Enhancing Robustness in Aspect-based Sentiment Analysis by Better
Exploiting Data Augmentation

Anonymous ACL submission

Abstract

In this paper, we propose to leverage data aug-
mentation to improve the robustness of aspect-
based sentiment analysis models. Our method
not only exploits augmented data but also
makes models focus more on predictive fea-
tures. We show in experiments that our method
compares favorably against strong baselines on
both robustness and standard datasets. In the
contrary, the widely used adversarial training
that only leverages the augmented data fails to
improve performance due to the distribution
shift caused by the augmented data.

1 Introduction

Aspect-based sentiment analysis (ABSA) is a fine-
grained sentiment analysis task with the aim of
identifying the sentiment polarity (i.e., positive,
negative or neutral) for a specified aspect in a sen-
tence. While the state-of-the-art of ABSA has been
advanced significantly, typically such systems are
developed and tested on those well-defined, clean
corpora. More recently, there has been consider-
able interest in using these systems in a more prac-
tical environment. For example, Xing et al. (2020)
enrich the SemEval 14 test data by introducing ut-
terances with irrelevant aspects into each sample.
Such a change to data is trivial to humans but is
catastrophic to most ABSA systems. In Xing et al.
(2020)’s work, even the best performing system de-
grades in aspect robustness score (ARS)! by 24%
and degrades in accuracy by 6% on the new test
data.

The robustness problem with ABSA is partially
because of the small-sized data available to training.
A simple solution to this is to leverage automati-
cally generated samples. However, data augmenta-
tion is difficult for robust ASBA because machine-
made data is noisy and does not align well with

'ARS is a strict measure for robustness: a model is con-

sidered handling one question type correctly only if all the
variations of that question type are predicted correctly.

Instance

3D rendering slows it down consider-
ably.

3D rendering slows it down considerably,
but keyboard is a love, battery life is
amazing and quality is a superlative.
3D rendering slows it down considerably,
but for the price, I was very pleased with
the condition and the overall product and
my new Toshiba works great on both.

Data source
Original

ARTS

Ours

Table 1: A sample from the SemEval 14 Laptop testset,
its ADDDIFF + manual revision counterpart from ARTS
and a sample generated by our reimplementation of
ADDDIFF (aspects are underlined).

human utterances. Table 1 shows two data aug-
mentation examples together with the original data.
One example is from the ARTS benchmark inside
which all data is auto-generated and is followed by
manual revision; the other is from our fully auto-
generated data. The ARTS data is obviously much
more fluent and natural than ours with no checks or
revisions from humans. Consequently, there would
be some distribution shift between training and test
if one learns an ABSA model using auto-generated
data but tests it on natural language-like data (as in
ARTS).

We note that, despite significant development
effort, we were not able to consistently improve
our ABSA system on either the ARTS data or the
standard ABSA data by using adversarial training
on both original and auto-augmented data. This
result agrees with a previous finding that adversar-
ial samples occasionally harms NLP systems when
one collects them in different annotation schemas
(Huang et al., 2020).

In this paper, we investigate how to better exploit
data augmentation for robust ABSA. Our work is
motivated by an intuition: the auto-generated ut-
terances will not change the prediction if they are
irrelevant to the target aspect. In response, we take
the difference in predictions as a regularization fac-
tor when switching from the original data to the



augmented data. This forces an ABSA system to
concentrate more on learning predictive features
and to pay less attention on irrelevant features. Our
method significantly improves upon a strong base-
line and an adversarial learning counterpart on both
the ARTS and the SemEval 14 original datasets.

2 Method
2.1 Background

To measure robustness performance of ABSA mod-
els, Xing et al. (2020) propose to extend the Se-
mEval 2014 datasets (Pontiki et al., 2014) with
three data augmentation operations: (1) REVTGT
reverses the sentiment of the target aspect. (2)
REVNON retains the target aspect’s sentiment, but
changes all the non-target aspects’ sentiments.” (3)
ADDDIFF continues the sentence with new seg-
ments involving aspects different from the target
aspect.’

In this work, we focus on using the ADDDIFF
operation to perform data augmentation in ABSA.
ADDDIFF does not modify the original sentence
and thus is less likely to generate erroneous data.
Most importantly, ADDDIFF does not require an-
notations for sentiment words’ positions. Rather, it
just needs sentiment polarity annotations, making
it cost effective.

While the state-of-the-art of ABSA has been
advanced significantly

2.2 Inspection for augmented data

Such cost effective generation has its own issues. In
our experiments, we use the tools provided in (Xing
et al., 2020) to generate our own augmentation data
on the training set.* However, probably because we
do not use manual quality inspection and manual
modifications as what have been used in ARTS to
build the test dataset, the generated data is clearly
of less good quality, as illustrated by Table 1 where
we performed our own ADDDIFF operation on the
same test instance as in ARTS.

