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ABSTRACT

Humans efficiently navigate complex learning and decision-making by forming
representations of task-relevant information, a process facilitated by selective at-
tention. Although the lateral prefrontal cortex (LPFC) and orbitofrontal cortex
(OFC) are linked to attention and value-based decision-making, the neurophysio-
logical processes that coordinate these regions in the maintenance of task-relevant
representations remain unclear. To investigate this, we combined intracranial elec-
trophysiology (iEEG) from OFC and LPFC of neurosurgical epilepsy patients
with cognitive modeling of behavior, providing the spatiotemporal resolution to
test local and circuit-level hypotheses about neural representations. Our findings
reveal how shared computational strategies across brain regions and individuals
enable the brain to maintain representations critical for adaptive decision-making.
This approach offers a novel framework for measuring representational alignment
at both neural and subject levels, uncovering the neurocomputational principles
that drive real-world behavior. By integrating iEEG and cognitive modeling,
we present an approach for studying representational alignment, revealing how
it emerges both across brain regions, reflected in shared spectral and temporal
features of neural state representations, and across individuals who adopt similar
computational strategies to solve real-world decision-making tasks.

1 INTRODUCTION
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Figure 1: Methods. A. Neurosurgical partici-
pants (N=21) performed a B. multidimensional
RL task. C. iEEG (N=21) and online (N=50) par-
ticipants’ performance was not significantly dif-
ferent (t(48) = 0.10, p > 0.05). D. Proportion of
correct choices increased across trials (error bar =
SEM). E. Electrodes in OFC (red; 159 electrodes)
and LPFC (blue; 111 electrodes) across partici-
pants. F. LFP signal decomposed by frequency
band and normalized using ITI for one partici-
pant (2 LPFC, 6 OFC electrodes), time-locked to
choice/reward outcome (t = 0).

Every day, we make decisions by evaluating
multidimensional options. Learning the value
of each option while simultaneously attending
to relevant dimensions is a complex task. Yet,
humans navigate this complexity with remark-
able efficiency, by maintaining task represen-
tations that selectively focus on relevant infor-
mation (Niv, 2019). This ability makes real-
world, multidimensional learning and decision-
making tractable.

Although neuroimaging has revealed correlates
of attention and value learning in the lateral
prefrontal cortex (LPFC) (Leong et al., 2017;
Miller & Buschman, 2013) and orbitofrontal
cortex (OFC) (Saez et al., 2018), respectively,
the precise neurophysiological processes un-
derlying state representations in humans remain
unclear. To address this, we combined human
intracranial electrophysiology (iEEG) record-
ings from the OFC and LPFC of neurosurgi-
cal epilepsy patients with cognitive modeling
of behavior. iEEG provides the spatiotemporal
resolution needed to test local and circuit-level
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hypotheses about the physiological characteristics of neural representations, while cognitive mod-
eling enables a direct characterization of the brain’s otherwise latent decision-making mechanisms.
Our results demonstrate that shared computational strategies are manifested in aligned neural repre-
sentations across biological systems, both at the level of brain regions and individuals (Sucholutsky
et al., 2024).

2 METHODS
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Figure 2: RL modeling results. A. SA-RL explained behav-
ior best (t(20) = 2.89, p < 0.01; error bars = SEM). B. Se-
lective attention improved task performance (r(19) = 0.39,
p < 0.05) and C. reaction time (r(19) = −0.44, p < 0.05)
by D. modulating value learning. Feature values were com-
puted using the SA-RL model with participants’ fitted pa-
rameters. Red figure is a participant with higher selective
attention (red square, panels B/C): value assignment con-
centrated on relevant dimension (shape). Green figure is a
participant with lower attention (green square, panels B/C):
value assignment spread across dimensions.

