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Abstract

In this paper, we propose to leverage data aug-001
mentation to improve the robustness of aspect-002
based sentiment analysis models. Our method003
not only exploits augmented data but also004
makes models focus more on predictive fea-005
tures. We show in experiments that our method006
compares favorably against strong baselines on007
both robustness and standard datasets. In the008
contrary, the widely used adversarial training009
that only leverages the augmented data fails to010
improve performance due to the distribution011
shift caused by the augmented data.012

1 Introduction013

Aspect-based sentiment analysis (ABSA) is a fine-014

grained sentiment analysis task with the aim of015

identifying the sentiment polarity (i.e., positive,016

negative or neutral) for a specified aspect in a sen-017

tence. While the state-of-the-art of ABSA has been018

advanced significantly, typically such systems are019

developed and tested on those well-defined, clean020

corpora. More recently, there has been consider-021

able interest in using these systems in a more prac-022

tical environment. For example, Xing et al. (2020)023

enrich the SemEval 14 test data by introducing ut-024

terances with irrelevant aspects into each sample.025

Such a change to data is trivial to humans but is026

catastrophic to most ABSA systems. In Xing et al.027

(2020)’s work, even the best performing system de-028

grades in aspect robustness score (ARS)1 by 24%029

and degrades in accuracy by 6% on the new test030

data.031

The robustness problem with ABSA is partially032

because of the small-sized data available to training.033

A simple solution to this is to leverage automati-034

cally generated samples. However, data augmenta-035

tion is difficult for robust ASBA because machine-036

made data is noisy and does not align well with037

1ARS is a strict measure for robustness: a model is con-
sidered handling one question type correctly only if all the
variations of that question type are predicted correctly.

Data source Instance
Original 3D rendering slows it down consider-

ably.
ARTS 3D rendering slows it down considerably,

but keyboard is a love, battery life is
amazing and quality is a superlative.

Ours 3D rendering slows it down considerably,
but for the price, I was very pleased with
the condition and the overall product and
my new Toshiba works great on both.

Table 1: A sample from the SemEval 14 Laptop testset,
its ADDDIFF + manual revision counterpart from ARTS
and a sample generated by our reimplementation of
ADDDIFF (aspects are underlined).

