
RaanA: A Fast, Flexible, and Data-Efficient

Post-Training Quantization Algorithm

Anonymous Author(s)
Affiliation
Address
email

Abstract

Post-training Quantization (PTQ) has become a widely used technique for im-1

proving inference efficiency of large language models (LLMs). However, existing2

PTQ methods generally suffer from crucial limitations such as heavy calibration3

data requirements and inflexible choice of target number of bits. In this paper,4

we propose RaanA, a unified PTQ framework that overcomes these challenges5

by introducing two novel components: 1) RaBitQ-H, a variant of a randomized6

vector quantization method RaBitQ, designed for fast, accurate, and highly ef-7

ficient quantization; and 2) AllocateBits, an algorithm that optimally allocates8

bit-widths across layers based on their quantization sensitivity. RaanA achieves9

competitive performance with state-of-the-art quantization methods while being10

extremely fast, requiring minimal calibration data, and enabling flexible bit alloca-11

tion. Extensive experiments demonstrate RaanA’s efficacy in balancing efficiency12

and accuracy.13

1 Introduction14

The rapid advancement in deep learning has demonstrated that increasing the size of neural networks15

(NNs) often leads to significant improvements in performance across various tasks [20, 7, 1, 15].16

Large language models (LLMs), such as GPT [8, 1] and LLaMA [32, 15], have exhibited remarkable17

capabilities, but their deployment remains a challenge due to substantial computational and memory18

requirements. Among the various strategies developed to improve LLM inference, Post-Training19

Quantization (PTQ) has emerged as a widely adopted approach for optimizing the memory usage20

and inference speed of LLMs, balancing between accuracy and efficiency [10, 11, 25, 16, 23, 9].21

The essential idea of PTQ is to reduce the numerical precision of the parameters of a trained model,22

replacing high precision floating-point representations with lower precision alternatives, which in23

turn reduces memory consumption and alleviates memory bandwidth constraints.24

Optimal Brain Quantizer (OBQ) is one of the earlier influential methods in PTQ. It formulates the25

quantization problem as an optimization task, where the core objective is to minimize the layer-26

wise quantization error Ŵ
(ℓ)∗

= argmin
Ŵ∈C

∥∥∥X(ℓ)W (ℓ) −X(ℓ)Ŵ
∥∥∥
2

F
, where X(ℓ), W (ℓ) and27

Ŵ are the input feature, original weight matrix and quantized weight matrix of layer ℓ (a linear28

transformation layer) respectively. This approach has led to significant improvements in quantization29

accuracy by optimizing the quantization parameters (rescale, zero-point etc.) according to layer-wise30

behavior approximation. OBQ has become a foundation of PTQ research, with many recent methods31

building upon its framework [11, 23, 25, 9]. Despite their effectiveness, existing approaches based32

on the OBQ framework typically suffer from notable limitations:33

• First, the OBQ framework only controls the error of the output of each layer and does not34

account for the overall error in the model output; more importantly, it treats all layers iden-35

tically, whereas in practice, their importance can vary: the error in the first layer propagates36

Submitted to NeurIPS 2025 Workshop on Efficient Reasoning. Do not distribute.

through all subsequent layers, while that in the last layer affects only itself. Omitting this37

hierarchy in error sensitivity can lead to suboptimal quantization strategies.38

• Second, the optimal solution of the OBQ framework highly depends on the input X(ℓ)
39

which, however, is not constant across batches, and as a result, all the quantization methods40

based on this framework require a lot of calibration data to accurately estimate the input41

features (more precisely, the so-called layer-wise Hessian X(ℓ)⊤X(ℓ)) [17]. This high42

requirement of data not only limits the efficiency of quantization, but also the generalization43

performance of the method, as it can perform worse if the data distribution is far from its44

calibration data distribution.45

• Moreover, the OBQ framework directly replaces each weight matrix with a quantized46

weight matrix. Since we are only concerned with the output of a layer rather than its47

internal structure, there is potential for greater flexibility by allowing additional operations48

within a layer.49

The above-mentioned limitations are not exclusive to OBQ-based methods, but also shared by many50

other PTQ methods. For example, Norm-Tweaking [24], although only a plugin for adjusting Lay-51

erNorm parameters, also highly relies on calibration data, and EasyQuant [31], although it does not52

require calibration, only controls layer-wise error and is limited to entry-wise float-point rounding.53

In this paper, we propose a novel PTQ framework that overcomes the above issue, based on the54

following ideas.55

RaBitQ-H: Adopting Efficient Vector Quantization Methods to LLM Quantization If we56

don’t stick to preserving the structure of the original matrix multiplication and embrace a broader57

class of operations, it is possible to bring in much stronger tools from vector quantization. Specif-58

ically, in this paper we adopt RaBitQ [13, 12], a state-of-the-art vector quantization algorithm that59

enjoys very fast computation and well-controlled error-bound. However, RaBitQ is originally de-60

signed to solve approximate nearest neighbor search (ANNS) and can not be directly adopted to61

LLM quantization (see the detailed explanation in Appendix C). To address this issue, in this paper62

we propose RaBitQ-H, a variant of RaBitQ, to address the challenges of adopting RaBitQ to LLM63

quantization.64

AllocateBits: Allocating Bits Unevenly Across Layers As mentioned before, it is suboptimal65

to uniformly assign computational resources across all layers, as some layers can be more important66

than others. There has been a research direction called Mixed Precision Quantization (MPQ), which67

allows different numbers of bits used in each layer [28, 16, 6]. However, existing MPQ methods68

are mostly based on heuristics and are typically limited to binary choices of bit-widths (e.g. 4-bits69

v.s. 8-bits), making them not sufficiently flexible. In this paper, we propose a simple and effective70

approach to estimate the importance of each layer and formulate the bit allocation task as an integer71

programming problem that allows arbitrary bit-width choices. By solving this integer program, we72

obtain an optimal bit allocation strategy across layers.73

In this paper, we propose RaanA: a novel PTQ framework combining RaBitQ-H and AllocateBits.74

RaanA enjoys the following superiority:75

1. Extremely Fast and Device-Independent: Unlike other state-of-the-art PTQ methods that76

generally require hours or even days to perform on large models, RaanA generally only77

requires tens of minutes on 70b models. Additionally, RaanA is largely device-independent,78

with most of its computation can be efficiently performed on CPUs, reducing its reliance79

on GPU devices.80

2. Minimal Calibration Required: RaanA requires only a few or even zero samples for cali-81

bration, as opposed to most existing methods that typically require a huge amount of data.82