We believe that this distribution shift between
augmented data and the real test data corresponds
closely to what happens in real-life scenario when
applying data augmentation. We show in our ex-
periments that applying adversarial training with

The operation also exaggerates the extent for certain as-
pects’ sentiments already opposite to the target one.

SREVTGT and REVNON could only apply to the instances
with explicit opinion words, while ADDDIFF could operate on
all the instances.

“https://github.com/zhijing-jin/ARTS_TestSet

such augmented data does not consistently improve
model performance (see Section 4.2), contrary to
when the augmented data aligns perfectly with the
test data (see Appendix A.2).

2.3 The KL-Regular Model

We notice that adversarial training only leverages
generated data but not the prior knowledge about
the generation process. Specifically, the relation-
ship between the original sentence and the gener-
ated sentence has not been exploited. While such
relationship is not always available for all data aug-
mentation techniques, we propose in this work a
simple way to leverage this prior knowledge for
all predictive feature invariant data augmentation,
which includes ADDDIFF operation that we apply
here.

Take for example the ADDDIFF operation that
we apply in Table 1. Since we have controlled in
the augmentation process that the appended text
says nothing about the main aspect, it does not im-
ply any predictive features for the target label a
priori. In other words, the predictive features re-
main unchanged when we switch between the orig-
inal sentence and the generated one, and so does
the predicted probability. We propose to take into
account such prior knowledge to guide the model
to learn predictive features and thus achieve bet-
ter generalization over all distributions (Arjovsky
et al., 2020).°

To incorporate the prior knowledge that the op-
eration is predictive feature invariant, we thus pro-
pose to make the two probabilities closer. More
formally, for each instance X;, let p(Y;|X;) be the
label probability of the original sentence; p(Y;| X ")
be the counterpart probability where X denotes
the sentence after applying our ADDDIFF opera-
tion; over each sentence, the cross entropy loss and
the KL regularization loss are:

Liyrr = —logp(Yi|X;) — log p(Y;| X{)
xr = KL(p(Y:| X;),p(Yi| X))

that sums up to the loss function below where KL
regularization loss is a-weighted:

L= Z(£§VLL +aliy)
i
We have also tried the KL regularizer in the other

direction and the JS divergence, but preliminary

By assuming that the sentence can be decoupled into
predictive features and irrelevant features, we can draw causal
graphs to show that p(Y'| X) equals to p(Y'|X*) (see A.1).



results suggest that KL divergence with the pro-
posed direction may perform slightly better; the
probability is calculated based on the softmax of a
RoBERTa based model (Dai et al., 2021).

3 Experiment Settings

Data & Processing. We conduct experiments on
the SemEval 2014 Laptop and Restaurant Reviews
(Laptop and Restaurant) (Pontiki et al., 2014) and
the ARTS (Xing et al., 2020) extension. We follow
previous stuides to remove instances with conflict-
ing polarity (Wang et al., 2016; Ma et al., 2017; Xu
et al., 2019a) and use the train-dev split as in (Xu
et al., 2019b). For compairison, we report the accu-
racy, aspect robustness scores (ARS) and macro F1
scores that are averaged over 5 experiments.

Baselines. Previous works show strong robustness
performance when using pretrained models (Rad-
ford et al., 2021; Hendrycks et al., 2020; Xing et al.,
2020). Inspired by this, we use the same RoBERTa
based model as in Dai et al. (2021)’s work and
fine tune the model on the original SemEval data
(Ori) as our baseline in this work. We find that it
significantly outperforms the best results reported
in (Xing et al., 2020) (i.e., the result given by the
BERT-PT model). For completeness, we compare
our method with the other two following methods:

1. BERT-PT which is the best performing model
in (Xing et al., 2020). Xu et al. (2019b)
propose this method which first post-trains
a BERT based model on other review datasets
and then fine tune it on ABSA task.

2. Adversarial which trains the RoBERTa base-
line with both the original training data and
the ADDDIFF data that we generate as de-
scribed in Section 2.1.

Parameter Setting. We use fastNLP® to imple-
ment our models. We fine tune the RoBERTa-large
model with a batch size b = 64, a dropout rate
d = 0.3, and an AdamW optimizer (Loshchilov
and Hutter, 2019) for both Laptop and Restaurant
datasets. We perform grid search over learning rate
{5¢7%,1e75,2¢7°} for both datasets in all experi-
ments; for KL-Regular that we propose in this work,
we also grid search over the regularization weights
{1,3,5}. We train the model up to 40 epochs and
select the best model according to the result on the

®https://github.com/fastnlp/fastNLP

validation set, which we set to the Ori validation
7
set.

