
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

MAML: Towards a Faster Web in Developing Regions
Anonymous Author(s)∗

Abstract
Theweb experience in developing regions remains subpar, primarily
due to the growing complexity of modern webpages and insufficient
optimization by content providers. Users in these regions typically
rely on low-end devices and limited bandwidth, which results in a
poor user experience as they download and parse webpages bloated
with excessive third-party CSS and JavaScript (JS). To address these
challenges, we introduce the Mobile Application Markup Language
(MAML), a flat layout-basedweb specification language that reduces
computational and data transmission demands, while replacing the
excessive bloat from JS with a new scripting language centered
on essential (and popular) web functionalities. Last but not least,
MAML is backward compatible as it can be transpiled to minimal
HTML/JavaScript/CSS and thus work with legacy browsers. We
benchmark MAML in terms of page load times and sizes, using a
translator which can automatically port any webpage to MAML.
When compared to the popular Google AMP, across 100 testing
webpages, MAML offers webpage speedups by tens of seconds
under challenging network conditions thanks to its significant size
reductions. Next, we run a competition involving 25 university
students porting 50 of the above webpages to MAML using a web-
based editor we developed. This experiment verifies that, with little
developer effort, MAML is quite effective in maintaining the visual
and functional correctness of the originating webpages.

1 Introduction
The modern web has undergone a profound transformation over
the past decade, largely driven by the proliferation of client-side
interactions and the widespread adoption of development frame-
works such as React [48] and Angular [33]. While these frameworks
were originally intended to handle large-scale, feature-rich appli-
cations, they have increasingly become default choices even for
smaller, less complex projects. As a result, the very nature of web
complexity has shifted, as what used to be a basic interface element
is now part of a large library, importing excessive stylesheets and
scripts. This web “bloat” has been further exacerbated by the wide-
spread use of third-party scripts from content delivery networks
(CDNs), analytics services, and other external resources. Butkiewicz
et al. [10] showed that, on average, modern web pages rely on at
least 5 non-origin sources, contributing to more than 35% of the
total bytes downloaded.

In addition to heavier resource demands, modern web applica-
tions often present intricate Document Object Model (DOM) trees,
which require browsers to perform intensive computations to find
and update individual elements—a process collectively known as
“reflows and repaints”. Although best practices to avoid these com-
plex computations are proposed [22, 45, 47], the fundamental issue
of web complexity persists. This growing complexity is not merely

WWW ’25, April 28–May 02, 2025, Sydney, Australia
2018. ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

a technical concern—it poses a direct challenge to users in devel-
oping regions, where low-end smartphones and limited internet
infrastructure dominate. With the need for efficient bandwidth use
and resource optimization, these users are often excluded from fully
benefiting from modern web experiences, which tend to cater to
high-end devices and fast, stable internet connections.

Recognizing these challenges, developers and organizations are
increasingly advocating for more streamlined web development
strategies. Notable initiatives such as Google AMP [3], Facebook
Instant Articles [4], and SpeedReader [26] change a webpage’s
layout to optimize the display and functionality of its components.
Additionally, research works [11, 42, 50] focus on optimizing the
DOM tree to reduce its depth and complexity, thereby enhancing
overall page performance. However, these methods still heavily
depend on resource management and JavaScript (JS) execution,
which can adversely affect performance, especially on devices with
limited processing power.

This paper proposes MAML (Mobile Application Markup Lan-
guage), a new mobile web specification language designed to speed
up webpages in developing regions. MAML is based on three core
founding principles. First, it adopts a “flat” DOM structure, using
absolute positioning to place elements relative to the viewport,
thereby reducing computational complexity and eliminating depen-
dencies on surrounding elements. Second, it introduces a new script-
ing language to eliminate excessive bloat from JS, focusing only on
essential functionalities to reduce complexity and avoid unneces-
sary code. Third, it supports transpilation to minimal HTML/JS/CSS,
thus making it backward compatible with today’s web ecosystem.

We developed a web-based MAML editor to assist developers
in creating webpages that conform to MAML specifications. Addi-
tionally, we developed a translator that automates roughly 65% –
empirically estimated in our study – of the manual tasks required to
convert existing webpages into MAML. The remaining 35% mostly
relates to page interactions triggered via human inputs, which
can be easily implemented via our visual editor. MAML trans-
lator further supports transpiling MAML code back to minimal
HTML/JS/CSS, so that it can be served and rendered by today’s
browsers. MAML translator can thus be adopted by CDN providers
or acceleration proxies like [28] and [5] to improve their users
experience by serving MAMLed webpages.

We use the MAML translator to convert existing pages to MAML
and benchmark MAML on user QoE and bandwidth savings com-
pared to Google AMP, and visual similarity of MAML webpages
compared to the original webpages. We find that MAML pages load
significantly faster across all timing metrics and generates a median
data saving of 1 MB compared to AMP and 2.4 MB compared to
the original. In addition, MAML outperforms AMP by up to 30% in
terms of visual similarity. Next, we conduct a competition among
computer science students to customize MAML pages using our edi-
tor verifying that webpages converted to MAML format outperform
on all timing metrics and consume less data, which is particularly
beneficial in bandwidth-constrained regions.