3. Strong Performance: RaanA performs comparably to state-of-the-art PTQ methods. No-83

tably, it remains effective even at extremely low bit-widths (e.g., < 3 average bits), a regime84

where many other methods struggle.85

4. High Flexibility: RaanA allows any choice of target average number of bits, enabling more86

flexible and and fine-grained quantization choices.87

2

Paper Structure Due to space limitation, here in the main paper we only outline the overall frame-88

work and briefly introduce the AllocateBits and RabitQ-H algorithm, deferring a more formal intro-89

duction to appendix. In Appendix A we introduce some background on the methods we use and90

related work. Section 2 and Appendices B and C describe RaanA in detail: Section 2.1 presents the91

preliminaries and overall framework; Appendix B explains how to estimate the sensitivity of each92

layer and solve the bit allocation problem; and Appendix C introduces the RaBitQ-H algorithm. In93

Appendix D, we present our experimental results. Finally, in Appendix E, we conclude the paper94

and discuss potential future directions.95

2 Preliminaries96

Throughout this paper, we use bold lowercase letters to represent vectors (e.g. x) and bold uppercase97

letters to represent matrices (e.g. A), and we use the corresponding unbold letters with subscript to98

represent the entries of vectors or matrices (e.g. xi is the i-th entry of vector x).99

In this paper, we fix a trained neural network f : Rn×d0 ×R
m → R as the object of study, where d0100

is the dimensionality of the input and m is the number of learnable parameters1. We use x ∈ R
n×d0

101

and θ to denote the input data and the collection of all parameters of f , respectively, where n is the102

token number2.103

A NN model typically consists of multiple linear transformation blocks where the input is multiplied104

by a weight matrix. These include, for example, feed-forward layers as well as the Q, K, and V105

transformation layers in Transformer architectures [35]. We assume the model contains a total of L106

linear layers and denote the input features, parameter matrix, and output features of the k-th linear107

layer by X(k) ∈ R
n×dk , W (k) ∈ R

dk×ck , and H(k) = X(k)W (k) ∈ R
n×ck , respectively, where108

dk and ck are the input and output dimensions of the k-th linear layer. Note that X(k) is principally109

a function of x, and W (k) is a function of θ, but we omit the arguments x and θ when they are clear110

from context.111

We use x
(k)
i ∈ R

d to represent the i-th row of X(k) and w(k)i ∈ R
d to represent the i-th column of112

W (k). The (i, j)-th entry of H(k) is given by h(k)i, j =
〈
x
(k)
i ,w

(k)
j

〉
.113

2.1 Overall Framework114

We first present the overall framework of RaanA in Algorithm 1. It takes a trained model, calibration115

data and desired quantization parameters as input and output quantized weight matrix together with116

other information used for de-quantization (see Algorithm 3 for the de-quantization algorithm). The117

algorithm consists of two parts: determining each layer’s target bit-width, and performing quantiza-118

tion. In Algorithm 1 we use the error estimator Errk and vector quantization algorithm RaBitQ-H119

as black boxes, and they will be specified in the subsequent sections.120

3 A Brief Introduction to the Main Algorithms121

This section summarizes the two main components of our approach: (1) the bits-allocation strategy122

(AllocateBits) and (2) the quantization algorithm RaBitQ-H. We provide an intuitive description123

while omitting most technical details for brevity. See Appendices B and C for the details of the124

algorithms.125

3.1 AllocateBits: Error Estimation and Bits Allocation126

When quantizing the k-th layer with b bits, the induced error on model output is denoted by127

Errk(b,x). Under mild assumptions (see [12]), this error is bounded byErrk(b,x) . αk2
−b, where128

αk depends on the Jacobian of f w.r.t. H(k), as well as norms of input and weight matrices. Thus,129

1A neural network with multi-dimensional output can be viewed as several neural networks with scalar
output, and therefore we only consider NNs with scalar output.

2n can also be understood as the batch size, since we only consider linear layers that do not involve any
cross-token interaction.

3

Algorithm 1: Overall Framework of RaanA

Input: trained model parameters θ0, bit-width candidate set B, overall bits budget R and
calibration data {xi}nc

i=1;
/* AllocateBits */

Solve the bits-allocation problem

{b∗k}Lk=1 = arg min
{bk}L

k=1

1

nc

L∑

k=1

nc∑

i=1

Errk (bk;xi)

s.t.

L∑

k=1

bkmk ≤ R and bk ∈ B, ∀k ∈ [L];

(1)

/* Quantization */

Calculate

(
Ŵ

(k)
, r(k),D(k)

)
= RaBitQ-H

(
W (k), b∗k

)
for k = 1, 2, · · ·L;

Return:

{(
Ŵ

(k)
, r(k),D(k)

)}L

k=1

.

Algorithm 1: The overall framework of RaanA. Errk(b;x) is an estimation of the overall error
brought by the k-th linear layer with b-bit quantization, estimated at point x, and RaBitQ-H is the
RaBitQ-H quantization algorithm. mk = dkck is the number of parameters at layer k; nc is the
number of calibration data; B is a set containing all desired choice of layer-wise bit-width (e.g.
B = {1, 2, · · · 8}), and R is the desired total number of bits used (i.e. bits per parameter times total
number of weight parameters).

minimizing the overall quantization error reduces to130

min
{bk}

L∑

k=1

αk2
−bk , s.t.

L∑

k=1

bkmk ≤ R, bk ∈ B. (2)

Although this is an NP-hard integer program, the problem size is moderate in practice. A divide-by-131

GCD trick greatly reduces the budget size, making dynamic programming feasible. The resulting132

algorithm runs in O(L|B|R/g) time, completing within seconds even on CPU.133

Calibration of αk is efficient: unlike Hessian-based approaches, it only depends on input norms and134

Jacobians, which are stable and require very few samples. In practice, few-shot calibration uses as135

few as 5 training samples, while zero-shot calibration relies on a single synthetic sentence, yet still136

yields accurate estimates.137

3.2 RaBitQ-H: Quantization with Randomized Hadamard Transformation138

RaBitQ [12] is a universal multi-bit quantization algorithm that preserves inner products with con-139

trolled error. While directly applicable to large models, its original design requires costly random140

rotations of O(d2) per vector. To address this, RaBitQ-H replaces random rotation with a Ran-141

domized Hadamard Transformation (RHT), which (i) needs only dk random bits, (ii) runs in142

O((ck + n) log dk) time via fast Hadamard kernels, and (iii) retains the same error guarantees.143

The quantization pipeline is as follows:144

• Preprocessing: Apply RHT to weight matrix and quantize using RaBitQ, storing scaling145

factors.146

• Inference: Apply RHT to input, perform matrix multiplication with quantized weights,147

and rescale the result.148

Implementation requires handling non-power-of-two dimensions and applying simple preprocessing149

(e.g., input centralization), which further stabilizes error without altering theoretical guarantees.150

Summary. AllocateBits provides a principled way to assign bits across layers under a global151

budget, while RaBitQ-H ensures efficient and accurate quantization with RHT. Together, they enable152

fast and memory-efficient quantization for large language models with minimal calibration data.153

