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Abstract

Post-training Quantization (PTQ) has become a widely used technique for im-
proving inference efficiency of large language models (LLMs). However, existing
PTQ methods generally suffer from crucial limitations such as heavy calibration
data requirements and inflexible choice of target number of bits. In this paper,
we propose RaanA, a unified PTQ framework that overcomes these challenges
by introducing two novel components: 1) RaBitQ-H, a variant of a randomized
vector quantization method RaBitQ, designed for fast, accurate, and highly ef-
ficient quantization; and 2) AllocateBits, an algorithm that optimally allocates
bit-widths across layers based on their quantization sensitivity. RaanA achieves
competitive performance with state-of-the-art quantization methods while being
extremely fast, requiring minimal calibration data, and enabling flexible bit alloca-
tion. Extensive experiments demonstrate RaanA’s efficacy in balancing efficiency
and accuracy.

1 Introduction

The rapid advancement in deep learning has demonstrated that increasing the size of neural networks
(NNs) often leads to significant improvements in performance across various tasks [20, 7, 1, 15].
Large language models (LLMs), such as GPT [8, 1] and LLaMA [32, 15], have exhibited remarkable
capabilities, but their deployment remains a challenge due to substantial computational and memory
requirements. Among the various strategies developed to improve LLM inference, Post-Training
Quantization (PTQ) has emerged as a widely adopted approach for optimizing the memory usage
and inference speed of LLMs, balancing between accuracy and efficiency [10, 11, 25, 16, 23, 9].
The essential idea of PTQ is to reduce the numerical precision of the parameters of a trained model,
replacing high precision floating-point representations with lower precision alternatives, which in
turn reduces memory consumption and alleviates memory bandwidth constraints.

Optimal Brain Quantizer (OBQ) is one of the earlier influential methods in PTQ. It formulates the
quantization problem as an optimization task, where the core objective is to minimize the layer-
‘ , where X(Z), W and

—~ * —~ |2
wise quantization error W(E) = argming . HX(f)W(f) _xOw .
W are the input feature, original weight matrix and quantized weight matrix of layer ¢ (a linear
transformation layer) respectively. This approach has led to significant improvements in quantization
accuracy by optimizing the quantization parameters (rescale, zero-point etc.) according to layer-wise
behavior approximation. OBQ has become a foundation of PTQ research, with many recent methods
building upon its framework [11, 23, 25, 9]. Despite their effectiveness, existing approaches based
on the OBQ framework typically suffer from notable limitations:

* First, the OBQ framework only controls the error of the output of each layer and does not
account for the overall error in the model output; more importantly, it treats all layers iden-
tically, whereas in practice, their importance can vary: the error in the first layer propagates
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through all subsequent layers, while that in the last layer affects only itself. Omitting this
hierarchy in error sensitivity can lead to suboptimal quantization strategies.

» Second, the optimal solution of the OBQ framework highly depends on the input X ©
which, however, is not constant across batches, and as a result, all the quantization methods
based on this framework require a lot of calibration data to accurately estimate the input

features (more precisely, the so-called layer-wise Hessian X OT x ) [17]. This high
requirement of data not only limits the efficiency of quantization, but also the generalization
performance of the method, as it can perform worse if the data distribution is far from its
calibration data distribution.

* Moreover, the OBQ framework directly replaces each weight matrix with a quantized
weight matrix. Since we are only concerned with the output of a layer rather than its
internal structure, there is potential for greater flexibility by allowing additional operations
within a layer.

The above-mentioned limitations are not exclusive to OBQ-based methods, but also shared by many
other PTQ methods. For example, Norm-Tweaking [24], although only a plugin for adjusting Lay-
erNorm parameters, also highly relies on calibration data, and EasyQuant [31], although it does not
require calibration, only controls layer-wise error and is limited to entry-wise float-point rounding.
In this paper, we propose a novel PTQ framework that overcomes the above issue, based on the
following ideas.

RaBitQ-H: Adopting Efficient Vector Quantization Methods to LLM Quantization If we
don’t stick to preserving the structure of the original matrix multiplication and embrace a broader
class of operations, it is possible to bring in much stronger tools from vector quantization. Specif-
ically, in this paper we adopt RaBitQ [13, 12], a state-of-the-art vector quantization algorithm that
enjoys very fast computation and well-controlled error-bound. However, RaBitQ is originally de-
signed to solve approximate nearest neighbor search (ANNS) and can not be directly adopted to
LLM quantization (see the detailed explanation in Appendix C). To address this issue, in this paper
we propose RaBitQ-H, a variant of RaBitQ, to address the challenges of adopting RaBitQ to LLM
quantization.

AllocateBits: Allocating Bits Unevenly Across Layers  As mentioned before, it is suboptimal
to uniformly assign computational resources across all layers, as some layers can be more important
than others. There has been a research direction called Mixed Precision Quantization (MPQ), which
allows different numbers of bits used in each layer [28, 16, 6]. However, existing MPQ methods
are mostly based on heuristics and are typically limited to binary choices of bit-widths (e.g. 4-bits
v.s. 8-bits), making them not sufficiently flexible. In this paper, we propose a simple and effective
approach to estimate the importance of each layer and formulate the bit allocation task as an integer
programming problem that allows arbitrary bit-width choices. By solving this integer program, we
obtain an optimal bit allocation strategy across layers.