1

https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 Background and Related Work

Challenging Network Conditions. Poor web performance for
users in developing regions can be triggered due to network-induced
delays. Zaki et al. [53] showed that developing regions like Ghana
suffer from long page load times due to HTTP redirects, DNS
lookups, and TLS/SSL connection setups. Koradia et al. [38] demon-
strated that cellular data connectivity in India suffers from signif-
icantly high latencies of up to 1,200 ms. Chen et al. [18] showed
that, in bandwidth-constrained environments, TCP flows experi-
ence severe unfairness, high loss rates, and flow silences due to
repetitive timeouts, resulting in poor web performance. Other stud-
ies have pointed out traffic engineering and lack of infrastructure
as reasons for high delays [15, 25, 27, 32]. Feamster et al. [21] have
also demonstrated that in South Africa, despite the presence of web
caches, users experience high latencies because the connectivity
within the country is still limited.
Web Complexity. The complexity of webpages is another issue
behind the high page load times in developing regions. Indeed,
modern webpages consist of a large number of web elements hosted
across several domains. Butkiewicz et al. [10] have shown that more
than 60% of webpages request data from at least 5 different non-
origin sources, contributing to more than 35% of the overall page
size. Furthermore, a modern browser must fetch and render several
objects, including HTML, JS, CSS, and images, forming a complex
object dependency graph [11, 42, 49]. Every modification to the
DOM—whether through adding or removing elements, changing
attributes, altering classes, or executing animations—triggers the
browser to recalculate styles and adjust part or all of the layout,
collectively referred to as "reflows and repaints." This requires the
browser to match selectors against the elements in the DOM to
determine which CSS rules apply. This resource-intensive operation
can significantly slow down a webpage load, especially on low-end
devices which are common in developing regions.
Absolute Position-Based Web Development. An approach that
avoids the constraints of the DOM structure is “absolute position-
ing” [40]. Absolute position-based web development is generally
viewed with caution and used by developers only when required. It
leverages CSS’s absolute positioning to place elements with precise
control, allowing designers to position elements relative to the view-
port. This approach can create complex layouts more easily, but
it also introduces challenges related to responsiveness. Elements
positioned absolutely are removed from the normal document flow,
meaning they do not adapt to changes in the surrounding compo-
nents or viewport size. As a result, reliance on absolute positioning
can complicate the standardization of layout processes. Neverthe-
less, absolute positioning enables the creation of a “flat” DOM
layout, modularizing the components and enabling a more efficient
means of searching and updating elements on the viewport.
Optimizations. Several techniques have been proposed to optimize
web browsing over challenging networks, including network-level
optimizations, caching techniques, and content distribution mecha-
nisms [16, 17, 19, 20, 35, 46]. Recent works [11, 42, 50] have focused
on the complexity of webpages and suggested different approaches
to address them. Many solutions have been proposed to optimize

the usage of JS in modern webpages [13, 14, 39], especially focusing
on identifying and blocking unused and non-essential JS code.

From a product perspective, Google AMP [3] rewrites web-
pages with new HTML tags and elements; Facebook Instant Arti-
cles [4] enables publishers to create fast and interactive articles; and
Opera mobile browser [5] compresses pages by about 90% on Opera
servers before they are transferred to the client’s device, rendering
them faster by 2-3 times. Google Web Light [28], though discontin-
ued, served a similar goal by transforming heavy web pages into
lightweight versions to enhance performance on slower networks.
SpeedReader [26], unlike traditional reader modes, integrates di-
rectly into the rendering pipeline to improve both performance and
privacy by stripping unnecessary elements before rendering.

MAML fundamentally differs from the above approaches in that
it pre-compiles pages to simplify their HTML representation, elimi-
nating recursive handling of objects and simplifying the DOM to a
flatter layout with absolute positioning while maintaining the orig-
inal functional equivalence. We believe that reliance on HTML, JS,
and CSS is the underlying problem, and none of the above solutions
tackles this fundamental issue.

3 Motivation and Challenges
It is known that webpage complexity has significantly increased
in the past few years [44]. However, the impact of this on users
in developing regions with low-end mobile devices and limited
network connectivity has not been given sufficient attention. To
assess today’s webpage complexity issues, we identified 100,000
websites of developing regions from the Chrome User Experience
Report (CrUX) dataset [23]. We gathered data for ten developing
countries (10,000 webpages per country) classified as the ten most
populous “developed” nations by the IMF [34]. To classify websites
by country, we used the domain’s Whois information, and the
country’s top-level domain (e.g., .pk for Pakistan).

We measured these websites using Google Lighthouse [1], an
open-source tool for audits across multiple dimensions like web-
page performance and composition. Specifically, we gathered the
following metrics: speed index, number of DOM elements, maxi-
mum number of DOM depth between all children inside the <html>
tag, number of stylesheet requests, number of script requests, total
CSS size, and total JS size. A low-end mobile device was emulated to
access the sites using Lighthouse [1], with network conditions set
to 3G Fast (1.6 Mbps downlink/768 Kbps uplink with 150ms RTT).
This network condition is the “average” network configuration that
we used in our benchmark evaluation (see Section 6).

Figure 1 shows a radar-plot of the aforementioned metrics, cate-
gorizing each metric according to Lighthouse’s color coding scheme
of speed indexes [30], a metric measuring how quickly a webpage
is visually complete above-the-fold. A value in the range of 0 to
3.4 sec is classified as green, indicating optimal performance. A
value between 3.4 and 5.8 sec is classified as orange, suggesting
moderate performance with potential areas for improvement. A
value greater than 5.8 sec is categorized as red, indicating poor
performance that requires immediate attention and optimization.

Our evaluation shows that 47.3% of webpages fell in the red
region (i.e., speed index > 5.8 sec), 28% in the orange, and 24.6%
in the green region. The median number of DOM elements in the

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

MAML: Towards a Faster Web in Developing Regions WWW ’25, April 28–May 02, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

 Max.
 DOM

 Depth

 No. of DOM
 Elements

JS
Size
(KB)

CSS
Size
(KB)

No.
of Script
Requests

No.
 of Stylesheet

 Requests

 Max.
 DOM

 Depth
13

259
164

30

7 3

15

593
494

72

16 7

17

870910

144

26 11
Speed Index

0-3.4 sec
3.4-5.8 sec
> 5.8 sec

Figure 1: SI versus median complexity metrics as measured
via Lighthouse for 100k developing regions websites.

red region is 910, with a median of 26 script requests. The median
maximum DOM depth is 17 and is consistent across other speed
index categories. Additionally, the median size of JavaScript is 6.3
times larger than that of CSS.