human utterances. Table 1 shows two data aug- 038

mentation examples together with the original data. 039

One example is from the ARTS benchmark inside 040

which all data is auto-generated and is followed by 041

manual revision; the other is from our fully auto- 042

generated data. The ARTS data is obviously much 043

more fluent and natural than ours with no checks or 044

revisions from humans. Consequently, there would 045

be some distribution shift between training and test 046

if one learns an ABSA model using auto-generated 047

data but tests it on natural language-like data (as in 048

ARTS). 049

We note that, despite significant development 050

effort, we were not able to consistently improve 051

our ABSA system on either the ARTS data or the 052

standard ABSA data by using adversarial training 053

on both original and auto-augmented data. This 054

result agrees with a previous finding that adversar- 055

ial samples occasionally harms NLP systems when 056

one collects them in different annotation schemas 057

(Huang et al., 2020). 058

In this paper, we investigate how to better exploit 059

data augmentation for robust ABSA. Our work is 060

motivated by an intuition: the auto-generated ut- 061

terances will not change the prediction if they are 062

irrelevant to the target aspect. In response, we take 063

the difference in predictions as a regularization fac- 064

tor when switching from the original data to the 065

1



augmented data. This forces an ABSA system to066

concentrate more on learning predictive features067

and to pay less attention on irrelevant features. Our068

method significantly improves upon a strong base-069

line and an adversarial learning counterpart on both070

the ARTS and the SemEval 14 original datasets.071

2 Method072

2.1 Background073

To measure robustness performance of ABSA mod-074

els, Xing et al. (2020) propose to extend the Se-075

mEval 2014 datasets (Pontiki et al., 2014) with076

three data augmentation operations: (1) REVTGT077

reverses the sentiment of the target aspect. (2)078

REVNON retains the target aspect’s sentiment, but079

changes all the non-target aspects’ sentiments.2 (3)080

ADDDIFF continues the sentence with new seg-081

ments involving aspects different from the target082

aspect.3083

In this work, we focus on using the ADDDIFF084

operation to perform data augmentation in ABSA.085

ADDDIFF does not modify the original sentence086

and thus is less likely to generate erroneous data.087

Most importantly, ADDDIFF does not require an-088

notations for sentiment words’ positions. Rather, it089

just needs sentiment polarity annotations, making090

it cost effective.091

While the state-of-the-art of ABSA has been092

advanced significantly093

2.2 Inspection for augmented data094

Such cost effective generation has its own issues. In095

our experiments, we use the tools provided in (Xing096

et al., 2020) to generate our own augmentation data097

on the training set.4 However, probably because we098

do not use manual quality inspection and manual099

modifications as what have been used in ARTS to100

build the test dataset, the generated data is clearly101

of less good quality, as illustrated by Table 1 where102

we performed our own ADDDIFF operation on the103

same test instance as in ARTS.104

We believe that this distribution shift between105

augmented data and the real test data corresponds106

closely to what happens in real-life scenario when107

applying data augmentation. We show in our ex-108

periments that applying adversarial training with109

2The operation also exaggerates the extent for certain as-
pects’ sentiments already opposite to the target one.

3REVTGT and REVNON could only apply to the instances
with explicit opinion words, while ADDDIFF could operate on
all the instances.

4https://github.com/zhijing-jin/ARTS_TestSet

such augmented data does not consistently improve 110

model performance (see Section 4.2), contrary to 111

when the augmented data aligns perfectly with the 112

test data (see Appendix A.2). 113

2.3 The KL-Regular Model 114

We notice that adversarial training only leverages 115

generated data but not the prior knowledge about 116

the generation process. Specifically, the relation- 117

ship between the original sentence and the gener- 118

ated sentence has not been exploited. While such 119

relationship is not always available for all data aug- 120

mentation techniques, we propose in this work a 121

simple way to leverage this prior knowledge for 122

all predictive feature invariant data augmentation, 123

which includes ADDDIFF operation that we apply 124

here. 125

Take for example the ADDDIFF operation that 126

we apply in Table 1. Since we have controlled in 127

the augmentation process that the appended text 128

says nothing about the main aspect, it does not im- 129

ply any predictive features for the target label a 130

priori. In other words, the predictive features re- 131

main unchanged when we switch between the orig- 132

inal sentence and the generated one, and so does 133

the predicted probability. We propose to take into 134

account such prior knowledge to guide the model 135

to learn predictive features and thus achieve bet- 136

ter generalization over all distributions (Arjovsky 137

et al., 2020).5 138

To incorporate the prior knowledge that the op- 139

eration is predictive feature invariant, we thus pro- 140

pose to make the two probabilities closer. More 141

formally, for each instance Xi, let p(Yi|Xi) be the 142

label probability of the original sentence; p(Yi|Xa
i ) 143

be the counterpart probability where Xa
i denotes 144

the sentence after applying our ADDDIFF opera- 145

tion; over each sentence, the cross entropy loss and 146

the KL regularization loss are: 147

Li
NLL = − log p(Yi|Xi)− log p(Yi|Xa

i )

Li
KL = KL(p(Yi|Xi), p(Yi|Xa

i ))
148

that sums up to the loss function below where KL 149

regularization loss is α-weighted: 150

L =
∑
i

(Li
NLL + αLi

KL) 151

We have also tried the KL regularizer in the other 152

direction and the JS divergence, but preliminary 153

5By assuming that the sentence can be decoupled into
predictive features and irrelevant features, we can draw causal
graphs to show that p(Y |X) equals to p(Y |Xa) (see A.1).
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results suggest that KL divergence with the pro-154