In this paper, we propose RaanA: a novel PTQ framework combining RaBitQ-H and AllocateBits.
RaanA enjoys the following superiority:

1. Extremely Fast and Device-Independent: Unlike other state-of-the-art PTQ methods that
generally require hours or even days to perform on large models, RaanA generally only
requires tens of minutes on 70b models. Additionally, RaanA is largely device-independent,
with most of its computation can be efficiently performed on CPUs, reducing its reliance
on GPU devices.

2. Minimal Calibration Required: RaanA requires only a few or even zero samples for cali-
bration, as opposed to most existing methods that typically require a huge amount of data.

3. Strong Performance: RaanA performs comparably to state-of-the-art PTQ methods. No-
tably, it remains effective even at extremely low bit-widths (e.g., < 3 average bits), a regime
where many other methods struggle.

4. High Flexibility: RaanA allows any choice of target average number of bits, enabling more
flexible and and fine-grained quantization choices.
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Paper Structure Due to space limitation, here in the main paper we only outline the overall frame-
work and briefly introduce the AllocateBits and RabitQ-H algorithm, deferring a more formal intro-
duction to appendix. In Appendix A we introduce some background on the methods we use and
related work. Section 2 and Appendices B and C describe RaanA in detail: Section 2.1 presents the
preliminaries and overall framework; Appendix B explains how to estimate the sensitivity of each
layer and solve the bit allocation problem; and Appendix C introduces the RaBitQ-H algorithm. In
Appendix D, we present our experimental results. Finally, in Appendix E, we conclude the paper
and discuss potential future directions.

2 Preliminaries

Throughout this paper, we use bold lowercase letters to represent vectors (e.g. &) and bold uppercase
letters to represent matrices (e.g. A), and we use the corresponding unbold letters with subscript to
represent the entries of vectors or matrices (e.g. x; is the i-th entry of vector ).

In this paper, we fix a trained neural network f : R"*% x R™ — R as the object of study, where d
is the dimensionality of the input and m is the number of learnable parameters'. We use € R™*%
and 0 to denote the input data and the collection of all parameters of f, respectively, where n is the
token number?.

A NN model typically consists of multiple linear transformation blocks where the input is multiplied
by a weight matrix. These include, for example, feed-forward layers as well as the Q, K, and V
transformation layers in Transformer architectures [35]. We assume the model contains a total of L
linear layers and denote the input features, parameter matrix, and output features of the k-th linear
layer by X®) ¢ Rrxdr k) ¢ Rdexer gnd H®) = X k) ¢ Rnxer regpectively, where
dj, and cy, are the input and output dimensions of the k-th linear layer. Note that X () s principally
a function of x, and W ") is a function of 6, but we omit the arguments x and 6 when they are clear
from context.

We use ") € R? to represent the i-th row of X*) and w(*)i € RY to represent the i-th column of

W®) The (i, j)-th entry of H® is given by h(®)i, j = <a:§k), wEk)>.

2.1 Overall Framework

We first present the overall framework of RaanA in Algorithm 1. It takes a trained model, calibration
data and desired quantization parameters as input and output quantized weight matrix together with
other information used for de-quantization (see Algorithm 3 for the de-quantization algorithm). The
algorithm consists of two parts: determining each layer’s target bit-width, and performing quantiza-
tion. In Algorithm 1 we use the error estimator Err and vector quantization algorithm RaBitQ-H
as black boxes, and they will be specified in the subsequent sections.

3 A Brief Introduction to the Main Algorithms

This section summarizes the two main components of our approach: (1) the bits-allocation strategy
(AllocateBits) and (2) the quantization algorithm RaBitQ-H. We provide an intuitive description
while omitting most technical details for brevity. See Appendices B and C for the details of the
algorithms.

3.1 AllocateBits: Error Estimation and Bits Allocation

When quantizing the k-th layer with b bits, the induced error on model output is denoted by
Erry, (b, ). Under mild assumptions (see [12]), this error is bounded byErry (b, 2) < a2, where

oy, depends on the Jacobian of f w.r.t. H () "as well as norms of input and weight matrices. Thus,

'A neural network with multi-dimensional output can be viewed as several neural networks with scalar
output, and therefore we only consider NNs with scalar output.

2n, can also be understood as the batch size, since we only consider linear layers that do not involve any
cross-token interaction.
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Algorithm 1: Overall Framework of RaanA

Input: trained model parameters 6, bit-width candidate set %, overall bits budget R and
calibration data {x; };<,;

/* AllocateBits */

Solve the bits-allocation problem

L nc¢
{b};}ﬁ:l = arg min 1 Z Z Erry (by; x;)
{bdica e} =7
3 (1)
st. Y bymyi < Rand by € B,k € [L];
k=1
/* Quantization */

—(k
Calculate (W( ),r<k>,D<k>> = RaBitQ-H (W(k),b,’;) fork=1,2,---L;

—®) o ) L
Return: w ' r®) D
k=1

Algorithm 1: The overall framework of RaanA. Erry (b; ) is an estimation of the overall error
brought by the k-th linear layer with b-bit quantization, estimated at point «, and RaBitQ-H is the
RaBitQ-H quantization algorithm. mj = dgcg is the number of parameters at layer k; n. is the
number of calibration data; 8 is a set containing all desired choice of layer-wise bit-width (e.g.
%A =1{1,2,---8}), and R is the desired total number of bits used (i.e. bits per parameter times total
number of weight parameters).

minimizing the overall quantization error reduces to

L L
i 27bk gt b < R, b, € A. 2
?gil}l;ak s ; kg < k )
Although this is an NP-hard integer program, the problem size is moderate in practice. A divide-by-
GCD trick greatly reduces the budget size, making dynamic programming feasible. The resulting

algorithm runs in O(L|%|R/g) time, completing within seconds even on CPU.