4 Results and Analysis
4.1 Main Results

We show our main results in Table 2. For all
datasets, we report accuracy and Macro F1; for
ARTS we also consider ARS an evaluation metric.
We observe that:

RoBERTa baseline outperforms BERT-PT on
all testing scenarios. For example, on the Lap-
top dataset, our ROBERTa baseline outperforms
BERT-PT by 4.1% in accuracy on the original test
set and by 5.77% in ARS on the ARTS test set
respectively. In consequence, we choose ROBERTa
as our baseline to compare in the following.

Adversarial training does not improve consis-
tently. Training on our noisy data in addition,
the adversarial models have worse performance in
ARS compared to the RoBERTa baseline on both
the Laptop and the Restaurant datasets; the result
for accuracy is mixed.

KL-Regular achieves the best performance over-
all. With the same noisy augmented data, our
proposed KL-Regular model shows improvements
in ARTS on both the Laptop and the Restaurant
datasets, which outperforms the RoBERTa base-
line by 1.72% in accuracy (3.64% in ars) and by
1.65% in accuracy (3.57% in ars) respectively. Our
model also improves over baseline on the original
datasets, making our model bring improvements
over all testing cases. This makes our approach
particularly promising since robustness focuses on
all potentially encountered distributions.

4.2 Model Analysis

How do different methods behave on ARTS AD-
DDIFF subset? By comparing the performance
change between our ROBERTa baseline and the ad-
versarial training-based system in Table 3, we see
that leveraging noisy ADDDIFF augmented data
can still improve the performance on ARTS AD-
DDIFF subset. This might be because the gen-
erated data still share sentence structure similar-
ity with the ADDDIFF subset in ARTS. However,
this improvement might hinder its performance on

"We are aware of the limitations of such choices as pointed
out in (Csordds et al., 2021); however, given that our objective
is to generalize to all unknown O.0.D settings, we consider
the original validation set a sensible choice.



Model Ori ARTS

F1 Acc. F1 Acc. ARS
Laptop
BERT-PT 75.08 78.07 - 71.82 53.29
RoBERTa 79.22 82.63 73.90 77.32 59.06
Adversarial 80.15 83.26 74.11 78.34 58.06
KL-Regular 80.04 83.26 75.66 79.04 62.70
Restaurant
BERT-PT 76.96 84.95 - 80.99 59.29
RoBERTa 79.11 86.73 74.62 8132 59.48
Adversarial 78.61 86.23 73.72 81.51 58.50
KL-Regular 80.86 87.59 77.22 8297 63.05

Table 2: Model accuracy on Laptop and Restaurant
reviews from SemEval 14. Ori setting tests on the
original test set and ARTS setting tests on its ARTS
counterpart. Texts in bold indicate the best results.

ADDDIFF Subset Ori->New(Change)

Model

Laptop Restaurant
RoBERTa 82.63->80.47(02.16)  86.73->87.46(00.73)
Adversarial  83.26->81.91(01.35) 86.23->87.79(01.56)
KL-Regular 83.26->83.51(00.25)  87.59->89.64(02.05)

Table 3: The model accuracy change on the AddDiff
subset. We report the accuracy on Ori and on ARTS
ADDDIFF subset (New), as well as their difference.

other datasets, as on the Restaurant original dataset,
adversarial training underperforms the RoBERTa
baseline.

Compared to adversarial training, our proposed
KL-Regular method not only leads to best perfor-
mance on the ADDDIFF subset, with more than
3% ARS improvements on both datasets, but also
performs the best without performance degradation
on the original dataset. Our result is related to the
distribution shift described in section 2.2; adversar-
ial training can be most effective when augmented
data distribution aligns perfectly with the test dis-
tribution, see Appendix A.2.

Is our approach sensitive to the regularization
weight? To answer this question, we conduct
experiments over different regularization weights
{1,2,3,4,5} for the same model with the same
hyperparameters. The result in Figure 1 shows
that different weights result in quite similar im-
provements on the model performance. We also ob-
serve that the regularization indeed makes the pre-
dicted probabilities p(Y;|X;) and p(Y;| X () closer,
see Appendix A.3.
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Figure 1: Accuracy and ARS for KL-Regular model
with same hyperparameters on ARTS with the different
weighs in {1,2,3,4,5}.