This novel methods integration of-
fers a powerful framework for mea-
suring representational alignment at
both the neural and subject levels, al-
lowing us to uncover the neurocom-
putational principles that govern the
maintenance of state representations
essential for adaptive, real-world be-
havior. By linking cognitive model
parameters to spectral and temporal
features of neural activity, we iden-
tify shared representational formats
across brain regions and among in-
dividuals who adopt similar learn-
ing strategies. Distinct computa-
tional strategies for multidimensional
RL are reflected in participants’ neu-
ral representations of the task. We
observed representational alignment
across individuals, reflected in their
model-inferred cognitive strategies and the spectral and temporal characteristics of the circuit-level
neural activity that underlie their observed behavior. We also found alignment between discrete
brain regions, measured by the similarity in spectral and temporal encoding of model-derived state
information.

Multidimensional RL Task: We adapted a multidimensional reinforcement learning task from prior
work (Leong et al., 2017; Niv et al., 2015; Wilson & Niv, 2012) for neurosurgical iEEG patients.
Participants (N=21) completed six 18-trial games, choosing between three stimuli varying in shape
(square, oval, circle) and color (orange, yellow, blue) (Fig. 1A/B). One dimension (shape or color)
was relevant per game, and selecting the target feature yielded reward with 80% probability. The
relevant dimension was cued between games, and participants were informed of the task structure.
iEEG participants performed above chance and comparably to an online control group (Fig. 1C/D).

RL Models: We evaluated two RL models: Uniform Attention RL (UA-RL) and Selective Attention
RL (SA-RL). Both models are based on the Rescorla-Wagner learning rule and have been validated
in previous work (Maher et al., 2024; Leong et al., 2017). The UA-RL model implements uniform
attention to both dimensions of each stimulus, whereas the SA-RL model implements selective
attention to the instructed relevant dimension. We assume participants choose based on expected
value (EV), computed as Vt(Sj) =

∑
d Φ · vt(d, Si), where Φ is the attention weight on dimension

d and vt(d, Si) is the value of that feature. After feedback, the reward prediction error is δt =
rt − Vt(Sc), which updates chosen feature values via vt+1(d, Sc) = vt(d, Sc) + η · Φ · δt.
Choice probability was computed using a softmax rule. In the SA-RL model, Φ was a free param-
eter that biased choice and learning toward the instructed relevant dimension, capturing individual
differences in attentional strategy (Fig. 2D). In contrast, the UA-RL model fixed Φ=0.50, assuming
uniform attention. Model fit was assessed using leave-one-game-out cross-validation for maximum
likelihood estimation.

Intracranial Electrophysiology: We recorded local field potentials from OFC and LPFC (Fig.
1E/F) to examine region-specific neural responses to state features defined by cognitive modeling.
High gamma activity (60–200 Hz; HGA), which reflects population-level spatiotemporal dynamics
and correlates with single-unit spiking (Rich & Wallis, 2017; Nir et al., 2007), was used to mea-
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sure local information encoding. We assessed functional connectivity using theta activity (2–8 Hz),
linked to cross-regional communication and attention (Landau et al., 2015; Fries, 2023). We applied
non-parametric multivariate linear models to identify local HGA encoding of behaviorally-relevant
features and measured directed cross-regional theta connectivity using Phase Slope Index (PSI).

3 RESULTS AND DISCUSSION

Selective Attention Shapes State Representations: To investigate whether participants deploy
selective attention during multidimensional RL, we determined UA-RL and SA-RL’s ability to ex-
plain participants’ choices. As hypothesized, the SA-RL model provided a significantly better fit to
participants’ behavior than the UA-RL model (t(20) = 2.89, p < 0.01; Fig. 2A), indicating that
state representations during RL are modulated by attention. Moreover, the SA-RL model’s attention
weight parameter (Φ) captured meaningful behavioral differences (Fig. 2B/C), reflecting individual
differences in how participants represent the task environment (Fig. 2D).
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Figure 3: OFC and LPFC HGA consistently
encode model-based value signals across partic-
ipants. A. Normalized power for one exem-
plar participant (OFC= 10 electrodes; LPFC=
12 electrodes) separated by reward (t = 0 is
choice/reward). B. Reward was significantly en-
coded in LPFC (β = −0.70, z = −2.10,
p < 0.05) but not OFC (β = −0.19, z =
−1.11, p > 0.05) HGA. C. Normalized power
for one exemplar participant (OFC= 6 electrodes;
LPFC= 5 electrodes) separated by EV (t = 0 is
choice/reward). D. EV was significantly encoded
in LPFC (β = −1.33, z = −3.25, p < 0.01)
and OFC (β = −1.03, z = −5.48, p < 0.001)
HGA, indicating a consistent neural representa-
tion of model-based value in both regions.