Calibration of oy is efficient: unlike Hessian-based approaches, it only depends on input norms and
Jacobians, which are stable and require very few samples. In practice, few-shot calibration uses as
few as 5 training samples, while zero-shot calibration relies on a single synthetic sentence, yet still
yields accurate estimates.

3.2 RaBitQ-H: Quantization with Randomized Hadamard Transformation

RaBitQ [12] is a universal multi-bit quantization algorithm that preserves inner products with con-
trolled error. While directly applicable to large models, its original design requires costly random
rotations of O(d?) per vector. To address this, RaBitQ-H replaces random rotation with a Ran-
domized Hadamard Transformation (RHT), which (i) needs only dj random bits, (ii) runs in
O((ci, +n) log dy,) time via fast Hadamard kernels, and (iii) retains the same error guarantees.

The quantization pipeline is as follows:

* Preprocessing: Apply RHT to weight matrix and quantize using RaBitQ, storing scaling
factors.

* Inference: Apply RHT to input, perform matrix multiplication with quantized weights,
and rescale the result.

Implementation requires handling non-power-of-two dimensions and applying simple preprocessing
(e.g., input centralization), which further stabilizes error without altering theoretical guarantees.

Summary. AllocateBits provides a principled way to assign bits across layers under a global
budget, while RaBitQ-H ensures efficient and accurate quantization with RHT. Together, they enable
fast and memory-efficient quantization for large language models with minimal calibration data.
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A Background and Related Work

In this section, we introduce some of the related works as well as the background of methods we use
in this paper.

Weight Quantization in Post-training Quantization Among many methods that aims to make
large language models more efficient, PTQ targets at improving the efficiency in inference-time. In
this paper we especially focus on weight quantization. The problem of weight quantization in PTQ
can be described as follows: given a pre-trained large language model, find another model who
requires much less bits to store such that it approximates the behavior of the original model. OBQ
[10] is one of the early works for PTQ. As mentioned in Section 1, many existing PTQ methods
follows the framework of OBQ and is devoted to better or faster solve the layer-wise OBQ problem
[11, 23, 25, 30, 9, 34]. As we mentioned in Section 1, most of these methods highly relies on
performing float-point rounding and estimating the layer-wise Hessian.

Vector Quantization for Approximate Nearest Neighbor Search There have been a vast liter-
ature of vector quantization in ANNS. The classical scalar quantization (SQ) and its variant LVQ
[3] take finite uniform grids as codebooks and independently round every coordinate to an unsigned
integer. These methods support to compute inner product based on arithmetics of unsigned integers
without decompression. However, they failed to achieve reasonable accuracy using low-bit quanti-
zation (< 4 bits). PQ [18] and OPQ [14] construct a codebook via KMeans clustering and quantizes
vectors by mapping them to the nearest vector in the codebook. With clustering, these methods
better capture the distributions of a dataset and provide better accuracy using low-bit quantization.
However, their computation of inner product replies on looking up tables, which is costly in modern
systems. RaBitQ [13] and its multi-bit extension [12] construct a codebook by translating, normal-
izing, and randomly rotating finite uniform grids. They achieve superior accuracy while enabling
efficient computation. Theoretically, they provide an unbiased estimator with asymptotically opti-
mal error bounds for the space-accuracy trade-off in inner product estimation between unit vectors.
See Appendix F.2 for more details.

(Randomized) Hadamard Transformation In this paper, one critical technique we used is Ran-
domized Hadamard Transformation (RHT), which is a randomized version of Hadamard Transfor-
mation and can be viewed as an approximation of random rotation [33]. Hadamard Transformation,
in our context, is a specific class of orthonormal matrix whose matrix multiplication that can be
fast computed, and is used in many quantization works [34, 5, 26, 2] and other areas. Due to space
limitation, we defer a more detailed introduction of RHT to Appendix F.1.

B AllocateBits: Error Estimation and Bits Allocation

In this section, we discuss how to calculate Erry (b, ) and how to solve the bits-allocation problem
eq. (1). We begin by defining this quantity. In the model f, if we replace the parameters of the k-th
layer, W with a b-bit quantized version, this leads to an error in the output H (k) We denote this
error by €*)(b) € R™*¢. Consequently, e(¥)(b) leads to an error in the overall model output f. We

define Erry, (b, ) as the absolute difference between the model outputs before and after quantization
at layer k with b bits.

We first state a property of €(¥)(b) under RaBitQ-H, using Assumption B.1, which is justified by the
analysis of RaBitQ (see Appendix F.2 for more details).

Assumption B.1. There exists a constant & > 0, such that for any k € [L],i € [n],j € [ck].
€®)(b) € R is a random vector such that

o <2 o] |

0,J
with high probability, where we use < to hide constant terms.
When Assumption B.1 holds, Corollary B.2 is a direct corollary of Theorem G.2, which we prove in
the appendix.

Corollary B.2 (Informal). Fix the model input x and parameter 0, and suppose € = €*) () satisfies
Assumption B.1, then the following statement holds with probability at least 0.99:

Erry (b, ) < 24’\/ logex || 0f(6, @)
bk ~ dk

OH™

F F
F

T
6
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af(0,x)
OH

where we use < to hide constant coefficients and small O(1/d) terms.