4

References154

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni155

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4156

technical report. arXiv preprint arXiv:2303.08774, 2023.157

[2] Krish Agarwal, Rishi Astra, Adnan Hoque, Mudhakar Srivatsa, Raghu Ganti, Less Wright,158

and Sijia Chen. Hadacore: Tensor core accelerated hadamard transform kernel. arXiv preprint159

arXiv:2412.08832, 2024.160

[3] Cecilia Aguerrebere, Ishwar Singh Bhati, Mark Hildebrand, Mariano Tepper, and Theodore161

Willke. Similarity search in the blink of an eye with compressed indices. Proc. VLDB Endow.,162

16(11):3433–3446, July 2023.163

[4] Noga Alon and Bo’az Klartag. Optimal compression of approximate inner products and dimen-164

sion reduction. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science165

(FOCS), pages 639–650, 2017.166

[5] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian Croci, Bo Li, Pashmina Cameron, Mar-167

tin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit infer-168

ence in rotated llms. Advances in Neural Information Processing Systems, 37:100213–100240,169

2024.170

[6] Alireza Behtash, Marijan Fofonjka, Ethan Baird, Tyler Mauer, Hossein Moghimifam, David171

Stout, and Joel Dennison. Universality of layer-level entropy-weighted quantization beyond172

model architecture and size. arXiv preprint arXiv:2503.04704, 2025.173

[7] James Betker, Gabriel Goh, Li Jing, Tim Brooks, Jianfeng Wang, Linjie Li, Long Ouyang,174

Juntang Zhuang, Joyce Lee, Yufei Guo, et al. Improving image generation with better captions.175

Computer Science. https://cdn. openai. com/papers/dall-e-3. pdf, 2(3):8, 2023.176

[8] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-177

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language mod-178

els are few-shot learners. Advances in neural information processing systems, 33:1877–1901,179

2020.180

[9] Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quanti-181

zation of large language models with guarantees. Advances in Neural Information Processing182

Systems, 36:4396–4429, 2023.183

[10] Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate184

post-training quantization and pruning. Advances in Neural Information Processing Systems,185

35:4475–4488, 2022.186

[11] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan-Adrian Alistarh. Optq: Accurate post-187

training quantization for generative pre-trained transformers. In 11th International Conference188

on Learning Representations, 2023.189

[12] Jianyang Gao, Yutong Gou, Yuexuan Xu, Yongyi Yang, Cheng Long, and Raymond Chi-190

Wing Wong. Practical and asymptotically optimal quantization of high-dimensional vectors191

in euclidean space for approximate nearest neighbor search. arXiv preprint arXiv:2409.09913,192

2024.193

[13] Jianyang Gao and Cheng Long. Rabitq: quantizing high-dimensional vectors with a theoretical194

error bound for approximate nearest neighbor search. Proceedings of the ACM on Management195

of Data, 2(3):1–27, 2024.196

[14] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. Optimized product quantization for approx-197

imate nearest neighbor search. In Proceedings of the IEEE Conference on Computer Vision198

and Pattern Recognition, pages 2946–2953, 2013.199

[15] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,200

Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The201

llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.202

5

[16] Ziyi Guan, Hantao Huang, Yupeng Su, Hong Huang, Ngai Wong, and Hao Yu. Aptq: Attention-203

aware post-training mixed-precision quantization for large language models. In Proceedings204

of the 61st ACM/IEEE Design Automation Conference, pages 1–6, 2024.205

[17] Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general206

network pruning. In IEEE international conference on neural networks, pages 293–299. IEEE,207

1993.208

[18] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest neighbor209

search. IEEE Trans. Pattern Anal. Mach. Intell., 33(1):117–128, January 2011.210

[19] William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert211

space 26. Contemporary mathematics, 26:28, 1984.212

[20] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,213

Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language214

models. arXiv preprint arXiv:2001.08361, 2020.215

[21] Richard M Karp. Reducibility among combinatorial problems. Springer, 2010.216

[22] Grigory Khromov and Sidak Pal Singh. Some fundamental aspects about lipschitz continuity217

of neural networks. arXiv preprint arXiv:2302.10886, 2023.218

[23] Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-219

aware weight quantization for efficient fine-tuning and inference of large language models. In220

Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 13355–13364,221

2024.222

[24] Liang Li, Qingyuan Li, Bo Zhang, and Xiangxiang Chu. Norm tweaking: High-performance223

low-bit quantization of large language models. In Proceedings of the AAAI Conference on224

Artificial Intelligence, volume 38, pages 18536–18544, 2024.225

[25] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangx-226

uan Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quanti-227

zation for on-device llm compression and acceleration. Proceedings of Machine Learning and228

Systems, 6:87–100, 2024.229

[26] Zechun Liu, Changsheng Zhao, Igor Fedorov, Bilge Soran, Dhruv Choudhary, Raghuraman230

Krishnamoorthi, Vikas Chandra, Yuandong Tian, and Tijmen Blankevoort. Spinquant: Llm231

quantization with learned rotations. arXiv preprint arXiv:2405.16406, 2024.232

[27] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture233

models. arXiv preprint arXiv:1609.07843, 2016.234

[28] Nilesh Prasad Pandey, Markus Nagel, Mart van Baalen, Yin Huang, Chirag Patel, and Tij-235

men Blankevoort. A practical mixed precision algorithm for post-training quantization. arXiv236

preprint arXiv:2302.05397, 2023.237

[29] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,238

Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified239

text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.240

[30] Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng241

Zhang, Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantiza-242

tion for large language models. arXiv preprint arXiv:2308.13137, 2023.243

[31] Hanlin Tang, Yifu Sun, Decheng Wu, Kai Liu, Jianchen Zhu, and Zhanhui Kang. Easyquant:244

An efficient data-free quantization algorithm for llms. arXiv preprint arXiv:2403.02775, 2024.245

[32] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,246

Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open247

foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.248

[33] Joel A Tropp. Improved analysis of the subsampled randomized hadamard transform. Ad-249

vances in Adaptive Data Analysis, 3(01n02):115–126, 2011.250

6

[34] Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:251

Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint252

arXiv:2402.04396, 2024.253

[35] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,254

Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information255

processing systems, 30, 2017.256

7

A Background and Related Work257

In this section, we introduce some of the related works as well as the background of methods we use258

in this paper.259

Weight Quantization in Post-training Quantization Among many methods that aims to make260

large language models more efficient, PTQ targets at improving the efficiency in inference-time. In261

this paper we especially focus on weight quantization. The problem of weight quantization in PTQ262

can be described as follows: given a pre-trained large language model, find another model who263

requires much less bits to store such that it approximates the behavior of the original model. OBQ264

[10] is one of the early works for PTQ. As mentioned in Section 1, many existing PTQ methods265

follows the framework of OBQ and is devoted to better or faster solve the layer-wise OBQ problem266

[11, 23, 25, 30, 9, 34]. As we mentioned in Section 1, most of these methods highly relies on267

performing float-point rounding and estimating the layer-wise Hessian.268

Vector Quantization for Approximate Nearest Neighbor Search There have been a vast liter-269

ature of vector quantization in ANNS. The classical scalar quantization (SQ) and its variant LVQ270

