Rn×m as the affinity
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matrix containing affinity vectors for each node. We define the affinity score between i and j as
xiz

⊤
j which is the cosine similarity between the feature vector of ith node and affinity vector of

jth node. The closed form is represented as XZ⊤ ∈ Rn×n. We reformulate our affinity matrix as
F = (XZT + 1)/2 where similarity scores are scaled to [0, 1] range. The diagonal entries of the
affinity matrix are the self-affinity scores of the nodes, and they indicate the tendency of nodes to
connect to nodes of similar features, i.e. the homophily of the dataset. Note that the diagonals of the
affinity matrix should not take part in the optimization process, otherwise, the self-affinity values
will tend to zero. The affinity matrix should capture the structure of the graph topology more softly
to learn an effective representation. Therefore, the affinity vectors are learned by minimizing the
following function.

L = 1− soft F-score((σ(F)⊙ (1− I), A), (1)

where σ(.) denotes the Sigmoid activation function, I is the identity matrix, and 1 is the matrix of
all ones. The homophily ratio can be estimated by averaging the self-affinity scores i.e. diagonal
elements of the optimized affinity matrix. The direct averaging of self-affinity scores may not be a
good idea because nodes may have higher average degrees i.e. tendency to connect with other nodes
is higher even for heterophilic graphs. Finally, the Affinity-based Homophily (AH) is estimated as
follows.

AH =
log(1 + µd/µnd)

log(1 + (n2 − n)/2e)
, (2)

where µd and µnd are the means of diagonal and non-diagonal entries of affinity matrix respectively,
and e = |E| is the number of edges. We explain the details of the derivations in Appendix B and
Appendix C respectively.

3 EXPERIMENTS & RESULTS

We applied AH measure on three homophilic and six heterophilic datasets including two large
graphs. Refer to figure 1 for a detailed performance of our homophily measure. The results show
that AH assigns higher values for homophilic datasets and lower values for heterophilic datasets,
establishing the effectiveness of our proposed approach. Refer to Appendix C for the visualizations
of the affinity matrices. Our source code is available at https://github.com/kushalbose92/affinity-
based-homophily.

Figure 1: Comparison of homophily ratios assigned by edge-homophily method and our approach AH. The
ratios derived by AH follow the identical trend with the ratios of the edge homophily measure.

4 CONCLUSION & FUTURE WORKS

In this work, we designed a novel technique to measure the homophily of a graph dataset without
using any class labels of the nodes. We applied our measure on several datasets and obtained results
that significantly established the efficacy of our measure. As future work, we should investigate how
the proposed homophily measure can help develop new GNN models for tackling both homophilic
and heterophilic graphs.

2

https://github.com/kushalbose92/affinity-based-homophily
https://github.com/kushalbose92/affinity-based-homophily


Published as a Tiny Paper at ICLR 2024

URM STATEMENT

The authors acknowledge that at least one key author of this work meets the URM criteria of ICLR
2024 Tiny Papers Track.

REFERENCES

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI Conference on Artificial Intelligence, vol-
ume 35, pp. 3950–3957, 2021.

Andrea Cavallo, Claas Grohnfeldt, Michele Russo, Giulio Lovisotto, and Luca Vassio. Gcnh: A sim-
ple method for representation learning on heterophilous graphs. arXiv preprint arXiv:2304.10896,
2023.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725–1735. PMLR,
2020.

Yuhan Chen, Yihong Luo, Jing Tang, Liang Yang, Siya Qiu, Chuan Wang, and Xiaochun Cao.
Lsgnn: Towards general graph neural network in node classification by local similarity. arXiv
preprint arXiv:2305.04225, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016.

Erlin Pan and Zhao Kang. Beyond homophily: Reconstructing structure for graph-agnostic cluster-
ing. arXiv preprint arXiv:2305.02931, 2023.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

3



Published as a Tiny Paper at ICLR 2024

APPENDIX A - MORE ON Affinity VECTORS

Homophily ratio plays a pivotal role to understand the characteristics of the underlying graph data.
Standard homophily measures are dependent on the similarity between the input node features. In
contrast, we define the concept of an affinity vector, associated with each node, which is semanti-
cally the same as the feature vector, but with different purposes. Please refer to 2 for the detailed
illustration.