posed direction may perform slightly better; the155

probability is calculated based on the softmax of a156

RoBERTa based model (Dai et al., 2021).157

3 Experiment Settings158

Data & Processing. We conduct experiments on159

the SemEval 2014 Laptop and Restaurant Reviews160

(Laptop and Restaurant) (Pontiki et al., 2014) and161

the ARTS (Xing et al., 2020) extension. We follow162

previous stuides to remove instances with conflict-163

ing polarity (Wang et al., 2016; Ma et al., 2017; Xu164

et al., 2019a) and use the train-dev split as in (Xu165

et al., 2019b). For compairison, we report the accu-166

racy, aspect robustness scores (ARS) and macro F1167

scores that are averaged over 5 experiments.168

Baselines. Previous works show strong robustness169

performance when using pretrained models (Rad-170

ford et al., 2021; Hendrycks et al., 2020; Xing et al.,171

2020). Inspired by this, we use the same RoBERTa172

based model as in Dai et al. (2021)’s work and173

fine tune the model on the original SemEval data174

(Ori) as our baseline in this work. We find that it175

significantly outperforms the best results reported176

in (Xing et al., 2020) (i.e., the result given by the177

BERT-PT model). For completeness, we compare178

our method with the other two following methods:179

1. BERT-PT which is the best performing model180

in (Xing et al., 2020). Xu et al. (2019b)181

propose this method which first post-trains182

a BERT based model on other review datasets183

and then fine tune it on ABSA task.184

2. Adversarial which trains the RoBERTa base-185

line with both the original training data and186

the ADDDIFF data that we generate as de-187

scribed in Section 2.1.188

Parameter Setting. We use fastNLP6 to imple-189

ment our models. We fine tune the RoBERTa-large190

model with a batch size b = 64, a dropout rate191

d = 0.3, and an AdamW optimizer (Loshchilov192

and Hutter, 2019) for both Laptop and Restaurant193

datasets. We perform grid search over learning rate194

{5e−6, 1e−5, 2e−5} for both datasets in all experi-195

ments; for KL-Regular that we propose in this work,196

we also grid search over the regularization weights197

{1, 3, 5}. We train the model up to 40 epochs and198

select the best model according to the result on the199

6https://github.com/fastnlp/fastNLP

validation set, which we set to the Ori validation 200

set. 7 201

4 Results and Analysis 202

4.1 Main Results 203

We show our main results in Table 2. For all 204

datasets, we report accuracy and Macro F1; for 205

ARTS we also consider ARS an evaluation metric. 206

We observe that: 207

RoBERTa baseline outperforms BERT-PT on 208

all testing scenarios. For example, on the Lap- 209

top dataset, our RoBERTa baseline outperforms 210

BERT-PT by 4.1% in accuracy on the original test 211

set and by 5.77% in ARS on the ARTS test set 212

respectively. In consequence, we choose RoBERTa 213

as our baseline to compare in the following. 214

Adversarial training does not improve consis- 215

tently. Training on our noisy data in addition, 216

the adversarial models have worse performance in 217

ARS compared to the RoBERTa baseline on both 218

the Laptop and the Restaurant datasets; the result 219

for accuracy is mixed. 220

KL-Regular achieves the best performance over- 221

all. With the same noisy augmented data, our 222

proposed KL-Regular model shows improvements 223

in ARTS on both the Laptop and the Restaurant 224

datasets, which outperforms the RoBERTa base- 225

line by 1.72% in accuracy (3.64% in ars) and by 226

1.65% in accuracy (3.57% in ars) respectively. Our 227

model also improves over baseline on the original 228

datasets, making our model bring improvements 229

over all testing cases. This makes our approach 230

particularly promising since robustness focuses on 231

all potentially encountered distributions. 232

4.2 Model Analysis 233

How do different methods behave on ARTS AD- 234

DDIFF subset? By comparing the performance 235

change between our RoBERTa baseline and the ad- 236

versarial training-based system in Table 3, we see 237

that leveraging noisy ADDDIFF augmented data 238

can still improve the performance on ARTS AD- 239

DDIFF subset. This might be because the gen- 240

erated data still share sentence structure similar- 241

ity with the ADDDIFF subset in ARTS. However, 242

this improvement might hinder its performance on 243

7We are aware of the limitations of such choices as pointed
out in (Csordás et al., 2021); however, given that our objective
is to generalize to all unknown O.O.D settings, we consider
the original validation set a sensible choice.
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Model Ori ARTS