Denote oy, = «/k’g—kc’“
) 0=0

we estimate the error introduced by b-bit quantization at the k-th layer by «x27%. Then the bits-
allocation problem eq. (1) can be rewritten as

HX(’“) H HW(k) H be the coefficient in Corollary B.2,
r F F

L
{b;}L_, = arg min Za;ﬂ_b’“
{bedioa i
L 5
S.t. Zbkmk <R,
k=1

by, € B,VEk € [L].

B.1 Solving the Bits-Allocation Problem

Now we consider solving problem eq. (5). At first glance, this is a nonlinear integer programming
problem which is known to be NP-complete [21]. Nevertheless, we note that the problem size is
manageable in practice so that it can be efficiently solved via dynamic programming. Let g =
ged (my, - - myp,, R) be the greatest common divisor (GCD) of all my,’s and R, then we have

S bumi <R = Zbk%sﬁ, (©)

and thus the total bits budget can be reduced to R/g. Thanks to the design choice of most large
language models, whose hidden sizes are usually powers of 2, in practice g is typically very large.
As a result, the size of this problem can be prominently reduced to a scale where finding the global
optimum via a dynamic programming algorithm becomes feasible. We provide the algorithm for
solving this problem in Appendix H.1.

Algorithm 4 from Appendix H.1 runs in O (L|%|R/g) time. In practice, both L and |#| are less

than 100, % is on the order of 10° and the entire process can be completed in a few seconds on

CPU. For LLaMA models, the value of g is on the order of 10, making the divide-by-GCD trick
— although seemingly simple — crucial for efficiency; without it, the algorithm would be millions of
times slower.

B.2 Few-shot and Zero-shot Calibration

In Algorithm 1, a calibration set {mi}?il is used to estimate the error (i.e. g, in eq. (5)). In principle,
we can certainly use a large amount of data to obtain a better estimator of a;;,. However, in RaanA,
o, only depends on the norm of input and the Jacobian of the overall output w.r.t. the output of layer
k. Unlike the calibration in OBQ-based methods that requires estimating the layer-wise Hessian,
these values here are practically very stable and can be estimated using a very small amount of data.
This has also been observed in some previous work — for example, [22] found that the empirical

mean of Jacobian quickly converges to the Lipschitz constant of the model.

In our implementation, we consider two settings: few-shot calibration and zero-shot calibration.
In few-shot setting, we use 5 samples from the training set of the corresponding dataset, which is
significantly less than what mainstream methods use (e.g. Quip# uses more than 6000 samples [34]).
In the zero-shot calibration setting, we only use one synthetic sentence to estimate oy, without
resorting to any actual training data. Specifically, we repeat the following sentence 100 times to
form our single calibration data point in the zero-shot setting >:

“The curious fox leaped over the quiet stream, its reflection rippling in the golden
afternoon light.”

C RaBitQ-H: A variant of RaBitQ with Randomized Hadamard
Transformation

In [12], the authors introduced RaBitQ, a universal multi-bit vector quantization algorithm that pre-
serves the results of vector inner products and achieves an asymptotically optimal error rate. In large

3This sentence was suggested by ChatGPT.



344
345
346
347
348

349
350
351

353
354
355

356
357
358
359
360

362

363
364
365
366

368
369

371
372
373

374
375

language models, the basic operation and bottleneck is matrix multiplication (MM), which can also
be viewed as performing multiple inner products. Therefore, it is possible to adopt RaBitQ as our
quantization method. RaBitQ has the appealing property that the error rate is controlled in all cases
with high probability and does not require handling outliers (see details in Appendix F.2). This
ensures the desired property stated in Assumption B.1.

However, directly applying RaBitQ in the MM scenario can be inefficient. In RaBitQ, it requires
applying a random rotation to each vector during the pre-processing stage. For a d-dimensional vec-
tor, applying a random rotation takes O(d?) time. This is acceptable in the original ANNS scenario,
where the data dimension is much smaller than the number of data points, making the rotation cost
negligible. In contrast, in the context of large language models and MM, the number and dimen-
sionality of the vectors are comparable*, making the cost of performing or storing a random rotation
almost the same as that of the original MM, negating the potential benefits of quantization.

To address this issue, we replace the random rotation in the original paper with a Randomized
Hadamard Transformation (RHT), which is known to approximate random rotation in many cases
[33]. RHT has the following desired properties: 1) For each layer k, it only requires dj random
bits, making storing the transformation not a bottleneck; 2) It can be efficiently computed in time
O((cx + n) log dy,) using existing Hadamard kernels [2]. We adopt the analysis from the original
RaBitQ paper [12] and confirm that the output of RaBitQ-H satisfies Assumption B.1. The complete
quantization and de-quantization algorithms are provided in Algorithms 2 and 3.

Algorithm 2: Preprocess: Quantization Algorithm 3: Inference: Matrix Multiplica-
Input: weight matrix W) ¢ Ridkxex tion Estimation -
desired number of bits B € %; Input: input features X *) € Rn*
£+ {&}fi 1 Where &; is sampled i.i.d. quantized weight matrix W, rescale
from the Rademacher distribution; factor »(*) € R+, Rademacher
. (k) & Rx, desired numb
D® g ) samples DY e , desired number
, « diag (€); *) of bits B € A, -
W(}:)_ Hadamard (D W); X < Hadamard (D(k)X(k)T) ;
W r® « RaBitQ (W', B) ; 2 22-1x7
Return: W', r(®), D) S (k)
: J > : Y+ XW 1rT —2r";
Return: Y.