[3] take finite uniform grids as codebooks and independently round every coordinate to an unsigned271

integer. These methods support to compute inner product based on arithmetics of unsigned integers272

without decompression. However, they failed to achieve reasonable accuracy using low-bit quanti-273

zation (< 4 bits). PQ [18] and OPQ [14] construct a codebook via KMeans clustering and quantizes274

vectors by mapping them to the nearest vector in the codebook. With clustering, these methods275

better capture the distributions of a dataset and provide better accuracy using low-bit quantization.276

However, their computation of inner product replies on looking up tables, which is costly in modern277

systems. RaBitQ [13] and its multi-bit extension [12] construct a codebook by translating, normal-278

izing, and randomly rotating finite uniform grids. They achieve superior accuracy while enabling279

efficient computation. Theoretically, they provide an unbiased estimator with asymptotically opti-280

mal error bounds for the space-accuracy trade-off in inner product estimation between unit vectors.281

See Appendix F.2 for more details.282

(Randomized) Hadamard Transformation In this paper, one critical technique we used is Ran-283

domized Hadamard Transformation (RHT), which is a randomized version of Hadamard Transfor-284

mation and can be viewed as an approximation of random rotation [33]. Hadamard Transformation,285

in our context, is a specific class of orthonormal matrix whose matrix multiplication that can be286

fast computed, and is used in many quantization works [34, 5, 26, 2] and other areas. Due to space287

limitation, we defer a more detailed introduction of RHT to Appendix F.1.288

B AllocateBits: Error Estimation and Bits Allocation289

In this section, we discuss how to calculate Errk(b,x) and how to solve the bits-allocation problem290

eq. (1). We begin by defining this quantity. In the model f , if we replace the parameters of the k-th291

layer, W (k), with a b-bit quantized version, this leads to an error in the output H(k). We denote this292

error by ǫ(k)(b) ∈ R
n×c. Consequently, ǫ(k)(b) leads to an error in the overall model output f . We293

define Errk (b,x) as the absolute difference between the model outputs before and after quantization294

at layer k with b bits.295

We first state a property of ǫ(k)(b) under RaBitQ-H, using Assumption B.1, which is justified by the296

analysis of RaBitQ (see Appendix F.2 for more details).297

Assumption B.1. There exists a constant K > 0, such that for any k ∈ [L], i ∈ [n], j ∈ [ck],298

ǫ(k)(b) ∈ R
dk is a random vector such that299

ǫ
(k)
i,j (b) . 2−b

∥∥∥x(k)
i

∥∥∥
∥∥∥w(k)

j

∥∥∥ (3)

with high probability, where we use . to hide constant terms.300

When Assumption B.1 holds, Corollary B.2 is a direct corollary of Theorem G.2, which we prove in301

the appendix.302

Corollary B.2 (Informal). Fix the model input x and parameter θ, and suppose ǫ = ǫ(k)(b) satisfies303

Assumption B.1, then the following statement holds with probability at least 0.99:304

Errk (b,x) . 2−b

√

log ck
dk

∥

∥

∥

∥

∥

∂f(θ,x)

∂H(k)

∣

∣

∣

∣

x=x

θ=θ

∥

∥

∥

∥

∥

F

∥

∥

∥
X

(k)
∥

∥

∥

F

∥

∥

∥
W

(k)
∥

∥

∥

F

, (4)

8

where we use . to hide constant coefficients and small O(1/d) terms.305

Denote αk =
√

log ck
dk

∥∥∥∥
∂f(θ,x)

∂H(k)

∣∣∣
x=x

θ=θ

∥∥∥∥
F

∥∥∥X(k)
∥∥∥
F

∥∥∥W (k)
∥∥∥
F

be the coefficient in Corollary B.2,306

we estimate the error introduced by b-bit quantization at the k-th layer by αk2
−bk . Then the bits-307

allocation problem eq. (1) can be rewritten as308

{b∗k}Lk=1 = arg min
{bk}L

k=1

L∑

k=1

αk2
−bk

s.t.

L∑

k=1

bkmk ≤ R,

bk ∈ B, ∀k ∈ [L].

(5)

B.1 Solving the Bits-Allocation Problem309

Now we consider solving problem eq. (5). At first glance, this is a nonlinear integer programming310

problem which is known to be NP-complete [21]. Nevertheless, we note that the problem size is311

manageable in practice so that it can be efficiently solved via dynamic programming. Let g =312

gcd (m1, · · ·mL, R) be the greatest common divisor (GCD) of all mk’s and R, then we have313

L∑

k=1

bkmk ≤ R ⇐⇒
L∑

k=1

bk
mk

g
≤ R

g
, (6)

and thus the total bits budget can be reduced to R/g. Thanks to the design choice of most large314

language models, whose hidden sizes are usually powers of 2, in practice g is typically very large.315

As a result, the size of this problem can be prominently reduced to a scale where finding the global316

optimum via a dynamic programming algorithm becomes feasible. We provide the algorithm for317

solving this problem in Appendix H.1.318

Algorithm 4 from Appendix H.1 runs in O (L|B|R/g) time. In practice, both L and |B| are less319

than 100, R
g is on the order of 105 and the entire process can be completed in a few seconds on320

CPU. For LLaMA models, the value of g is on the order of 106, making the divide-by-GCD trick321

– although seemingly simple – crucial for efficiency; without it, the algorithm would be millions of322

times slower.323

B.2 Few-shot and Zero-shot Calibration324

In Algorithm 1, a calibration set {xi}nc

i=1 is used to estimate the error (i.e. αk in eq. (5)). In principle,325

we can certainly use a large amount of data to obtain a better estimator of αk. However, in RaanA,326

αk only depends on the norm of input and the Jacobian of the overall output w.r.t. the output of layer327

k. Unlike the calibration in OBQ-based methods that requires estimating the layer-wise Hessian,328

these values here are practically very stable and can be estimated using a very small amount of data.329

This has also been observed in some previous work – for example, [22] found that the empirical330

mean of Jacobian quickly converges to the Lipschitz constant of the model.331

In our implementation, we consider two settings: few-shot calibration and zero-shot calibration.332

In few-shot setting, we use 5 samples from the training set of the corresponding dataset, which is333

significantly less than what mainstream methods use (e.g. Quip# uses more than 6000 samples [34]).334

In the zero-shot calibration setting, we only use one synthetic sentence to estimate αk, without335

resorting to any actual training data. Specifically, we repeat the following sentence 100 times to336

form our single calibration data point in the zero-shot setting 3:337

“The curious fox leaped over the quiet stream, its reflection rippling in the golden338

afternoon light.”339

C RaBitQ-H: A variant of RaBitQ with Randomized Hadamard340

Transformation341

In [12], the authors introduced RaBitQ, a universal multi-bit vector quantization algorithm that pre-342

serves the results of vector inner products and achieves an asymptotically optimal error rate. In large343

3This sentence was suggested by ChatGPT.