F1 Acc. F1 Acc. ARS

Laptop
BERT-PT 75.08 78.07 – 71.82 53.29
RoBERTa 79.22 82.63 73.90 77.32 59.06
Adversarial 80.15 83.26 74.11 78.34 58.06
KL-Regular 80.04 83.26 75.66 79.04 62.70

Restaurant
BERT-PT 76.96 84.95 – 80.99 59.29
RoBERTa 79.11 86.73 74.62 81.32 59.48
Adversarial 78.61 86.23 73.72 81.51 58.50
KL-Regular 80.86 87.59 77.22 82.97 63.05

Table 2: Model accuracy on Laptop and Restaurant
reviews from SemEval 14. Ori setting tests on the
original test set and ARTS setting tests on its ARTS
counterpart. Texts in bold indicate the best results.

Model ADDDIFF Subset Ori->New(Change)

Laptop Restaurant

RoBERTa 82.63->80.47(02.16) 86.73->87.46(00.73)
Adversarial 83.26->81.91(01.35) 86.23->87.79(01.56)
KL-Regular 83.26->83.51(00.25) 87.59->89.64(02.05)

Table 3: The model accuracy change on the AddDiff
subset. We report the accuracy on Ori and on ARTS
ADDDIFF subset (New), as well as their difference.

other datasets, as on the Restaurant original dataset,244

adversarial training underperforms the RoBERTa245

baseline.246

Compared to adversarial training, our proposed247

KL-Regular method not only leads to best perfor-248

mance on the ADDDIFF subset, with more than249

3% ARS improvements on both datasets, but also250

performs the best without performance degradation251

on the original dataset. Our result is related to the252

distribution shift described in section 2.2; adversar-253

ial training can be most effective when augmented254

data distribution aligns perfectly with the test dis-255

tribution, see Appendix A.2.256

Is our approach sensitive to the regularization257

weight? To answer this question, we conduct258

experiments over different regularization weights259

{1, 2, 3, 4, 5} for the same model with the same260

hyperparameters. The result in Figure 1 shows261

that different weights result in quite similar im-262

provements on the model performance. We also ob-263

serve that the regularization indeed makes the pre-264

dicted probabilities p(Yi|Xi) and p(Yi|Xa
i ) closer,265

see Appendix A.3.266

1 2 3 4 5
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80

85

Regularization Weights
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y
(%

)

Laptop Restaurant

Figure 1: Accuracy and ARS for KL-Regular model
with same hyperparameters on ARTS with the different
weighs in {1,2,3,4,5}.

5 Related Works 267

Recent works improve ABSA robustness on ARTS 268

by leveraging multiple dependency parses (Hou 269

et al., 2021) or by leveraging external ABSA re- 270

lated data sources efficiently (Li et al., 2021). Our 271

proposed method can be combined with theirs to 272

further boost robustness performance on ARTS or 273

other datasets (Jiang et al., 2019). 274

From technical perspectives, Liesting et al. 275

(2021) try various data augmentation techniques on 276

ABSA tasks; we not only leverage augemented data 277

but also integrate prior knowledge about the gen- 278

eration. Our algorithm is similar to (Garg et al., 279

2018); however, our work considers leveraging 280

general, automatic data augmentation tools with 281

minimum cost. Such augmented data is noisy by 282

nature and does not align well with the test dis- 283

tribution, leading to our observation that applying 284

adversarial training does not lead to consistent im- 285

provements (Huang et al., 2020). Our work has 286

theoretical foundation to bias the model focusing 287

on features that have causal relationships with tar- 288

get labels for which we refer readers to (Mitrovic 289

et al., 2021). 290

6 Conclusions and Future Work 291

For aspect-based sentiment analysis, we propose in 292

this work a simple but effective method to improve 293

aspect robustness by further exploiting the prior 294

knowledge in data augmentation process. Experi- 295

mental results show that our method can improve 296

over the strong RoBERTa-based baseline on both 297

original test and robustness test. We leverage noisy 298

augmentation data, which corresponds closely to 299

real-life scenario when applying data augmenta- 300

tion. In the future, we plan to apply our method 301

to other NLP tasks and with other forms of data 302

augmentation such as paraphrases. 303
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7 Ethical Considerations304