These findings underscore the critical nature of web performance
issues: as the webpage complexity and heavy reliance on JS frame-
works increases, greater memory allocation and computational
resources are required for DOM manipulations and CSS recalcula-
tions, thereby elongating the rendering cycle and degrading user-
perceived performance. In turn, the speed index deteriorates, lead-
ing to a slower loading time and a detrimental user experience. On
low-end mobile devices with limited resources, which are domi-
nant in developing regions, the impact of this becomes even more
pronounced. These devices, constrained by slower processors and
less RAM, struggle with the increased computational load, leading
to longer page load times and more frequent browser crashes or
unresponsive webpages. In essence, this correlation indicates that
work is rather necessary to fundamentally redefine how webpages
are created, ensuring efficiency across all device types in all regions.

4 The MAML Language
This section introduces MAML, an innovative web specification
language designed to enable the creation of fast-loading webpages
while maintaining simple interactive features.

4.1 Design Principles
MAML follows several design principles rooted in the desire to
reduce complexity and optimize performance. At its core, MAML
seeks to create a more intuitive and straightforward way to build
web applications, achieving two key objectives: 1) less development
overhead, and 2) faster load times in areas with slow internet, where
saving bandwidth is crucial for lowering costs. We plan to achieve
this through the following principles:
Flat DOM: Hierarchical DOM trees, as present in today’s web, in-
volve complex layout recalculations that can strain low-powered
devices. To solve this problem, MAML adopts a flat DOM approach,
which minimizes the depth of the DOM tree and reduces com-
putational complexity. Elements are placed in absolute positions
(see Section 2) relative to the viewport, and their layout and style

configurations do not depend on surrounding elements. This simpli-
fication is particularly beneficial for devices with limited processing
power as it eliminates the need for complex layout recalculations.
To solve the challenge of responsiveness to dynamic screen sizes,
we use a proportional scaling technique to reposition and rescale
elements appropriately across different viewports.
Bloat Avoidance: Modern webpages often include large amounts
of unnecessary code, such as unused CSS or complex JS libraries.
MAML avoids this by limiting the range of supported attributes
and completely cutting off JS, thereby avoiding useless page bloat
and complexities by only focusing on essential functionalities.
Backward Compatibility: MAML aims to be backward compati-
ble with today’s Web and thus run on legacy browsers. Accordingly,
we require that MAML can be transpiled1 to regular, but minimal,
HTML/JavaScript/CSS, and can thus be easily adopted by develop-
ers integrating it directly into their development workflows.

4.2 Flat DOM

Data Structure: MAML introduces a new format for writing web-
pages based on a flat DOM, where each element retains necessary
information and attributes related to itself in a self-contained dic-
tionary representation. Each element is a hash map containing
key-value pairs, where the key is the element’s property and the
value is the property’s assigned value. The use of a hash map data
structure ensures that accessing the value of a property has a time
complexity of O(1). The resulting MAML file (or the MAML version
of a webpage) is a collection of MAML data structures separated
by a newline character (\n) and has an extension of .maml.

In the example below, the MAML page has a single element of
type “image”, with attributes related to the position of where that
image should be displayed on the webpage viewport (i.e., the x
and y coordinates of the upper left corner pixel of the image). In
addition, MAML also specifies the z coordinate to establish element
order in terms of depth, whereas the size of the displayed element
is represented by the width (w) and height (h). Finally, the image
element also specifies the URL to the image source as well as the
alternative text.

{"type":"img","w":268,"h":31,"x":336,"y":15,"z":1,
"src":"https://example.com/img/abc.webp",
"alt":"Alternate Text","fit":"fill"}

Supported Elements. MAML supports a wide variety of webpage
components, including Text, Shape, Text Field, Button, Dropdown,
Image, Carousel, Video, and Script. These elements cover every-
thing from basic textual content and geometric shapes to interactive
components like buttons and text fields, as well as media content
such as images, carousels, and videos. Each element has several
mandatory properties, as shown in Table 1, along with their descrip-
tions. Based on the type of element, each MAML element includes
its own specific set of additional properties, which are detailed in
Table 2. MAML also incorporates MAMLScript (see Section 4.3), a
scripting language tailored for dynamic content manipulation.

1Transpilation is the process of converting source code from one high-level program-
ming language to another.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Property Description
type type of element

x x-position of element in pixels
y y-position of element in pixels
z z-position of element as integer
w width of element in pixels
h height of element in pixels

display whether to make the item visible or not
Table 1: Mandatory properties of MAML elements.

Element Available Properties
text id, text, fontFamily, textAlign, fontSize, color, fontStyle,

fontWeight, display
shape id, backgroundColor, borderRadius, display

text-field id, placeholder, backgroundColor, display
button id, text, display

dropdown id, options, display
image id, src, objectFit, display

carousel id, srcs, display
script code
Table 2: Additional properties of MAML elements.

Dynamic Positioning. The web today is inherently dynamic, with
users accessing content on a wide range of screen sizes and resolu-
tions. Designing for this variability requires adaptable layouts that
maintain visual consistency across all devices.

MAML employs a proportional scaling approach to position and
scale elements properly across different viewports. Each MAML
file includes a viewport_width property at the top, which spec-
ifies the width of the original viewport on which the page was
designed. Height is not required because scaling based on width
alone maintains the aspect ratio, ensuring that elements do not
become distorted. Additionally, responsive design principles pri-
oritize width for layout adjustments, while height can vary based
on the content within elements. If an element has original coordi-
nates (𝑥,𝑦) and dimensions (𝑤,ℎ) on the original screen, they are
scaled according to the new scaling factor, maintaining the relative
proportions. The scaling factor (𝑆) is calculated as:

𝑆 =
Woriginal

Wnew

where Woriginal is the width of the original viewport, and Wnew is
the width of the new viewport. The width and the 𝑥 position are
updated as follows:

𝑥 ′ = 𝑥 × 𝑆

𝑤 ′ = 𝑤 × 𝑆

We do not need to update the y position and the height, as browsers
support scrolling until the end of the page.