Algorithms 2 and 3: Quantization and Inference algorithms of RaBitQ-H. Here Hadamard refers
to Hadamard transformation (see Appendix F.1 for a formal definition) and RaBitQ refers to the
original RaBitQ algorithm without random rotation. Principally they are both vector operations, and
here by applying them to matrices we mean applying column-wise. r(¥) € R in the algorithms is
the rescale factor output by Extended RaBitQ, and 1 means a c;-dimensional all-one vector.

Remarks on Implementation. The practical implementation of RaBitQ-H is slightly more com-
plicated than described here, involving two additional components. First, since the fast Hadamard
transformation only applies to vector sizes that are powers of 2, we need to handle vectors whose
sizes are not powers of 2. Second, we apply some small tricks in the implementation (such as input
centralization) that preprocess the inputs and weights before running RaBitQ-H; these tricks do not
affect the output of the quantization / de-quantization algorithm but in practice reduce the error rate.
Due to space limitations, we defer these details to Appendices H.2 and H.3.

D Experiment Results

In this section, we present our experimental results. We focus on the performance loss after quanti-
zation, compared to the full-precision (fp16) model. Following previous work [25, 30], we evaluate
our method on the LLaMA model family and language modeling tasks.

Datasets. As in previous studies [25, 30], we evaluate our method on the wikitext2 [27] and c4
[29] datasets. We split the test / validation sets into sequences of length 2048 as test samples and

4¢k is the number of vectors and dj, is the vector dimension.
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measure the average perplexity of the quantized model on each test sample. For c4, since the full
validation set is too large and model performance converges quickly, we use 500 samples as the test
set.

Baseline Methods. We compare RaanA with GPTQ [11], AWQ [25], OmniQuant [30], and
Quip#no FT & no Es [347°. Additionally, for 4-bit quantization, we also compare with EasyQuant [31],
a lightweight quantization method that does not require calibration data and targets 4-bit quantiza-
tion. Note that most baseline models use tricks such as grouping and keeping full-precision outliers
that introduce extra bit costs®, generally ranging from 0.1 to 0.3 bits. To make a fair comparison, we
report RaanA performance with x + 0.1 bits and x + 0.3 bits for x € 2, 3, 4.

D.1 Performance

In this sub-section, we compare the performance of RaanA under few-shot calibration with baseline
methods. The results on wikitext2 are reported in Table 1 and we defer the results on c4 to Ap-
pendix I due to limited space. It is clear from the table that RaanA is comparable with or better than
baseline methods, especially in the extreme regime of 2+ bits quantization.

Method | Avg. bits | llama-7b llama-13b  llama2-7b llama2-13b llama2-70b

fpl6 \ 16 | 5.68 5.09 5.47 4.88 3.31
GPTQ 2+ 44.01 15.60 36.77 28.14 -
AWQ 2+ 2.6e5 2.8e5 2.2e5 1.2e5 -
OmniQuant 2+ 9.72 7.93 11.06 8.26 6.55
Quip#* 2 9.95 7.18 12.3 7.60 4.87
RaanA 2.1 13.70 8.28 18.31 51.05 4.81
RaanA 2.3 8.53 6.63 10.63 8.96 4.49
GPTQ 3+ 8.81 5.66 6.43 5.48 3.85
AWQ 3+ 6.35 5.52 6.24 532 -
OmniQuant 3+ 6.15 5.44 6.03 5.28 3.78
Quip#* 3 6.29 5.52 6.19 5.34 3.71
RaanA 3.1 6.33 553 6.20 5.48 3.66
RaanA 33 6.10 5.38 6.00 5.27 3.59
EasyQuant 4+ 6.01 5.29 - - -
GPTQ 4+ 6.22 523 5.69 4.98 3.42
AWQ 4+ 5.78 5.19 5.60 4.97 -
OmniQuant 4+ 5.77 5.17 5.58 4.95 3.40
Quip#* 4 5.83 5.20 5.66 5.00 3.42
RaanA 4.1 5.86 5.20 5.69 5.02 3.42
RaanA 4.3 5.83 5.17 5.65 4.98 3.40

Table 1: Perplexity results on wikitext2. Methods labeled ‘+” in the number of bits use tricks such
as grouping and keeping outliers full-precision that bring 0.1 ~ 0.3 extra bit cost. Quip#* refers to
Quip#no FT & no E5- For OmniQuant, GPTQ and AWQ, we compare with the version with grouping
size 128. Best performance of each category is labeled bold.

D.2 Zero-shot Calibration vs Few Shot Calibration

In this subsection, we compare the performance between few-shot calibration and zero-shot calibra-
tion. Results for wikitext2 are displayed in Table 2 for results on c4 are deferred to Appendix I.
We also add results from EasyQuant, which also does not require calibration data, as a comparison.
It is clear from the resutls that, although the performance does generally go down a little bit with
zero-shot calibration, they are generally comparable with few-shot calibration results, validating the
effectiveness of zero-shot calibration for RaanA.

The full version of Quip# [34] fine-tunes the model after quantization. In this paper, we compare RaanA
with Quip#n, Fr & no E5» the version without fine-tuning, since fine-tuning is a universal plug-in component in
quantization and is orthogonal to our contribution.