Every node is equipped with input feature vectors and affinity vectors. Affinity vectors bridge the
gap between homophilic and heterophilic datasets. For homophilic datasets, the affinity vector of
a node is similar, or close to its feature vector in the feature domain. For heterophily, they will be
dissimilar. Once we can learn these affinity vectors, we can use the average similarity of these two
vectors for each node (self-affinity) to derive the homophily level of the dataset.

Instead of defining the characteristics of the node itself (what the feature vector does), it actually
defines what the node expects in another node in order to establish an edge connection with it.
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Figure 2: Schematic diagram explaining feature vector and affinity vector.

APPENDIX B - EXPLANATION OF THE LOSS FUNCTION

As mentioned in the Approach section, there are a few implementation challenges which we ad-
dressed in innovative ways. We discuss them below.

1. Comparison of hard adjacency matrix and soft affinity matrix - we addressed this by use
of sigmoid function that pushes values above 0.5 towards 1 and values below 0.5 towards
zero. So we actually compare A with sigmoid(kF), where k is a hyper-parameter that
determines how strongly we want to push the values.

2. The MSE loss between the adjacency and affinity matrices is not an appropriate loss func-
tion because of the sparse nature of the two matrices. With MSE loss, the model has a
tendency to predict zero for all values so that the error automatically comes close to zero.
We applied inverted soft F-score as the loss function to address this.

3. The diagonal elements of the affinity matrix and the adjacency matrix cannot take part
in training. Diagonal elements of affinity matrix are self-affinities that are used in AH
computation. If they take part in training, they will all be either zeroes (no self loops) or
ones (self-loops). To resolve this, we force these values in both matrices to zero just before
loss computation. This explains the factor (1 − I) in equation 1. Since both zero values
in the two matrices being compared indicates a true negative which does not figure in the
F-score formula, non-participation of these values in loss calculation is ensured.

These explain the loss function L as defined in equation 1.
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APPENDIX C - EXPLANATION OF THE FORMULA FOR AFFINITY BASED
HOMOPHILY COMPUTATION

Once the affinity matrix is learnt, an immediate thought is to take the mean of the diagonal as a
measure of homophily. But different graphs have different edge-density. Even a heterophilic graph
data that has high edge density will have, in general, high node-to-node affinity, and self-affinity
will be no exception. So we decided to take a ratio of mean self-affinity vs mean affinity between
distinct nodes. But this ratio will not be in the range of [0,1] which gives rise to two issues. Firstly,
we cannot compare this new metric with edge-homophily, and also it will not be possible to draw a
line between homophilic or heterophilic datasets (we can take 0.5 as that line for edge-homophily).
Fortunately, we found that AH is bounded above and we use that bound to force its value to be in
the [0,1] range. Finally, we define AH using the formula given in 2. The proof for existence of an
upper bound is given below.

Theorem 1 The ratio of diagonal mean and non-diagonal mean of affinity matrix is upper-bounded

by
n2 − n

2e

Proof: In the ideal case, the affinity matrix of a graph is equal to the adjacency matrix A. For
a completely homophilic graph, the self-affinity of each node must be 1. Hence, µd = 1. The
number of non-diagonal entries in A is n2 − n. Since there are 2e entries in non-diagonal part of

the adjacency matrix, we have 2e entries equal to 1 and rest are zero. So µnd =
2e

n2 − n
. Hence the

maximum value of the ratio is
µd

µnd
=

1

µnd
=

n2 − n

2e
. [Note that 2e should be replaced by e for

directed graphs.]

APPENDIX D - VISUALIZATION OF AFFINITY MATRIX

One interesting way to visualize the effectiveness of the affinity-based approach is shown in figure
3. Each of the four images (a, b, c and d) contains two plots - the left one is the adjacency matrix and
right one is the affinity matrix. After a good training, these two plots should look similar. However, a
prominent diagonal appears only for homophilic datasets, indicating high self-affinity of the nodes.
We ensured diagonal elements not to take part in training. Even then, the images for Cora and
CiteSeer (Figures 3a and 3b) show this phenomenon, while for Texas and Wisconsin (figures 3c and
3d), the diagonal is absent. (For better resolution, only first 100 nodes have been plotted).

(a) Cora (b) Citeseer

(c) Texas (d) Wisconsin

Figure 3: Visualization of affinity matrix - the appearance of diagonal indicates high homophily.
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