The value of viewport_width is retrieved via a simple JS prop-
erty window.innerWidth injected into the HTML transpiled from
MAML (see section 5.2). After the page fully loads, the JS code
updates the inline CSS width and left properties of each element
within the body tag by multiplying them by the scaling factor (𝑆).

4.3 MAMLScript
One of MAML’s design principles is to avoid webpage bloat via
complete JS removal, similar to Brave’s “block script” feature2. The
side effect of this aggressive strategy is a lack of page interactivity
which can severely hinder the user experience. In order to provide
some page interactivity, we design a simpler scripting language,
MAMLScript, that efficiently supports a limited but popular set of
JS functionalities.

MAMLScript is included at the end of a MAML file within a script
element that has a property named code. The value of this property
contains the MAMLScript code. When the MAML file is parsed,
this element gives information about the dynamic updates applied
to various elements. This method simplifies the mapping of actions
to specific page components, thus facilitating a more streamlined
interactivity framework, as can be seen in the following example:

{
"type":"script",
"code":"MAMLScript is included here."

}

Supported Functionalities: MAMLScript only supports popular
JS functions, which we identify by analyzing the most frequently
used interactive features across popular websites that rely on JS.
Our analysis is performed manually due to the lack of a tool ca-
pable of accurately assessing interactive elements, which often
require contextual understanding and nuanced evaluation. We ana-
lyze 100 websites with most visitor traffic and page views according
to Amazon’s Alexa Web Ranking service [9]. While a sample size
of 100 may seem limited, it serves as a valuable indicator of the
primary features that are essential for user interaction across di-
verse platforms. Moreover, Alexa’s ranking is globally inclusive,
representing a broad spectrum of sites, including those from devel-
oping regions, such as China’s qq.com and sohu.com, as well as
Indonesia’s okezone.com. With the potential for open-source con-
tributions, there is an opportunity for the community to expand on
this evaluation, allowing for a more comprehensive understanding
of interactive functionalities over time.

Our analysis works as follows: 1) identify components that
change automatically, 2) hover over various parts of the page, and 3)
interact through clicks. When a noticeable visual change occurs, we
verify whether it was JS related and, if so, include it in our dataset.
After inspecting these 100 websites, we identify the most common
interactive features, seven of which are currently supported by
MAML: 1) drop-down menus, 2) infinite scroll (loading new con-
tent when reaching the bottom), 3) video players, 4) image carousels,
5) elements that appear after scrolling past a certain point, 6) count-
down timers, and 7) notification pop-ups. Beyond those, we found
other frequently used features like 8) scroll-triggered animations, 9)
auto-animations, 10) theme-toggle buttons, and 11) video previews
activated by hovering over thumbnails. MAMLScript currently does
not support these features, but can be added in the future.
Structure: MAMLScript closely mirrors familiar programming con-
structs found in languages like JS, making it accessible to a broad

2https://community.brave.com/t/brave-shields-and-js-blocking/509941

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

MAML: Towards a Faster Web in Developing Regions WWW ’25, April 28–May 02, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Listener Usage
click on(“click”, element_id) { [triggers...] }

change on(“change”, element_id) { [triggers...] }
keydown on(“keydown”, element_id, key_name) { [triggers...] }

reach on(“reach”, element_id) { [triggers...] }
timer on(“timer”, seconds) { [triggers...] }
Table 3: MAMLScript listeners and their usage.

Trigger Usage
val val(element_id);

show show(element_id);
hide hide(element_id);
swap swap(content, element_id);

Table 4: MAMLScript triggers and their usage

range of developers. This design choice not only reduces the learn-
ing curve but also enables developers to leverage their existing
coding skills when working with MAML files.

on("click", "button1") {
show("image2");
hide("image1");
swap(val("input3"), "text3");}

Above, we show a MAMLScript which configures a sequence
of actions to be executed in response to a click event on “but-
ton1”. Upon activation, the script first makes “image2” visible us-
ing the show(“image2”) trigger. Then, it hides “image1” from
view with the hide(“image1”) trigger, ensuring that “image2”
takes its place on the screen. Finally, the script swaps the text of
“text3” to the value of the text input field “input3” using the
swap(val(“input3”), “text3”) trigger.
Listeners and Triggers:MAMLScript uses an Event-Driven Pro-
gramming (EDP) paradigm. Each functionality is determined via a
listener followed by one or more triggers. In the above example, on
is used to listen to an event “click” on element id “button1”. Three
functions (show, hide, and swap) are then triggered on “image2”,
“image1”, and “text3” one by one. Additionally, MAMLScript sup-
ports nested triggers—triggers that return values can be used as a
value for another trigger, as illustrated by the swap and val triggers
used together in the same example. Table 3 and 4 show the available
listeners and triggers along with their usage.

5 MAML Backward Compatibility
Backward compatibility is the final founding principle of MAML
(see Section 4.1). This principle translates into support of transpiling
from MAML into HTML/JS/CSS. MAML achieves this by using the
MAML “translator” (see subsection 5.2). The translator sequentially
converts each line of a MAML file into an equivalent HTML com-
ponent including its attributes and inline CSS styles. For example,
a MAML element defined as an image will be translated into an
HTML tag with appropriate attributes such as id, src, and
inline styles. It finally converts MAMLScript to JS by sequentially
parsing listeners and triggers and writing the equivalent JS code
that handles events and interactions defined in the MAMLScript.