9

language models, the basic operation and bottleneck is matrix multiplication (MM), which can also344

be viewed as performing multiple inner products. Therefore, it is possible to adopt RaBitQ as our345

quantization method. RaBitQ has the appealing property that the error rate is controlled in all cases346

with high probability and does not require handling outliers (see details in Appendix F.2). This347

ensures the desired property stated in Assumption B.1.348

However, directly applying RaBitQ in the MM scenario can be inefficient. In RaBitQ, it requires349

applying a random rotation to each vector during the pre-processing stage. For a d-dimensional vec-350

tor, applying a random rotation takes O(d2) time. This is acceptable in the original ANNS scenario,351

where the data dimension is much smaller than the number of data points, making the rotation cost352

negligible. In contrast, in the context of large language models and MM, the number and dimen-353

sionality of the vectors are comparable4, making the cost of performing or storing a random rotation354

almost the same as that of the original MM, negating the potential benefits of quantization.355

To address this issue, we replace the random rotation in the original paper with a Randomized356

Hadamard Transformation (RHT), which is known to approximate random rotation in many cases357

[33]. RHT has the following desired properties: 1) For each layer k, it only requires dk random358

bits, making storing the transformation not a bottleneck; 2) It can be efficiently computed in time359

O((ck + n) log dk) using existing Hadamard kernels [2]. We adopt the analysis from the original360

RaBitQ paper [12] and confirm that the output of RaBitQ-H satisfies Assumption B.1. The complete361

quantization and de-quantization algorithms are provided in Algorithms 2 and 3.362

Algorithm 2: Preprocess: Quantization

Input: weight matrix W (k) ∈ R
dk×ck ,

desired number of bits B ∈ B;
ξ ← {ξi}dk

i=1 where ξi is sampled i.i.d.
from the Rademacher distribution;

D(k) ← diag (ξ);

W ′ ← Hadamard
(
D(k)W

)
;

Ŵ
(k)

, r(k) ← RaBitQ
(
W ′, B

)
;

Return: Ŵ
(k)

, r(k), D(k).

Algorithm 3: Inference: Matrix Multiplica-
tion Estimation

Input: input features X(k) ∈ R
n×dk ,

quantized weight matrix Ŵ , rescale

factor r(k) ∈ R
ck , Rademacher

samples D(k) ∈ R
dk , desired number

of bits B ∈ B;

X ← Hadamard
(
D(k)X(k)⊤

)⊤
;

z ← 2B−1
2 X1 ;

Y ←XŴ
(k)

1r⊤ − zr⊤ ;
Return: Y .

Algorithms 2 and 3: Quantization and Inference algorithms of RaBitQ-H. Here Hadamard refers
to Hadamard transformation (see Appendix F.1 for a formal definition) and RaBitQ refers to the
original RaBitQ algorithm without random rotation. Principally they are both vector operations, and

here by applying them to matrices we mean applying column-wise. r(k) ∈ R
ck in the algorithms is

the rescale factor output by Extended RaBitQ, and 1 means a ck-dimensional all-one vector.

Remarks on Implementation. The practical implementation of RaBitQ-H is slightly more com-363

plicated than described here, involving two additional components. First, since the fast Hadamard364

transformation only applies to vector sizes that are powers of 2, we need to handle vectors whose365

sizes are not powers of 2. Second, we apply some small tricks in the implementation (such as input366

centralization) that preprocess the inputs and weights before running RaBitQ-H; these tricks do not367

affect the output of the quantization / de-quantization algorithm but in practice reduce the error rate.368

Due to space limitations, we defer these details to Appendices H.2 and H.3.369

D Experiment Results370

In this section, we present our experimental results. We focus on the performance loss after quanti-371

zation, compared to the full-precision (fp16) model. Following previous work [25, 30], we evaluate372

our method on the LLaMA model family and language modeling tasks.373

Datasets. As in previous studies [25, 30], we evaluate our method on the wikitext2 [27] and c4374

[29] datasets. We split the test / validation sets into sequences of length 2048 as test samples and375

4ck is the number of vectors and dk is the vector dimension.

10

measure the average perplexity of the quantized model on each test sample. For c4, since the full376

validation set is too large and model performance converges quickly, we use 500 samples as the test377

set.378

Baseline Methods. We compare RaanA with GPTQ [11], AWQ [25], OmniQuant [30], and379

Quip#no FT & no E8
[34]5. Additionally, for 4-bit quantization, we also compare with EasyQuant [31],380

a lightweight quantization method that does not require calibration data and targets 4-bit quantiza-381

tion. Note that most baseline models use tricks such as grouping and keeping full-precision outliers382

that introduce extra bit costs6, generally ranging from 0.1 to 0.3 bits. To make a fair comparison, we383

report RaanA performance with x+ 0.1 bits and x+ 0.3 bits for x ∈ 2, 3, 4.384

D.1 Performance385

In this sub-section, we compare the performance of RaanA under few-shot calibration with baseline386

methods. The results on wikitext2 are reported in Table 1 and we defer the results on c4 to Ap-387

pendix I due to limited space. It is clear from the table that RaanA is comparable with or better than388

baseline methods, especially in the extreme regime of 2+ bits quantization.389

Method Avg. bits llama-7b llama-13b llama2-7b llama2-13b llama2-70b

fp16 16 5.68 5.09 5.47 4.88 3.31

GPTQ 2+ 44.01 15.60 36.77 28.14 -
AWQ 2+ 2.6e5 2.8e5 2.2e5 1.2e5 -

OmniQuant 2+ 9.72 7.93 11.06 8.26 6.55
Quip#∗ 2 9.95 7.18 12.3 7.60 4.87
RaanA 2.1 13.70 8.28 18.31 51.05 4.81
RaanA 2.3 8.53 6.63 10.63 8.96 4.49

GPTQ 3+ 8.81 5.66 6.43 5.48 3.85
AWQ 3+ 6.35 5.52 6.24 5.32 -

OmniQuant 3+ 6.15 5.44 6.03 5.28 3.78
Quip#∗ 3 6.29 5.52 6.19 5.34 3.71
RaanA 3.1 6.33 5.53 6.20 5.48 3.66
RaanA 3.3 6.10 5.38 6.00 5.27 3.59

EasyQuant 4+ 6.01 5.29 - - -
GPTQ 4+ 6.22 5.23 5.69 4.98 3.42
AWQ 4+ 5.78 5.19 5.60 4.97 -

OmniQuant 4+ 5.77 5.17 5.58 4.95 3.40
Quip#∗ 4 5.83 5.20 5.66 5.00 3.42
RaanA 4.1 5.86 5.20 5.69 5.02 3.42
RaanA 4.3 5.83 5.17 5.65 4.98 3.40

Table 1: Perplexity results on wikitext2. Methods labeled ‘+” in the number of bits use tricks such
as grouping and keeping outliers full-precision that bring 0.1 ∼ 0.3 extra bit cost. Quip#∗ refers to
Quip#no FT & no E8

. For OmniQuant, GPTQ and AWQ, we compare with the version with grouping
size 128. Best performance of each category is labeled bold.