SThe only exception in our baselines is Quip#no Fr & no 5, Which has a precise control over the average num-
ber of bits. We admittedly require slightly more bits to match its performance. However, RaanA is significantly

more lightweight than Quip#no Fr & no £, Which uses over 6000 calibration samples to estimate the layer-wise
Hessian.
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Method | Avg. bits | llama-7b llama-13b  llama2-7b llama2-13b  1lama2-70b

fpl6 \ 16 \ 5.68 5.09 5.47 4.88 3.31
RaanA-few 2.1 13.70 8.28 18.31 51.05 4.81
RaanA-zero 2.1 15.50 10.12 26.13 13.37 7.89
RaanA-few 3.1 6.33 5.53 6.20 5.48 3.66
RaanA-zero 3.1 6.45 5.63 6.41 5.55 4.01
EasyQuant 4+ 6.01 5.29 - - -
RaanA-few 4.1 5.86 5.20 5.69 5.02 3.42
RaanA-zero 4.1 5.86 5.23 5.73 5.04 3.50

Table 2: Perplexity Comparison Between Zero-shot Calibration and Few-shot Calibration on
wikitext2. RaanA-zero refers to RaanA with zero-shot calibration and RaanA-few refers to RaanA
with few-shot calibration.

D.3 Quantization Time

We note that due to the lack of GPU implementation of RaBitQ, the main part of RaanA is run
on CPU, which is the time bottleneck. In our current implementation, the only parts requiring
GPUs are calibration (which requires one or a few backward passes of the model) and Hadamard
Transformation. Despite the main part running on CPU, RaanA still runs much faster than many
existing quantization methods, demonstrating its high efficiency and device independence.

We report the time RaanA used for quantization in Table 3
under a specific setting as an illustration of the efficiency of -
RaanA. The experiments are conducted with 4 NVIDIA A100 Model ‘ Time (s)
GPUs’. As. shown, RaanA complqtes the quantization of a llama2-7b 301.74
70B model in under one hour, significantly faster than other
h . o . llama2-13b | 567.61
eavyweight quantization methods such as Quip#n, Fr & no Eg»
which can take up to 10 hours for the same model size, despite llama2-70b | 3293.26
having comparable performance.

Table 3: Quantization Time. The
time required to complete the
RaanA quantization process with
In this work, we introduce RaanA: a new PTQ framework com- few-shot calibration and average
bining RaBitQ-H, a variant of RaBitQ that especially fits LLM number of bits of 2.1.
quantization, and AllocateBits, an algorithm to allocate bit-

widths across layers optimally. RaanA overcomes traditional challenges of PTQ methods such as
high reliance on calibration and inflexible bits allocation. Extensive experiment results validate the
performance of RaanA, especially highlighting the effectiveness of zero-shot calibration, eliminat-
ing the requirement of heavy calibration.

E Discussion and Conclusion

Limitations and Future Work  Here we discuss current limitations of the RaanA framework and
potential future directions to improve them. 1) More efficient implementation: As we mentioned in
Appendix D.3, currently the implementation of RaanA is not optimal, as the computation is bottle-
necked by the CPU-bound execution of RaBitQ. A more efficient implementation / approximation
of RaBitQ (ideally on GPU) would vastly accelerates RaanA. 2) Finer-grained bits-allocation: cur-
rently RaanA allocates bit-widths layer-wisely, constraining the parameters in each layer to share the
same bit-width, which can be sub-optimal. It is possible to consider a finer-grained bits-allocation,
e.g. column-wisely or even entry-wisely, as a future direction.

Remark on LLM Design  Last but not least, we would like to advocate future large language
model designers to use a powers of 2 as the hidden size more often; as arbitrary as it may seem,
this choice actually has the following advantages that make quantization easier and faster: 1) It
maximizes the GCD between layers and thus improves the speed of the AllocateBits algorithm. 2)
It makes it easier to use fast Hadamard Transformations since it is only defined for spaces whose
dimension is a power of 2.

"Here the GPU configuration does not significantly impact the quantization time since the bottleneck is the
CPU computation of RaBitQ. The machine we use has two AMD EPYC 7513 CPUs.
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F Detailed Introduction to Algorithmic Tools

In this section, we introduce the algorithms used in RaanA.

F.1 Detailed Introduction to Randomized Hadamard Transformation

In this sub-section, we provide a formal definition of RHT. Let d be a positive integer number d that
is a power of 2, the Hadamard Transformation of size d is a linear transformation recursively defined
by the following matrix:

Hyo Hyp
H,; .= 7
d {HW —Hy), 0
and H, = 1. For a vector € R%, we define
1
Hadamard(x) := —=H 4. 8
() T (®)

it has been shown that the Hadamard Transformation can be computed in a fast way, i.e. applying a
Hadamard Transformation to each column of an d x n matrix only requires O(n log d) time.

Let £ = {&}, be n iid. sampled Rademacher variable, and let D = diag (£). For a matrix
x € R we say

x — Hadamard (Dx) )

the Randomized Hadamard Transformation (RHT) of «, which is exactly what we used in Algo-
rithm 2. Since the Hadamard Transformation is orthonormal, it’s not hard to restore the result of
RHT, we only need to store the vector ¢, which has only d binary entries.