Figure 2: MAML editor’s user interface featuring a) canvas of
size 1200×800px; b) toolbar; c) import MAML file or existing
url to translate; d) download a .maml file of the current design
e) save & preview the resulting HTML version of the page; f)
add interactivity using drag-and-drop listeners and triggers.

To easily integrate MAML into a developer workflow, we have
also developed a MAML editor (see subsection 5.2) based on a drag-
and-drop interface mimicing other popular web editors, such as
Wix [52], Elementor [24], Webflow [51], etc.

5.1 Editor
The MAML editor (see Figure 2) is a web application designed for
both experienced and inexperienced web developers. The editor
features a drag-and-drop interface to design the layout of a webpage
and add interactivity to its elements.
User Workflow. Once users log in to the web-based MAML editor,
they can: 1) create a MAML page from scratch; 2) import an existing
.maml file from their local machine and customize it; or 3) import
a URL that gets converted into the MAML format using the MAML
“translator” (see subsection 5.2). To design the page layout, users can
drag and drop elements from the sidebar onto themain canvas. Once
an element is dropped, users see options to change the position,
styles, and additional properties of the element.

To add interactivity to the elements, users can use the “interac-
tivity designer”. Users are required to drag and drop listeners and
triggers to add event-driven behavior to the elements. For example,
a user can set up a button to hide a specific image when clicked. The
interactivity designer provides a visual interface for defining these
interactions, making it easy for users to add dynamic functionality
to their webpages. Once the page is complete, users can either: 1)
export the page into a MAML file; or 2) export/preview an HTML
version of their page converted using the MAML “translator”, along
with images zipped into the same output.
Implementation. We implemented the MAML editor as a web ap-
plication that can run on any web browser. We used a microservices
architecture, primarily consisting of a User Interface (UI) developed
using Next.js and TypeScript, a Node.js API service to han-
dle APIs and authentication, a MongoDB database for data storage,
and a translator developed using Python and Selenium [6] for
converting existing webpages into the MAML format.

Figure 2 shows a sample screenshot of the MAML editor user
interface. On the back end, we implemented a web server, which is
primarily responsible for managing APIs that facilitate several key
functions: a) users’ authentication, b) image(s) uploading, c) page

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

translation, and d) saving the pages, enabling users to continue
their work from where they left off.

5.2 Translator
TheMAML “translator” is designed to streamline the process of con-
verting existing webpages into MAML, and vice-versa. The trans-
lator can transpile MAMLScript to JS, but not JS to MAMLScript,
due to the complexity of JS, and the need of some human interac-
tion to identify and trigger the set of functions needed. For this
task, the translator is paired with the editor while controlled by a
developer. An interesting avenue of future work is to explore the
role of artificial intelligence in further automating the translator
functionalities [8].

Given a webpage URL or local source code, the MAML translator
initiates a SeleniumGoogle Chrome instance and loads the specified
webpage. To ensure that all resources, especially those with lazy
loading, are fully loaded, the translator performs a sequential scroll
through the entire webpage, and then returns to the top. Once the
entire webpage has loaded, the translator conducts a Depth-First
Search (DFS) of all HTML elements on the page and extracts the
necessary information from them. For each supported element, the
translator converts it into the corresponding MAML format while
simultaneously recording the element’s two-dimensional layout
coordinates (x, y) on the page, dimensions (w, h) and its hierarchical
positioning in terms of stacking order relative to other elements (z
value). The x and y values are used for absolute positioning. The
generated MAML file is then stored on the back-end server, and its
corresponding public URL is returned in the API response, enabling
it to be imported into the editor’s user interface.

Although the MAML translator effectively handles many stan-
dard HTML elements, it currently struggles to accurately capture
dynamic components, such as carousels and animated elements.
These elements can update in real-time, but the translator only
takes snapshots at specific moments, often missing transient states.
Additionally, it does not fully represent animation and transition
effects, as it might capture elements before their animations com-
plete. Furthermore, the translator has limitations in capturing CSS
properties defined at the parent level, such as content alignment
and growth properties of child elements within a flex container.
The MAML translator also encounters challenges with components
that heavily rely on JS for rendering. These limitations indicate
significant areas for further improvements.

6 MAML Benchmarking
This section benchmarks MAML with respect to: 1) user QoE mea-
sured with web performance metrics, 2) bandwidth savings, and
3) similarity with the originating webpage. We compare MAML
webpages with both original and Google AMP [3] webpages, which
was selected among the existing optimization tools since used by
popular websites (e.g., today.com and bbc.com); further, it shares
MAML’s core principles (see Section 4.1). In the remainder of this
section, we detail our methodology and present our analysis.
Methodology.We start by identifying a set of testing webpages.
Given any webpage can be converted to MAML, we leverage the
availability of AMP webpages as the key driver of our selection.
Next, we generate MAML versions of these webpages using our

translator. We do not include developers in this generation process
so we can target a large(r) number of wepbages, while also bench-
marking the performance of the sole MAML translator. We then
rely on (student) developers, and a subset of webpages, to evaluate
the full developing cycle envisioned for MAML.

We collect a list of AMP webpages using a methodology simi-
lar to [36]. First, we gather trending Google search queries from
Google’s Year in Search 2023 [29]. Next, we perform a Google search
for each trending query and visit up to 100 webpages (up to page 10
of the search results) per query. For each webpage visited, we search
for the link element with attribute rel=“amphtml” located inside
the head element. The href attribute of this element provides the
AMP URL of a given webpage. We filter the list to include only one
webpage per domain, resulting in a total of 115 webpages. From
this list, we randomly select 100 properly working webpages.