D.2 Zero-shot Calibration vs Few Shot Calibration390

In this subsection, we compare the performance between few-shot calibration and zero-shot calibra-391

tion. Results for wikitext2 are displayed in Table 2 for results on c4 are deferred to Appendix I.392

We also add results from EasyQuant, which also does not require calibration data, as a comparison.393

It is clear from the resutls that, although the performance does generally go down a little bit with394

zero-shot calibration, they are generally comparable with few-shot calibration results, validating the395

effectiveness of zero-shot calibration for RaanA.396

5The full version of Quip# [34] fine-tunes the model after quantization. In this paper, we compare RaanA
with Quip#no FT & no E8 , the version without fine-tuning, since fine-tuning is a universal plug-in component in
quantization and is orthogonal to our contribution.

6The only exception in our baselines is Quip#no FT & no E8 , which has a precise control over the average num-
ber of bits. We admittedly require slightly more bits to match its performance. However, RaanA is significantly
more lightweight than Quip#no FT & no E8 , which uses over 6000 calibration samples to estimate the layer-wise
Hessian.

11

Method Avg. bits llama-7b llama-13b llama2-7b llama2-13b llama2-70b

fp16 16 5.68 5.09 5.47 4.88 3.31

RaanA-few 2.1 13.70 8.28 18.31 51.05 4.81
RaanA-zero 2.1 15.50 10.12 26.13 13.37 7.89

RaanA-few 3.1 6.33 5.53 6.20 5.48 3.66
RaanA-zero 3.1 6.45 5.63 6.41 5.55 4.01

EasyQuant 4+ 6.01 5.29 - - -
RaanA-few 4.1 5.86 5.20 5.69 5.02 3.42
RaanA-zero 4.1 5.86 5.23 5.73 5.04 3.50

Table 2: Perplexity Comparison Between Zero-shot Calibration and Few-shot Calibration on
wikitext2. RaanA-zero refers to RaanA with zero-shot calibration and RaanA-few refers to RaanA
with few-shot calibration.

D.3 Quantization Time397

We note that due to the lack of GPU implementation of RaBitQ, the main part of RaanA is run398

on CPU, which is the time bottleneck. In our current implementation, the only parts requiring399

GPUs are calibration (which requires one or a few backward passes of the model) and Hadamard400

Transformation. Despite the main part running on CPU, RaanA still runs much faster than many401

existing quantization methods, demonstrating its high efficiency and device independence.402

Model Time (s)

llama2-7b 301.74

llama2-13b 567.61

llama2-70b 3293.26

Table 3: Quantization Time. The
time required to complete the
RaanA quantization process with
few-shot calibration and average
number of bits of 2.1.

We report the time RaanA used for quantization in Table 3403

under a specific setting as an illustration of the efficiency of404

RaanA. The experiments are conducted with 4 NVIDIA A100405

GPUs7. As shown, RaanA completes the quantization of a406

70B model in under one hour, significantly faster than other407

heavyweight quantization methods such as Quip#no FT & no E8
,408

which can take up to 10 hours for the same model size, despite409

having comparable performance.410

E Discussion and Conclusion411

In this work, we introduce RaanA: a new PTQ framework com-412

bining RaBitQ-H, a variant of RaBitQ that especially fits LLM413

quantization, and AllocateBits, an algorithm to allocate bit-414

widths across layers optimally. RaanA overcomes traditional challenges of PTQ methods such as415

high reliance on calibration and inflexible bits allocation. Extensive experiment results validate the416

performance of RaanA, especially highlighting the effectiveness of zero-shot calibration, eliminat-417

ing the requirement of heavy calibration.418

Limitations and Future Work Here we discuss current limitations of the RaanA framework and419

potential future directions to improve them. 1) More efficient implementation: As we mentioned in420

Appendix D.3, currently the implementation of RaanA is not optimal, as the computation is bottle-421

necked by the CPU-bound execution of RaBitQ. A more efficient implementation / approximation422

of RaBitQ (ideally on GPU) would vastly accelerates RaanA. 2) Finer-grained bits-allocation: cur-423

rently RaanA allocates bit-widths layer-wisely, constraining the parameters in each layer to share the424

same bit-width, which can be sub-optimal. It is possible to consider a finer-grained bits-allocation,425

e.g. column-wisely or even entry-wisely, as a future direction.426

Remark on LLM Design Last but not least, we would like to advocate future large language427

model designers to use a powers of 2 as the hidden size more often; as arbitrary as it may seem,428

this choice actually has the following advantages that make quantization easier and faster: 1) It429

maximizes the GCD between layers and thus improves the speed of the AllocateBits algorithm. 2)430

It makes it easier to use fast Hadamard Transformations since it is only defined for spaces whose431

dimension is a power of 2.432

7Here the GPU configuration does not significantly impact the quantization time since the bottleneck is the
CPU computation of RaBitQ. The machine we use has two AMD EPYC 7513 CPUs.

12

F Detailed Introduction to Algorithmic Tools433

In this section, we introduce the algorithms used in RaanA.434

F.1 Detailed Introduction to Randomized Hadamard Transformation435

In this sub-section, we provide a formal definition of RHT. Let d be a positive integer number d that436

is a power of 2, the Hadamard Transformation of size d is a linear transformation recursively defined437

by the following matrix:438

Hd :=

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
(7)

and H1 = 1. For a vector x ∈ R
d, we define439

Hadamard(x) :=
1√
d
Hdx. (8)

it has been shown that the Hadamard Transformation can be computed in a fast way, i.e. applying a440

Hadamard Transformation to each column of an d× n matrix only requires O(n log d) time.441

Let ξ = {ξi}ni=1 be n i.i.d. sampled Rademacher variable, and let D = diag (ξ). For a matrix442

x ∈ R
d, we say443

x 7→ Hadamard (Dx) (9)

the Randomized Hadamard Transformation (RHT) of x, which is exactly what we used in Algo-444

rithm 2. Since the Hadamard Transformation is orthonormal, it’s not hard to restore the result of445

RHT, we only need to store the vector ζ, which has only d binary entries.446

F.2 Detailed Introduction to RaBitQ447

In this sub-section, we provide a brief introduction to RaBitQ [13] and its multi-bit extension [12].448

The RaBitQ methods were proposed initially for vector quantization in database systems. They tar-449

get to produce accurate estimation of inner product and Euclidean distances based on the quantized450

vectors while using the minimum space for storing quantization codes. Specifically, let P be a451