The experiment data we use are the most used305

datasets in ABSA studies and publicly released306

ARTS datasets and do not involve privacy disclo-307

sure. Our model architecture is based on open308

source releases. We do not anticipate any major309

ethical concerns.310
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A Appendices 429

A.1 ABSA Causal Graph 430

Inspired by the recently works on causality (Ar- 431

jovsky et al., 2020; Mitrovic et al., 2021; Schölkopf 432

et al., 2021), we consider the ABSA task from a 433

causal view. 434

Specifically for ABSA task assume that: a) 435

Given a sentence-aspect pair, the sentence could be 436

divided into key content K and irrelevant content 437

I according to whether it contains the polarized 438

description of the aspect. b) Only K contributes to 439

the sentiment polarity classification. 440

K

I

X1 R(X1) YR

Text used to train

Model process

K

I1
X2 R(X2) YR

Text used to train

Model processI2

I2

...

Figure 2: Causal graph and the learning process for
ABSA task. Compared to the orginal sentence (above)
ADDDIFF only adds irrelevant content.

We draw the causal graph based on the assump- 441

tions (solid lines in Figure 2). From the causal 442

graph, it can be seen that the label Y only depends 443

on the key content K of the target aspect which 444

remains unchanged with ADDDIFF operation, thus 445

p(Y |X1) = p(Y |K) = (Y |X2); in other words, 446

ADDDIFF doesn’t change the label probability a 447

priori. On dashed lines, we also show the learning 448
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process, the learning process only receives sen-449

tences X1, X2 and does not have the knowledge450

about the above prior knowledge (i.e, the two prob-451

abilities are equal). We show in our experiments452

that incorporating such prior knowledge can indeed453

improve model performance on various learning454

scenarios.455
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Figure 3: Comparison of model performance on AD-
DDIFF data from ARTS and its noisy counterpart we
generated on the Laptop dataset (above) and the Restau-
rant dataset (below).

A.2 Different ADDDIFF Distribution456

To understand distribution difference between AD-457

DDIFF data from ARTS (ARTSADDDIFF) and its458

counterpart we generated (OURADDDIFF), we test459

models on these two test subsets and summarize460

the results in Figure 3. We observe that:461

1. Adversarial performs very differently on462

ARTSADDDIFF and OURADDDIFF. Specifi-463

cally, adversarial hardly improve the accuracy464

on ARTSADDDIFF, but reach the best perfor-465

mance on OURADDDIFF. It shows that ad-466

versarial training can be most effective when467

training data aligns perfectly with the test dis-468

tribution, which we argue is a condition hard 469

to obtain when applying data augmentation. 470

2. KL-Regular which also use our noisy AD- 471

DDIFF augmented data improves the perfor- 472

mance on ARTSADDDIFF significantly and 473

shows more similar improvements on the two 474

test subsets. Since a model learning only pre- 475

dictive key features (i.e., K in Figure 2) will 476

achieve exactly the same performance on both 477

test subsets, the result might suggest that our 478

model indeed focuses on predictive features 479

to improve robustness over all tested datasets. 480

A.3 KL Divergence During Training 481

To verify that the KL divergence indeed decreases 482

during training, we visualize its trend in Figure 4. 483

The results show that the KL divergence is mini- 484

mized through training despite some fluctuations 485

in the first few epochs. 486

Figure 4: Trend of KL divergence while training our
approach. We sum the kl divergence value of all the
instances in training set at the end of each epoch.
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