Next, we use webpagetest [12] to automate the loading of these
webpages in Google Chrome. Each webpage is loaded five times
using network configurations representative of mobile networks
in developing regions [43]: 1) 3G Slow: 400 Kbps downlink/uplink
rates with 400 ms RTT. 2) 3G Fast: 1.6 Mbps downlink/768 Kbps
uplink rates with 150 ms RTT. 3) LTE: 12 Mbps downlink/uplink
rates with 70 ms RTT. A low-end mobile device (Xiaomi Redmi Go
with a Quad-core 1.4 GHz CPU, and 1GB RAM) is used to access
each version of the webpages 5 times.

As web performance metrics, we measure First Contentful Paint
(FCP) [31], which is a user-centric metric measuring perceived load
speed as it marks the first point in the page load timeline. Next,
Speed Index (SI) [30] which measures how quickly a website’s
content is visually displayed during load. Finally, Page Load time
(PLT) [41] whichmeasures the amount of time it takes for awebpage
to fully load. We also measure the total data (MB) consumed by
each version of a webpage, and a visual similarity score obtained
via a user study in Prolific [2].
Results. Figure 3(a) shows the Cumulative Distribution Function
(CDF) of the delta size between a MAML and both an original (ORG)
and AMP version of each of the 100 webpages under test, i.e., a
positive value indicates MAML data savings. Each value in the
figure represents the median computed across 5 runs. The figure
shows that MAML generates positive data savings for 90% of the
webpages, with a median saving of 1 MB when compared to AMP
and 2.4 MB when compared to original. Note also the long tail,
with 50% of the savings spread between 1/2 MB and up to 15 MB;
such large savings are possible since MAML webpages are rarely
larger than 1 MB, as shown in the inset of figure 3(a). Note that
about 10% of MAML webpages are larger than both original and
AMP webpages due to the usage of image libraries which generate
separate URLs for different image resolutions, updating based on the
viewport size. However, the MAML translator could only capture
the original, larger source file because different image libraries have
separate ways to handle multiple source files, which the translator
is not accustomed to, thus increasing the page size.

Next, Figure 3(b) shows boxplots of the (median) delta between
the web performance metrics (FCP, SI, and PLT) measured for the
original (ORG) and MAML version of each webpage under test,
when considering variable network conditions (3G Slow, 3G Fast,
and LTE). Accordingly, positive values represent MAML speedups;

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

MAML: Towards a Faster Web in Developing Regions WWW ’25, April 28–May 02, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

0 5 10 15 20
Delta (MB)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(0
-1

)

ORG-MAML
AMP-MAML

ORG AMP MAML
0

100

101

Si
ze

 (M
B)

(a) Page size.

3G Slow
ORG-MAML

3G Fast
ORG-MAML

LTE
ORG-MAML

LTE
AMP-MAML

-10

-1
0
1

10

100

De
lta

 (s
ec

)

FCP
SI
PLT
vs AMP

(b) Web performance metrics (FCP, SI, and PLT).

0
Completely
dissimilar

1 2 3 4 5
Neutral

6 7 8 9 10
Completely

similar

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(0
-1

)

MAML (Translated)
MAML (Developed)
AMP

(c) Visual similarity.

Figure 3: MAML vs. Original (ORG) and AMP in web performance metrics (FCP, SI, PLT), page sizes, and visual similarity.

note that hatched boxplots refer to the delta of each metric when
considering AMP as a baseline, and LTE, i.e., the most challeng-
ing network condition for a potential speedup. Overall, the figure
shows that MAML largely outperforms both original and AMP ver-
sions of each webpage, across all metrics and network conditions.
As expected, the speedups are more prominent when considering
worst network conditions, e.g., tens of seconds, regardless of the
metric, when considering a “3G Slow” network. Still, even at LTE
speed and when considering FCP, i.e., the fastest metric, MAML
shaves multiple seconds when compared to both original and AMP
versions of the test webpages. The negative values are present be-
cause, for some pages, the MAML “translator” captured a higher
resolution image, while these pages used image libraries to render
a compressed image based on the viewport size.

Finally, we evaluate the similarity between MAML and AMP
webpages with the originating webpage. To do so, we generate
screenshots of each version of a fully loaded webpage and run a
crowdsourcing campaign on Prolific [2] where we ask how similar
each version of a webpage (AMP and MAML) is with respect to the
original version of the webpage (see Appendix B for screenshots
examples). We recruited 50 participants, each rating 10 screenshot
pairs. Note that in this study Prolific testers cannot interact with
the webpages, and can thus only evaluate their visual similarity.
Please refer to the next section for a user study involving actual
webpage interactions. We further limit this study to 50 webpages
for which we also have MAML versions of the webpages generated
by (student) developers (see the next subsection) which allows to
evaluate the correctness of MAML translator.

Figure 3(c) shows the CDF of the median score received by each
webpage version, with 0 indicating “completely dissimilar” and 10
indicating “completely similar”. The figure shows that, for MAML,
negative scores (0-3) are rare (about 10% of the scores) even when
webpages are “translated”, i.e., only generated by the translator
with no human intervention. Still, the role of a developer is not
negligible to achieve high visual similarity score, with an overall
score improvement of two points, on average. Last but not least,
MAML outperforms AMP by one point when translated and up to
3 points when allowing a developer in the generation process.

7 MAML Usability
In this section, we introduce developers in the process of creating
MAML webpages. Our main goal is to evaluate the usability – in
terms of user interaction – of MAML webpages. In addition, we

aim to validate both the speedup and data savings of the translator,
when considering “fully” functional MAML webpages.
Methodology. We recruited 25 students from an international
university to participate in a competition to createMAMLwebpages
which closely resemble their original versions, both in term of visual
aspect and interactivity. The competition offered prizes for the first
(iPhone 13), second (iPad), and third-place (AirPods) winners. The
competition was conducted asynchronously, i.e., students were
allowed to work on creating MAML webpages on their own over
the course of twoweeks. Each student was given 2 unique webpages
randomly extracted from the 100 webpages from Section 6. The
students were given an introduction on how to use the MAML
editor; further, an institutional review board (IRB) approval was
granted to conduct the user study, and the authors who conducted
the study are CITI [7] certified. No sensitive or personal information
of the participants is collected, except for their university email
address required to contact them for the prize.