Johnson-Lindenstrauss Transformation (a.k.a., random rotation) [19]. For a vector x ∈ R
d, RaBitQ452

randomly rotates it into Px and quantizes Px to a vector of b-bit unsigned integers x̄ ∈ [2b]d with453

a rescaling factor t ∈ R. Then for another vector y ∈ R
d, RaBitQ estimates the inner product 〈x,y〉454

with455

〈x,y〉 ≈ 〈t · (x̄− cb · 1d),Py〉 (10)

where 1d denotes the d-dimensional vector whose coordinates are ones and cb = (2b − 1)/2. For456

the details of the quantization algorithms and the rescaling factors, we refer readers to the original457

paper [12].458

As has been proven in the original RaBitQ papers, RaBitQ guarantees that the estimation is unbiased459

and asymptotically optimal in terms of the trade-off between the error bound and the space for460

storing the codes. Specifically, with probability as least 1− δ, to guarantee that461

∣∣ 〈x,y〉 − 〈t(x̄− cb1d),Py〉
∣∣ < ǫ‖x‖‖y‖ (11)

it suffices to let b = Θ
(
log
(

1
d ·

log(1/δ)
ǫ2

))
when ǫ is sufficiently small, i.e.,

log(1/δ)
ǫ2 > d. This462

result achieves the optimality established in a theoretical study [4].463

Additionally, RaBitQ provides an empirical formula for the trade-off between errors and spaces.464

Specifically, with probability at least 99.9%, we have465

∣∣ 〈x,y〉 − 〈t(x̄− cb1d),Py〉
∣∣ < cerror√

d2b
‖x‖‖y‖ (12)

where cerror = 5.75.466

13

G Theoretical Results467

In this section, we prove the main theorem of this paper, which directly leads to Corollary B.2. We468

first state a formal version of Assumption B.1, stating that the error from RaBitQ (and RaBitQ-H)469

quantization has sub-exponential error.470

Assumption G.1. [[12]] There exists a constant K > 0, such that for any k ∈ [L], i ∈ [n], j ∈ [ck],471

ǫ(k)(b) ∈ R
dk is a random vector such that472

∀t > 0,P
{∣∣∣ǫ(k)i,j (b)

∣∣∣ > t
}
≤ 2 exp


−K


 t

√
dk

2−bk

∥∥∥x(k)
i

∥∥∥
∥∥∥w(k)

j

∥∥∥




2

 . (13)

Notice that Assumption G.1 does not assume ǫ
(k)
i,j (b)-s are independent. We provide the following473

algorithm analyzing the behavior of a function under an O(1/d) small error, which together with474

Assumption G.1 implies Corollary B.2.475

Theorem G.2. There exists constant K > 0 satisfies the following statement. Suppose c ≥ 2, d≫ c476

and ǫ ∈ R
n×c is a random vector, such that ∀i, j ∈ [n]× [c],477

P {|ǫi,j | > t} ≤ 2 exp

(
− Ct2d

λ2γ2
i,j

)
(14)

for some constant K1 (notice that ǫi,j-s are not necessarily independent). Let g : Rn×c → R be478

a smooth function, then for any h ∈ R
n×c, the following statement holds with probability at least479

0.99:480

|g(h)− g(h+ ǫ)| ≤ K

√
log c

d
‖γ‖F‖∇g(h)‖F +O

(∥∥∇2g(h)
∥∥

d

)
. (15)

Proof. From the given condition, we have481

∀t > 0,P {|ǫi,j | > tγi,j} ≤ 2 exp
(
−K1t

2d/λ2
)
. (16)

Thus we have482

∀t > 0,P {∃i, j ∈ [n]× [c], |ǫi,j | > tγi,j} ≤ 2c exp
(
−K1t

2d/λ2
)
. (17)

For constant K2 > 0, let t0 = K2λ
√

log c
d . It is evident that there exists a constant K2 that only483

depends on K1, such that484

P {∃i, j ∈ [n]× [c], |ǫi,j | > t0γi,j} ≤ 0.01. (18)

Thus, with probability ≥ 0.99, we have485

∀i, j ∈ [n]× [c], |ǫi,j | ≤ K2λγi,j

√
log c

d
. (19)

Therefore, with probability at least 0.99, we have486

‖ǫ‖F ≤

√√√√
n∑

i=1

c∑

j=1

ǫ2i,j ≤ K2λ

√
log c

d
‖γ‖F . (20)

Using Taylor expansion, we have487

|g(h)− g(h+ ǫ)| ≤ 〈∇g(h), ǫ〉+O
(∥∥∇2g(h)

∥∥ ‖ǫ‖2
)

(21)

≤ ‖∇g(h)‖F ‖ǫ‖F +O

(∥∥∇2g(h)
∥∥

d

)
(22)

≤ K2λ

√
log c

d
‖γ‖F‖∇g(h)‖F +O

(∥∥∇2g(h)
∥∥

d

)
. (23)

488

14

Corollary B.2 is thus a direct corollary of Assumption G.1 and Theorem G.2. Notice that in Corol-489

lary B.2 we view the second-order derivative of f w.r.t. Hk a constant (evaluated at a fixed point),490

and therefore omit the ‖∇2 · ‖ term.491

H Implementation Details492

In this section, we provide some implementation details that are not elaborated in the main text due493

to space limit.494

H.1 Bits-Allocation Algorithm495

In Appendix B, we mentioned that the bits-allocation problem can be solved efficiently by a dynamic496

programming algorithm after applying the divide-by-GCD trick. In Algorithm 4 we provide the497

detailed algorithm description.498

In our implementation of Algorithm 4, we compute αk as499

αk =
1√
dk

∥∥∥∥∥
∂f(θ,x)

∂H(k)

∣∣∣∣
x=x

θ=θ

∥∥∥∥∥
F

∥∥∥X(k)
∥∥∥
F

∥∥∥W (k)
∥∥∥
F
, (24)

omitting the log ck term in the , since it is almost constant across layers and therefore has negligible500

impact on the optimization.501

Algorithm 4: Bits Allocation

Input: Coefficients {αk}Lk=1 ∈ R
L, number of bits candidate B, overall budget R ∈ N

Initialize fk,r = +∞, where k ∈ [L], r ∈ [R] ∪ {0};
g ← gcd (m1, · · · ,mL, R);
for k = 1, 2, · · ·L do

for b ∈ B do

r ←
⌊
mkB
g + 1

2

⌋
;

c← αk2
−b;

if k = 1 then
fk,r ← c;
sk,r ← {b};

end
else

for r′ = 0, 1, · · · Rg − r do

if fk,r′+r > fk−1,r′ + ck then
fk,r′+r ← fk−1,r′ + ck;
sk,r′+r ← sk,r′ ‖ {b}

end

end

end

end

end

r∗ ← arg
R

min
r=0

fL,r ;

Return: sL,r∗ .

Algorithm 4: The algorithm for bits allocation. In the algorithm αk = Ex∼Dλkrk is the coeffi-
cient for the k-th layer, {b} represents a sequence with only one element b and ‖ stands for sequence
concatenation. The returned value is a sequence indicating the optimal bit-widths each layer, i.e.
sL,r∗ = {b∗k}Lk=1.