F.2 Detailed Introduction to RaBitQ

In this sub-section, we provide a brief introduction to RaBitQ [13] and its multi-bit extension [12].
The RaBitQ methods were proposed initially for vector quantization in database systems. They tar-
get to produce accurate estimation of inner product and Euclidean distances based on the quantized
vectors while using the minimum space for storing quantization codes. Specifically, let P be a
Johnson-Lindenstrauss Transformation (a.k.a., random rotation) [19]. For a vector = € R%, RaBitQ
randomly rotates it into Pz and quantizes Pz to a vector of b-bit unsigned integers Z € [2°]¢ with
arescaling factor ¢ € R. Then for another vector y € R%, RaBitQ estimates the inner product (z, y)
with

(@, y) ~ (t- (2 —cp-14), Py) (10)

where 14 denotes the d-dimensional vector whose coordinates are ones and ¢, = (2° — 1)/2. For
the details of the quantization algorithms and the rescaling factors, we refer readers to the original

paper [12].
As has been proven in the original RaBitQ papers, RaBitQ guarantees that the estimation is unbiased

and asymptotically optimal in terms of the trade-off between the error bound and the space for
storing the codes. Specifically, with probability as least 1 — J, to guarantee that

| (@,y) — (H(Z — a1a). Py) | < ellz]|ly] (11

it suffices to let b = O (log é . bgg# when e is sufficiently small, i.e., logi# > d. This

result achieves the optimality established in a theoretical study [4].

Additionally, RaBitQ provides an empirical formula for the trade-off between errors and spaces.
Specifically, with probability at least 99.9%, we have

CCITOI’

| <.’B,y> - <t(j - Cbld)apy> | < \/EQb

(EAIET (12)

where cerror = 5.75.

13



467

468
469
470

471
472

473

474
475

476
477

478
479
480

481

482

483
484

485

486

487

488

G Theoretical Results

In this section, we prove the main theorem of this paper, which directly leads to Corollary B.2. We
first state a formal version of Assumption B.1, stating that the error from RaBitQ (and RaBitQ-H)
quantization has sub-exponential error.

Assumption G.1. [[12]] There exists a constant K > 0, such that for any k € [L],i € [n],j € [ck],
€®)(b) € R is a random vector such that

tv/dy
ol ]

Vit >0, IP’{ (13)

(b)‘>t}§2exp -K -
— Ok

Notice that Assumption G.1 does not assume eg? (b)-s are independent. We provide the following
algorithm analyzing the behavior of a function under an O(1/d) small error, which together with
Assumption G.1 implies Corollary B.2.

Theorem G.2. There exists constant K > 0 satisfies the following statement. Suppose ¢ > 2, d > c
and € € R"*€ is a random vector, such that Vi, j € [n] X [c],

Ct2d
P{le; ;| >t} <2exp (—)\2 5 ) (14)
Yi.j

for some constant K1 (notice that €; ;-s are not necessarily independent). Let g : R"*¢ — R be
a smooth function, then for any h € R™*¢, the following statement holds with probability at least
0.99:

ogc
9k — gk + O] < K/ By £ Vg(h m+o<” ‘0 15)
Proof. From the given condition, we have
vt > 0,P{|e; ;| > tyi;} < 2exp (—Kit?d/\?). (16)
Thus we have
Vt > 0,P{3i,j € [n] x [c], €] > tyi;} < 2cexp (—Kit2d/\?). (17)

For constant Ky > 0, let tg = Ka\y/ 1o§c_ It is evident that there exists a constant K that only
depends on K, such that

P{3i,j € [n] x [c], les.j] > toyi;} < 0.01. (18)
Thus, with probability > 0.99, we have

. log c
Vi j € ] x [el s | < KaXyip /=5 (19

Therefore, with probability at least 0.99, we have

log ¢
lellr < | 303" 2, < oy 2 20)
=1 j=1

Using Taylor expansion, we have

lg(h) — g(h +€)] < (Vg(h),€) + O ([[VZg(h)| ll€l*) 21
V2g(h
gwmmmww+0<”f§m> @)
lo Vig(h

< Ko gWﬂﬂWﬂ)h+O<Hf§”g- 3
O
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Corollary B.2 is thus a direct corollary of Assumption G.1 and Theorem G.2. Notice that in Corol-
lary B.2 we view the second-order derivative of f w.r.t. Hj a constant (evaluated at a fixed point),
and therefore omit the ||V - || term.

H Implementation Details

In this section, we provide some implementation details that are not elaborated in the main text due
to space limit.

H.1 Bits-Allocation Algorithm

In Appendix B, we mentioned that the bits-allocation problem can be solved efficiently by a dynamic
programming algorithm after applying the divide-by-GCD trick. In Algorithm 4 we provide the
detailed algorithm description.

In our implementation of Algorithm 4, we compute «, as
1

A = —F—

Vdy,

of(0,z)
OH®

].'

[l %l =
f

x
e

omitting the log cj term in the , since it is almost constant across layers and therefore has negligible
impact on the optimization.

Algorithm 4: Bits Allocation

Input: Coefficients {ak}izl € RZ, number of bits candidate %, overall budget R € N
Initialize fi ., = +o00, where k € [L],r € [R]U{0};
g < ng (mla T 7mL7R);
fork=1,2,---Ldo
for b € % do
" {% + %J
¢ ap27b;
if £ = 1 then
fk,r G
Sk,r < {b};
end
else
forr’:0,1,~-§—rd0
if fk,T’-H’ > fk—l,r/ + ¢ then
fk,'r’+'r — fkfl,r’ + Ck;
Skyr/+r < Skr! | {6}
end
end

end
end

end
« R
r* ¢ arg mlg frrs
r—

Return: sy, ,-.

Algorithm 4: The algorithm for bits allocation. In the algorithm o = E,.pAgry is the coeffi-
cient for the k-th layer, {b} represents a sequence with only one element b and || stands for sequence
concatenation. The returned value is a sequence indicating the optimal bit-widths each layer, i.e.