Before the competition, participants filled out a form asking
about their expertise in web development and how important page
load time is for them in building a website. With regards to ex-
perience, out of all participants, 2 had no web experience, 6 were
beginners, 7 were intermediate developers, and 5 had advanced web
experience. As for the importance of page load time, the majority of
participants responded with either 4 or 5 (5 indicating “extremely
important”, and 0 indicating “not at all important”). Appendix A
describes the details of the survey.
Results.We start by extending the results from Figure 3(c) when
considering 50 MAML webpages produced by our student develop-
ers and judged by five expert evaluators. Differently from before,
we now ask the evaluators to interact with a MAML webpage and
stress test it, i.e., explore all its functionalities to the best of their
ability. For this reason, we discard Prolific and resort to five expert
developers who are tasked to evaluate: 1) the functional similarity
between each MAML and original page, 2) the impact of eventu-
ally missing functionalities. Both questions are answered on the
usual scale comprised between 0 (“completely dissimilar” and “no
impact”) and 10 (“completely similar” and “extreme impact”). Fig-
ure 4(a) summarizes the responses collected for both questions. The
figure shows that all webpages have very high scores (6-10) with
respect to functional similarity (green bars), indicating that most
webpages generated closely mimic the original webpages. With
respect to the impact of the missing functionalities (red bars), most
scores are comprised between 0 and 4, suggesting either no impact

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0 10 20 30 40
%

0
1
2
3
4
5
6
7
8
9

10

Ex
pe

rt
Sc

or
e

(0
-1

0)

Functional similarity
Impact of missing functionality

(a) Expert feedback on functional similarity (green
bars) and the impact of missing functionality (red bars).
Each bar shows the percentage of webpages which
received a median score of X. For the functional simi-
larity (green bars) the score goes from 0 (completely
dissimilar) to 10 (completely similar), whereas for the
impact of missing functionality (red bars) the score
goes from 0 (no impact) to 10 (extreme impact).

−4 −2 0 2
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(0
-1

)

FCP
SI
PLT

5 10 15
Translated-Developed (delta in sec)

(b) Comparison between “translated” and “developed”
MAML webpages in terms of the delta timing metrics.
A negative number indicates a slow down in the de-
veloped MAML page compared to the translated one,
whereas a positive number indicates a speedup for the
developed MAML page.

Translated Developed
0

1000

2000

3000

Pa
ge

 S
ize

 (K
B)

(c) Size analysis of “translated” and “developed”
MAML webpages. The hatched boxplot represents
the “translated” MAML pages, whereas the solid
boxplot represents the “developed” MAML pages.

Figure 4: Developed MAML webpages in terms of their functional similarity to Original webpages, their size comparison to the
“translated” MAML webpages, and the delta size (“translated” - “developed”) correlation as a function of webpage complexity.

or moderate impact. While empirically evaluating the missing func-
tions, we found that these functions are currently not supported
by MAMLScript (see Section 4.3), e.g., interactive graphs and user
triggered animations, but can be supported in the future.

We evaluate the inter-rater reliability of the expert annotations
using the Intraclass Correlation Coefficient (ICC)—a statistical mea-
sure used to assess the reliability or consistency of measurements
made by different raters or across repeated measurements of the
same subject. The ICC values are shown in Table 5, and are de-
rived using the ICC(3,k) model, which is appropriate for a fixed set
of raters providing ratings on a common set of images [37]. The
Intraclass correlation value was 0.734, indicating good inter-rater
reliability with a statistically significant agreement, with p-values
well below 0.05, further validating the consistency of the ratings.

Next, we set out to validate the speedup and data savings obtained
by the translator in Section 6. Figure 4(b) shows the CDF of the delta
between the web performance metrics (FCP, SI, and PLT) measured
for the “translated” and “developed” 100 webpages, i.e., a negative
value indicates a slowdown, when considering LTE (i.e., the most
challenging network condition for a potential speedup). Overall,
the figure shows a slowdown for ∼78% of the webpages due to the
extra content added by the developers while “fixing” the translated
webpages (1 MB at the median as shown in Figure 4(c)). This had
almost a negligible effect on the fast FCP (less than 280ms), while
added 1/2 seconds for 5% of the webpages in term of SI (and less than
500 ms for the remainder 73% of webpages). PLT is the most affected
metric, for which 20% of the webpages had a slowdown of roughly
1.5 - 4 seconds. This is expected as PLT measures the amount of
time it takes for a webpage to fully load, and it is thus impacted
the most by the larger size. Even with these corrections, MAML

ICC 95% CI F Test with True Value 0
Lower Upper Value df1 df2 P
Bound Bound value

ICC(3,k) 0.734 0.56 0.85 3.76 33 132 3.2 × 10−8

Table 5: Inter-rater reliability of our expert evaluation on the
functional similarity results.

still offers considerable webpages speedups over both original and
AMP webpages (see Figure 3(b)).

Finally, Figure 4(b) shows show considerable speedups – up to 15
seconds for PLT – for about 22% of the developer webpages. These
speedups are due to image optimizations done by our developers,
who have properly selected lower resolution images compared to
higher resolutions picked by the translator, as previously discussed.