15

H.2 Randomized Hadamard Transformation for Arbitrary Dimensionality502

As we mentioned in Appendix F.1, the fast Hadamard Transformation is only defined with vector503

dimensionality d that is a power of 2. However, in practice, it is not always satisfied. In previous504

work such as [34], this issue is solved by finding the largest factor of d which is a power of 2, say d̃,505

and applying Hadamard Transformation block-wisely, with each block has size d̃. However, in our506

experiment, we found this method extremely inefficient. For example, for LLaMA models, there507

can be > 20 blocks.508

Therefore, in this paper, we apply an easy and universal method to address this issue. We first find509

the largest power of 2 that is less or equal to d, i.e. d̂ = 2⌊log2 d⌋, and apply RHT for the first and510

last d̂ dimensions respectively. Our algorithm is described in Algorithm 5.511

Algorithm 5: Practical RHT

Input: Vector x ∈ R
d

d̂ = 2⌊log2 d⌋;
for j = 1,2 do

ξ(j) ←
{
ξ
(j)
i

}d̂

i=1
, where ξ

(j)
i is sampled i.i.d. from the Rademacher distribution;

D(j) ← diag
(
ξ(j)

)
;

end

x1:d̂ ← Hadamard
(
D(1)x1:d

)
;

xd−d̂+1:d ← Hadamard
(
D(2)xd−d̂+1:d

)
;

Return:
(
x,D(1),D(2)

)
.

Algorithm 4: Practical Randomized Hadamard Transformation. xa:b refers to the sub-vector
of x consists of the a-th entry to the b-th entry of x.

H.3 Tricks used in Quantization512

In the actual implementation of RaanA, we optionally apply some transformations before performing513

quantization. Formally, for the d×c matrix, we define a trick to be a invertible linear transformation514

T : Rn×d → R
n×d. Then for a linear layer where input matrix is X ∈ R

n×d and weight matrix is515

W ∈ R
d×c, we have516

XW = T−1 (T (X)W) . (25)

Notice that T can be have a memory, i.e. it can return an auxiliary term to help T−1 to recover517

the computation result. After applying T , in the de-quantization stage we only need to estimate the518

matrix multiplication results for T (X)W .519

In practice, we the following heuristic tricks are optionally used.520

• Centralization: T (X) =

[
X − 1s(X)⊤, s (X)

]
, where s(X) ∈ R

d is the average of521

all rows of X;522

• Row Outlier Excluding: T (X) = [X¬Mr
,XMr

], where M r is a mask vector selecting523

the top 0.3% rows of X with largest norm, and ¬M r selects the opposite. XMr
indicates524

selecting rows of X according to the mask vector M r;525

• Column Outlier Excluding: T (X) = [X :,Mc
,X :,¬Mc

], where M c is a mask vector526

selecting the top 0.3% columns of X with largest norm, and ¬M c selects the opposite.527

X :,Mc
indicates selecting columns of X according to the mask vector M c.528

For each of the trick functions T described above, it returns two values. The first return value is529

the matrix that joins the subsequent computation, and the second return value is to be memorized in530

order to recover the original computational result.531

16

Method Avg. bits llama-7b llama-13b llama-7b llama-13b

fp16 16 7.08 6.61 6.97 6.47

GPTQ 2+ 27.71 15.29 33.70 NAN

AWQ 2+ 11.9e5 2.3e5 1.7e5 9.4e4

Quip#∗ 2 11.7 8.67 14.8 9.57

OmniQuant 2+ 12.97 10.36 15.02 11.05

RaanA-t 2.1 20.88 13.08 23.17 -

RaanA-t 2.3 12.96 9.18 12.66 10.37

GPTQ 3+ 7.85 7.10 7.89 7.00

AWQ 3+ 7.92 7.07 7.84 6.94

OmniQuant 3+ 7.75 7.05 7.75 6.98

Quip#∗ 3 7.82 6.98 7.85 6.98

RaanA-t 3.1 8.25 7.34 8.38 7.52

RaanA-t 3.3 7.92 7.15 7.99 -

EasyQuant 4+ 7.71 6.97 - -

OmniQuant 4+ 7.21 6.69 7.12 6.56

GPTQ 4+ 7.21 6.69 7.12 6.56

AWQ 4+ 7.21 6.70 7.13 6.56

Quip#∗ 4 7.25 6.70 7.17 6.59

RaanA-t 4.1 7.51 6.91 7.53 6.88

RaanA-t 4.3 7.52 6.87 7.45 6.83

Table 4: Perplexity results on c4. The setting and format are the same as Table 1, except dataset.

Notice that for Row Outlier Excluding and Column Outlier Excluding, the trick needs to store a few532

rows / columns of X . We intentionally restrict the outlier ratios less than 0.3% in order to keep the533

extra bits used to store the extra information negligible.534

Practically we find these tricks perform differently across different settings. To keep the configu-535

ration consistent and avoid heavy hyper-parameter tuning, in all the experiments presented in this536

paper, we use Centralization and Column Outlier Excluding.537

I Additional Experiment Results538

Method Avg. bits llama-7b llama-13b llama-7b llama-13b

fp16 16 7.08 6.61 6.97 6.47

RaanA-zero 2.1 19.37 13.14 31.31 18.03

RaanA-few 2.1 20.88 13.08 23.17 -

RaanA-zero 3.1 8.44 7.55 8.61 7.69

RaanA-few 3.1 8.25 7.34 8.38 7.52

RaanA-zero 4.1 7.56 6.96 7.59 6.93

RaanA-few 4.1 7.51 6.91 7.53 6.88

Table 5: Perplexity Comparison Between Zero-shot Calibration and Few-shot Calibration on
c4. The setting and format are the same as Table 2, except dataset.

In this section we display additional experiment results. Table 4 contains perplexity comparison539

between RaanA with baseline methods on c4, where RaanA uses few-shot calibration. Table 5540

contains the few-shot vs zero-shot comparison of RaanA on c4. These additional experimental541

results support our claim in main paper.542

17

	Introduction
	Preliminaries
	Overall Framework

	A Brief Introduction to the Main Algorithms
	AllocateBits: Error Estimation and Bits Allocation
	RaBitQ-H: Quantization with Randomized Hadamard Transformation

	Background and Related Work
	AllocateBits: Error Estimation and Bits Allocation
	Solving the Bits-Allocation Problem
	Few-shot and Zero-shot Calibration

	RaBitQ-H: A variant of RaBitQ with Randomized Hadamard Transformation
	Experiment Results
	Performance
	Zero-shot Calibration vs Few Shot Calibration
	Quantization Time

	Discussion and Conclusion
	Detailed Introduction to Algorithmic Tools
	Detailed Introduction to Randomized Hadamard Transformation
	Detailed Introduction to RaBitQ

	Theoretical Results
	Implementation Details
	Bits-Allocation Algorithm
	Randomized Hadamard Transformation for Arbitrary Dimensionality
	Tricks used in Quantization

	Additional Experiment Results