SL,r* = {bz}£:1~
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H.2 Randomized Hadamard Transformation for Arbitrary Dimensionality

As we mentioned in Appendix F.1, the fast Hadamard Transformation is only defined with vector
dimensionality d that is a power of 2. However, in practice, it is not always satisfied. In previous

work such as [34], this issue is solved by finding the largest factor of d which is a power of 2, say d,
and applying Hadamard Transformation block-wisely, with each block has size d. However, in our
experiment, we found this method extremely inefficient. For example, for LLaMA models, there
can be > 20 blocks.

Therefore, in this paper, we apply an easy and universal method to address this issue. We first find
the largest power of 2 that is less or equal to d, i.e. d = 2Ulee2d] and apply RHT for the first and
last d dimensions respectively. Our algorithm is described in Algorithm 5.

Algorithm 5: Practical RHT

Input: Vector € R?
d = 2los2d].
forj=1,2do

£) {ffj)}
DU diag (g(j));
end
x, ; < Hadamard (D(l)ml:d>;

d .
~, where 51(] ) is sampled i.i.d. from the Rademacher distribution;

Ty ji1q ¢ Hadamard (D(2)md_cg+1:d>;

Return: (w,D(1)7D(2)>.

Algorithm 4: Practical Randomized Hadamard Transformation. x,.; refers to the sub-vector
of x consists of the a-th entry to the b-th entry of x.

H.3 Tricks used in Quantization

In the actual implementation of RaanA, we optionally apply some transformations before performing
quantization. Formally, for the d x ¢ matrix, we define a trick to be a invertible linear transformation
T : R"*4 — R"*4, Then for a linear layer where input matrix is X € R"*% and weight matrix is
W e R4%¢ we have

XW =T"HT(X)W). (25)
Notice that 7' can be have a memory, i.e. it can return an auxiliary term to help 7! to recover

the computation result. After applying 7', in the de-quantization stage we only need to estimate the
matrix multiplication results for T'( X )W.

In practice, we the following heuristic tricks are optionally used.

* Centralization: 7(X) = | X — 1s(X)",s(X) |, where s(X) € R? is the average of
all rows of X;

* Row Outlier Excluding: T(X) = [X _ps, , X ar, ], where M. is a mask vector selecting
the top 0.3% rows of X with largest norm, and =M, selects the opposite. X s, indicates
selecting rows of X according to the mask vector M ,.;

* Column Outlier Excluding: 7(X) = [X. pr., X. ar.], where M. is a mask vector
selecting the top 0.3% columns of X with largest norm, and =M . selects the opposite.
X. M, indicates selecting columns of X according to the mask vector M ...

For each of the trick functions 7" described above, it returns two values. The first return value is
the matrix that joins the subsequent computation, and the second return value is to be memorized in
order to recover the original computational result.
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Method Avg. bits | llama-7b | llama-13b | llama-7b | llama-13b
fpl6 16 7.08 6.61 6.97 6.47
GPTQ 2+ 27.71 15.29 33.70 NAN
AWQ 2+ 11.9e5 2.3e5 1.7e5 9.4e4
Quip#* 2 11.7 8.67 14.8 9.57
OmniQuant 2+ 12.97 10.36 15.02 11.05
RaanA-t 2.1 20.88 13.08 23.17 -
RaanA-t 23 12.96 9.18 12.66 10.37
GPTQ 3+ 7.85 7.10 7.89 7.00
AWQ 3+ 7.92 7.07 7.84 6.94
OmniQuant 3+ 7.75 7.05 7.75 6.98
Quip#™ 3 7.82 6.98 7.85 6.98
RaanA-t 3.1 8.25 7.34 8.38 7.52
RaanA-t 33 7.92 7.15 7.99 -
EasyQuant 4+ 7.71 6.97 - -
OmniQuant 4+ 7.21 6.69 7.12 6.56
GPTQ 4+ 7.21 6.69 7.12 6.56
AWQ 4+ 7.21 6.70 7.13 6.56
Quip#* 4 7.25 6.70 7.17 6.59
RaanA-t 4.1 7.51 6.91 7.53 6.88
RaanA-t 43 7.52 6.87 7.45 6.83

Table 4: Perplexity results on c4. The setting and format are the same as Table 1, except dataset.

Notice that for Row Outlier Excluding and Column Outlier Excluding, the trick needs to store a few
rows / columns of X. We intentionally restrict the outlier ratios less than 0.3% in order to keep the
extra bits used to store the extra information negligible.

Practically we find these tricks perform differently across different settings. To keep the configu-
ration consistent and avoid heavy hyper-parameter tuning, in all the experiments presented in this
paper, we use Centralization and Column Outlier Excluding.

I Additional Experiment Results

Method Avg. bits | llama-7b | llama-13b | llama-7b | llama-13b

fpl6 16 7.08 6.61 6.97 6.47
RaanA-zero 2.1 19.37 13.14 31.31 18.03
RaanA-few 2.1 20.88 13.08 23.17 -
RaanA-zero 3.1 8.44 7.55 8.61 7.69
RaanA-few 3.1 8.25 7.34 8.38 7.52
RaanA-zero 4.1 7.56 6.96 7.59 6.93
RaanA-few 4.1 7.51 6.91 7.53 6.88

Table 5: Perplexity Comparison Between Zero-shot Calibration and Few-shot Calibration on
c4. The setting and format are the same as Table 2, except dataset.

In this section we display additional experiment results. Table 4 contains perplexity comparison
between RaanA with baseline methods on c4, where RaanA uses few-shot calibration. Table 5
contains the few-shot vs zero-shot comparison of RaanA on c4. These additional experimental
results support our claim in main paper.
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