Model-based state features encoded in
shared neural representations: We exam-
ined local encoding of two key RL features:
model-free reward and model-based choice EV.
To assess the consistency, or representational
similarity, of encoding across participants, we
ran multivariate regression on each electrode,
predicting trial-averaged HGA power from re-
ward outcome, relevant dimension, and chosen
features. We generated a null distribution (1000
permutations) and computed z-scored reward β
coefficients for each region. Comparing these
to an intercept-only model with participant as
a random effect, we found significant reward
encoding in LPFC HGA, but not in OFC HGA
(LPFC: β = −0.70, z = −2.10, p < 0.05;
OFC: β = −0.19, z = −1.11, p > 0.05;
Fig. 3A/B). These results suggest that reward
encoding in LPFC is relatively homogeneous
across participants, giving rise to a consistent
group-level effect. In contrast, OFC does not
exhibit a consistent encoding profile, likely
due to heterogeneity in response direction or
magnitude across neural populations. Thus,
the absence of a significant group-level effect
in OFC may reflect divergent representational
formats, rather than a lack of reward sensitivity.

To test whether OFC and LPFC encode model-
based state features consistently across partic-
ipants, we replaced the reward regressor with
expected value (EV) from the SA-RL model,
controlling for relevant dimension and chosen
features. Unlike reward, EV is internally computed through learning and reflects a participant’s be-
lief about expected outcomes. While EV and reward are correlated, using EV allows us to dissociate
reactive outcome responses from features of proactive, belief-driven state representations. Because
EV captures internal states shaped by learning and attentional strategy, it offers a more sensitive
measure of how brain regions organize and maintain task-relevant information, and whether they
share representational formats across individuals.

Both LPFC and OFC HGA demonstrated significant and consistent encoding of EV at the group
level (LPFC: β = −1.33, z = −3.25, p < 0.01; OFC: β = −1.03, z = −5.48, p < 0.001;
Fig. 3C/D) indicating homogeneity in the neural representation of model-based value estimates
in these regions across participants. In contrast, two control regions, insula and anterior cingulate
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cortex, did not exhibit the same consistency in EV encoding (Fig. S1), underscoring the specificity
of representational similarity between OFC and LPFC in the context of this RL task.

The observed similarities in OFC and LPFC’s HGA EV encoding suggest that, despite their differ-
ent roles, these regions participate in a coordinated representational system that tracks belief-driven
value signals necessary for maintaining adaptive state representations to guide flexible decision mak-
ing (Cai & Padoa-Schioppa, 2014; Balewski et al., 2023; Rich & Wallis, 2016; Wilson et al., 2014;
Schuck et al., 2016). This cross-region similarity suggests representational alignment at the neural
level, pointing to a common computational format for encoding task-relevant information. By gen-
erating interpretable latent variables, this cognitive model-based approach sheds light on represen-
tations that are shared between regions, offering a framework to measure representational alignment
at the neural level (Sucholutsky et al., 2024).
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Figure 4: LPFC value signals are bi-
ased by attention. A. Significant rela-
tionship between selective attention (Φ)
LPFC EV encoding (β = −5.68, z =
−2.19, p < 0.05). B. No significant
relationship between selective attention
(Φ) and OFC EV encoding (β = −1.23,
z = −0.65, p > 0.05).

Parameterized Selective Attention Captures Individu-
als Differences in Local Features of Neural Represen-
tations: To assess individual differences in state repre-
sentations across participants, we regressed the z-scored
EV β coefficients against the SA-RL model’s fitted se-
lective attention (Φ; random effect = participant). We
found selective attention selectively modulated LPFC EV
encoding (LPFC: β = −5.68, z = −2.19, p < 0.05,
Fig. 4A; OFC: β = −1.23, z = −0.65, p > 0.05, Fig.
4B). Participants who deployed similar strategies showed
more similar LPFC representations of EV, indicating that
subject-level computational alignment is mirrored in neu-
ral population activity. This finding highlights LPFC’s
role in directing attention to relevant information. Fur-
thermore, we confirmed that this effect was not attributed
to electrode placement (Fig. S2). By operationalizing
latent selective attention, we reveal individual differences
in neural state representations linked to task performance.