5 Related Works

Recent works improve ABSA robustness on ARTS
by leveraging multiple dependency parses (Hou
et al., 2021) or by leveraging external ABSA re-
lated data sources efficiently (Li et al., 2021). Our
proposed method can be combined with theirs to
further boost robustness performance on ARTS or
other datasets (Jiang et al., 2019).

From technical perspectives, Liesting et al.
(2021) try various data augmentation techniques on
ABSA tasks; we not only leverage augemented data
but also integrate prior knowledge about the gen-
eration. Our algorithm is similar to (Garg et al.,
2018); however, our work considers leveraging
general, automatic data augmentation tools with
minimum cost. Such augmented data is noisy by
nature and does not align well with the test dis-
tribution, leading to our observation that applying
adversarial training does not lead to consistent im-
provements (Huang et al., 2020). Our work has
theoretical foundation to bias the model focusing
on features that have causal relationships with tar-
get labels for which we refer readers to (Mitrovic
et al., 2021).

6 Conclusions and Future Work

For aspect-based sentiment analysis, we propose in
this work a simple but effective method to improve
aspect robustness by further exploiting the prior
knowledge in data augmentation process. Experi-
mental results show that our method can improve
over the strong ROBERTa-based baseline on both
original test and robustness test. We leverage noisy
augmentation data, which corresponds closely to
real-life scenario when applying data augmenta-
tion. In the future, we plan to apply our method
to other NLP tasks and with other forms of data
augmentation such as paraphrases.



7 Ethical Considerations

The experiment data we use are the most used
datasets in ABSA studies and publicly released
ARTS datasets and do not involve privacy disclo-
sure. Our model architecture is based on open
source releases. We do not anticipate any major
ethical concerns.
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A Appendices
A.1 ABSA Causal Graph

Inspired by the recently works on causality (Ar-
jovsky et al., 2020; Mitrovic et al., 2021; Scholkopf
et al., 2021), we consider the ABSA task from a
causal view.

Specifically for ABSA task assume that: a)
Given a sentence-aspect pair, the sentence could be
divided into key content K and irrelevant content
I according to whether it contains the polarized
description of the aspect. b) Only K contributes to
the sentiment polarity classification.

>{ Xp p-f->f R peeees R
Qj Model process
Text used to train
X - R Fooos R

Model process

O.Q%8

Text used to train

Figure 2: Causal graph and the learning process for
ABSA task. Compared to the orginal sentence (above)
ADDDIFF only adds irrelevant content.

We draw the causal graph based on the assump-
tions (solid lines in Figure 2). From the causal
graph, it can be seen that the label Y only depends
on the key content K of the target aspect which
remains unchanged with ADDDIFF operation, thus
p(Y|XY) = p(Y|K) = (Y|X?); in other words,
ADDDIFF doesn’t change the label probability a
priori. On dashed lines, we also show the learning
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process, the learning process only receives sen-
tences X', X? and does not have the knowledge
about the above prior knowledge (i.e, the two prob-
abilities are equal). We show in our experiments
that incorporating such prior knowledge can indeed
improve model performance on various learning
scenarios.
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Figure 3: Comparison of model performance on AD-
DDIFF data from ARTS and its noisy counterpart we
generated on the Laptop dataset (above) and the Restau-
rant dataset (below).

A.2 Different ADDDIFF Distribution

To understand distribution difference between AD-
DDIFF data from ARTS (ARTSADDDIFF) and its
counterpart we generated (OURADDDIFF), we test
models on these two test subsets and summarize
the results in Figure 3. We observe that:

1. Adversarial performs very differently on
ARTSADDDIFF and OURADDDIFF. Specifi-
cally, adversarial hardly improve the accuracy
on ARTSADDDIFF, but reach the best perfor-
mance on OURADDDIFF. It shows that ad-
versarial training can be most effective when
training data aligns perfectly with the test dis-

tribution, which we argue is a condition hard
to obtain when applying data augmentation.

2. KL-Regular which also use our noisy AD-
DDIFF augmented data improves the perfor-
mance on ARTSADDDIFF significantly and
shows more similar improvements on the two
test subsets. Since a model learning only pre-
dictive key features (i.e., K in Figure 2) will
achieve exactly the same performance on both
test subsets, the result might suggest that our
model indeed focuses on predictive features
to improve robustness over all tested datasets.

A.3 KL Divergence During Training

To verify that the KL divergence indeed decreases
during training, we visualize its trend in Figure 4.
The results show that the KL divergence is mini-
mized through training despite some fluctuations
in the first few epochs.
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Figure 4: Trend of KL divergence while training our

approach. We sum the kl divergence value of all the
instances in training set at the end of each epoch.
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