Shared Neural Representations Exhibit Coordinated Temporal Profiles: Next, we investigated
the temporal alignment of OFC and LPFC’s EV-based state representations. Time-resolved multi-
variate regression was performed on each electrode (Fig 5B), and the time point corresponding with
the strongest β coefficient for EV predicting HGA in each region was extracted. We found no sig-
nificant difference in peak EV encoding between the regions (D(159, 111) = 0.18, p > 0.05; Fig.
5C). These findings suggest that OFC and LPFC exhibit temporally aligned EV encoding profiles,
priming them for functional coordination (Enel et al., 2020).
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Figure 5: Similar temporal dynamics of OFC and
LPFC EV encoding. A. HGA power across all
OFC (red) and LPFC (blue) electrodes (shading
= SEM, dashed line = choice/reward). B. Mean
EV β coefficient across time for OFC (red) and
LPFC (blue; shading = SEM). C. Peak EV encod-
ing times for HGA in OFC (red) and LPFC (blue)
showed no significant difference (D(159, 111) =
0.18, p > 0.05; dashed = choice/reward).

Parameterized Selective Attention Captures
Individuals Differences in Inter-regional
Features of Neural Representations: Next,
to understand how the OFC and LPFC’s inde-
pendent EV-based representations are coordi-
nated to support adaptive behavior, we focused
on theta connectivity, given its role in inter-
regional synchrony that facilitates sustained,
selective attention (Fries, 2023; Landau et al.,
2015). First, we examined the presence of theta
oscillations (Fig. S3). Then, we measured di-
rected LPFC-OFC theta connectivity using nor-
malized PSI, comparing it to a null distribu-
tion (500 permutations) for high and low EV
trials. PSI measures the slope of the phase dif-
ference between signals, capturing the direction
and strength of phase coupling. Positive PSI

values indicate information flow from one region to another, while negative values suggest the re-
verse direction. PSI was computed for high and low attention participants, based on SA-RL attention
weights (Φ), to assess individual differences in LPFC-OFC connectivity based on attentional strat-
egy.
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A temporal shift in LPFC-OFC connectivity, linked to attention, was observed using a two-sample
cluster test (500 permutations), with increased selective attention driving a shift from post- to pre-
choice LPFC-OFC theta connectivity (Fig. 6A). The attention-modulated timing of LPFC-OFC
coordination reflects its adaptive role in RL (Cai & Padoa-Schioppa, 2014), with neural mechanisms
varying based on attentional state. In high attention individuals, LPFC-OFC connectivity peaks pre-
choice, while in those with lower attention, it shifts post-choice, reflecting greater need for outcome-
driven updating and attention switching in individuals with more distributed attention across state
features.

Model-free attention splits (reaction time, performance) revealed LPFC-OFC theta connectivity
(Fig. 6B), but lacked the temporal specificity of model-based attention. This finding highlights
the utility of model-based neural analyses for revealing dynamics of shared neural representations
in individuals using similar computational strategies for adaptive decision-making.

4 CONCLUSION

Time (s)

Fast RT

Slow RT

Better performance

Worse performance

Time (s)

-1.5
-1.5

0.0 0.0
1.5 1.5

LP
FC

-O
FC

th
et
a
P
S
I

(z
-s
co
re
)

LP
FC

-O
FC

th
et
a
P
S
I

(z
-s
co
re
)0.0

0.0

0.0

0.0

-0.25

0.25

-0.50

0.50

0.50

High EVLow EV

0.50

0.0

Low selective attention (Φ)High selective attention (Φ)

Time (s) Time (s)
-1.5 -1.50.0 0.01.5 1.5

LP
FC

-O
FC

th
et
a
P
S
I

(z
-s
co
re
)

LP
FC

-O
FC

th
et
a
P
S
I

(z
-s
co
re
)

-0.25

0.0

0.25

-0.50

Model-based attention estimate

Model-free attention correlates

A.

B.

Figure 6: Model-based attention captures EV-based dif-
ferences in LPFC-OFC connectivity. A. Participants were
grouped into high (n=10) and low (n=11) attention based on
SA-RL selective attention (Φ). Theta PSI was computed for
high (light purple) and low (dark purple) EV trials. Greater
attention shifted LPFC-OFC theta connectivity from post-
to pre-choice (gray = significant cluster, p < 0.05). B. Me-
dian splits by reaction time (left) and performance (right)
showed significant clusters (p < 0.05, gray), but lacked the
temporal precision seen with model-based attention.

Leveraging cognitive modeling and
iEEG to measure representational
alignment, we identified shared com-
putational strategies across individ-
uals reflected in convergent neural
representations across brain regions.
Alignment was strongest among par-
ticipants with similar cognitive strate-
gies (Sucholutsky et al., 2024), sug-
gesting that cognitive model-based
metrics provide valuable insight into
shared neural representations across
biological systems. We operational-
ized neural representational align-
ment as the similarity in spectral
and temporal properties of HGA EV
encoding across brain regions and
individuals. OFC and LPFC en-
coded model-based EV with compa-
rable time–frequency signatures, sug-
gesting a shared representational for-
mat across anatomically distinct re-
gions. At the individual level, par-
ticipants with similar model–derived
attention strategies exhibited more
similar LPFC encoding patterns and
LPFC–OFC theta-band connectivity.

While this approach offers novel insights into representational alignment, several limitations remain.
The SA-RL model isolates the role of selective attention in value learning but does not capture other
cognitive processes, potentially oversimplifying real-world decision-making. Although spectral and
temporal features provide a rich description of neural dynamics, our findings are correlational and
do not establish causal links between cognitive strategies and neural encoding.

Nonetheless, our results show that parameters derived from cognitive models capture individual dif-
ferences in behavioral strategies and predict corresponding variations in neural population dynam-
ics. Using the SA-RL model, we discovered latent organizational principles that give rise to aligned
representations across individuals and circuits. This integrative approach offers a framework for
linking internal computational states with neural population activity, showing how shared cognitive
strategies can lead to convergent representations across different brain regions and individuals. By
identifying the neurocomputational principles behind aligned representations that relate to adaptive
behavior in complex, real-world environments, we provide insights relevant for understanding and
developing intelligent systems.
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A APPENDIX
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Figure S1: ACC and insula HGA do not consistently encode model-based value signals across
participants. A. Electrode locations (black) in the ACC (pink, 123 electrodes) and insula (purple,
101 electrodes) across 21 iEEG participants. B. Using the same regression approach as in Fig.
3D, we tested whether ACC and insula trial-averaged HGA consistently encoded EV of choice
(controlling for relevant dimension and chosen features). As expected, neither region significantly
encoded EV (ACC: (β = 0.13, z = 0.74, p > 0.05); insula: (β = 0.30, z = 1.60, p > 0.05),
suggesting that, unlike OFC and LPFC, ACC and insula do not exhibit a consistent representation
of model-based value.
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Figure S2: LPFC’s attention-modulated value signals are not driven by variability in electrode place-
ment. To rule out the influence of individual differences in electrode placement, we repeated the
analysis from Fig. 4A, this time regressing EV β coefficient z-scores against participants’ A. aver-
age MNI x-axis coordinate and B. average MNI y-axis coordinate for LPFC electrodes, with partic-
ipant as a random effect. The analysis confirmed that electrode placement does not account for the
observed effect (MNI x-axis: β = 0.01, z = 0.70, p > 0.05; MNI y-axis: β = 0.02, z = 0.97,
p > 0.05).
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Figure S3: Theta oscillations detected in OFC and LPFC recordings. A. Power spectral density
(PSD) for OFC (5 electrodes; shading = SEM) showing a peak in the theta range (2-8 Hz) in an
exemplar patient. B. Power spectral density (PSD) for LPFC (9 electrodes; shading = SEM) also
revealing a peak in the theta range, indicating the presence of oscillations in this frequency range.
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