8 Conclusion
This paper has presented the Mobile Application Markup Language
(MAML), a flat layout-based web specification language that re-
duces computational and data transmission demands, thereby ac-
celerating and slimming webpages to improve the web quality of
experience of users in developing regions. To demonstrate and eval-
uate MAML, we have developed a web-based editor and recruited
25 students to compete in porting popular webpages to MAML.
We have further developed a translator which allows to automate
this conversion, while missing complex page functionalities related
to web page interaction. We use the translator to benchmark 100
popular webpages which also support AMP, a Google format which
rewrites webpages with newHTML tags and elements optimized for
performance. Our analysis shows that MAML vastly outperforms
AMP, accelerating webpages by tens of seconds under challenging
network conditions thanks to its very compressed format (50-80%
page size reduction). Further, these performance optimizations are
achieved while generating webapges which adhere more to the orig-
inal webpages than what AMP can achieve. With respect to page
functionalities, a user study shows that MAML is quite effective in
maintaining the most important functionalities when pairing the
translator with some developers help.

References
[1] [n. d.]. Lighthouse. https://developer.chrome.com/docs/lighthouse
[2] [n. d.]. Prolific | Quickly find research participants you can trust. https://www.

prolific.com/. Accessed: 2024-05-15.
[3] 2017. 7 Ways AMP Makes Your Pages Fast. https://www.youtube.com/watch?v=

9Cfxm7cikMY
[4] 2017. Introducing Instant Articles. https://media.fb.com/2015/05/12/

instantarticles/
[5] 2017. Opera Browser Advanced Documentation. http://www.opera.com/docs/

8

https://developer.chrome.com/docs/lighthouse
https://www.prolific.com/
https://www.prolific.com/
https://www.youtube.com/watch?v=9Cfxm7cikMY
https://www.youtube.com/watch?v=9Cfxm7cikMY
https://media.fb.com/2015/05/12/instantarticles/
https://media.fb.com/2015/05/12/instantarticles/
http://www.opera.com/docs/

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

MAML: Towards a Faster Web in Developing Regions WWW ’25, April 28–May 02, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

[6] 2017. SeleniumHQ Browser Automation. http://www.seleniumhq.org/about/
[7] last accessed: 2024. CITI Program: Research, ethics, and compliance training.

https://about.citiprogram.org/.
[8] Aman Ahluwalia and Suhrud Wani. 2024. Leveraging Large Language Models

for Web Scraping. arXiv preprint arXiv:2406.08246 (2024).
[9] Alexa Internet, Inc. 2022. Alexa Web Ranking Service. https://www.alexa.com.

Service discontinued as of May 1, 2022.
[10] Michael Butkiewicz, Harsha V. Madhyastha, and Vyas Sekar. 2011. Understanding

Website Complexity: Measurements, Metrics, and Implications. In Proceedings of
the 2011 ACM SIGCOMM Conference on Internet Measurement Conference (Berlin,
Germany) (IMC ’11). ACM, New York, NY, USA, 313–328. https://doi.org/10.
1145/2068816.2068846

[11] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V Madhyastha, and Vyas
Sekar. 2015. Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices.. In NSDI. 439–453.

[12] Catchpoint. [n. d.]. Website Performance and Optimization Test. https://www.
webpagetest.org/ Accessed: 2024-10-14.

[13] Moumena Chaqfeh, Muhammad Haseeb, Waleed Hashmi, Patrick Inshuti, Mane-
sha Ramesh, Matteo Varvello, Fareed Zaffar, Lakshmi Subramanian, and Yasir
Zaki. 2021. To Block or Not to Block: Accelerating Mobile Web Pages On-The-Fly
Through JavaScript Classification. arXiv preprint arXiv:2106.13764 (2021).

[14] Moumena Chaqfeh, Yasir Zaki, Jacinta Hu, and Lakshmi Subramanian. 2020.
JSCleaner: De-Cluttering Mobile Webpages Through JavaScript Cleanup. In
Proceedings of The Web Conference 2020. 763–773.

[15] Josiah Chavula, Nick Feamster, Antoine Bagula, and Hussein Suleman. 2015.
Quantifying the Effects of Circuitous Routes on the Latency of Intra-Africa Internet
Traffic: A Study of Research and Education Networks. 64–73. https://doi.org/10.
1007/978-3-319-16886-9_7

[16] Jay Chen, David Hutchful, William Thies, and Lakshminarayanan Subramanian.
2011. Analyzing and Accelerating Web Access in a School in Peri-urban India.
In Proceedings of the 20th International Conference Companion on World Wide
Web (Hyderabad, India) (WWW ’11). ACM, New York, NY, USA, 443–452. https:
//doi.org/10.1145/1963192.1963358

[17] Jay Chen, Russell Power, Lakshminarayanan Subramanian, and Jonathan Ledlie.
2011. Design and Implementation of Contextual Information Portals. In Pro-
ceedings of the 20th International Conference Companion on World Wide Web
(Hyderabad, India) (WWW ’11). ACM, New York, NY, USA, 453–462. https:
//doi.org/10.1145/1963192.1963359

[18] Jay Chen, Lakshmi Subramanian, Janardhan Iyengar, and Bryan Ford. 2014. TAQ:
Enhancing Fairness and Performance Predictability in Small Packet Regimes. In
Proceedings of the Ninth European Conference on Computer Systems (Amsterdam,
The Netherlands) (EuroSys ’14). ACM, New York, NY, USA, Article 7, 14 pages.
https://doi.org/10.1145/2592798.2592819

[19] Jay Chen, Lakshminarayanan Subramanian, and Jinyang Li. 2009. RuralCafe:Web
Search in the Rural Developing World. In Proceedings of the 18th International
Conference on World Wide Web (Madrid, Spain) (WWW ’09). ACM, New York,
NY, USA, 411–420. https://doi.org/10.1145/1526709.1526765

[20] Marshini Chetty, David Haslem, Andrew Baird, Ugochi Ofoha, Bethany Sumner,
and Rebecca Grinter. 2011. Why is My Internet Slow?: Making Network Speeds
Visible. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (Vancouver, BC, Canada) (CHI ’11). ACM, New York, NY, USA, 1889–1898.
https://doi.org/10.1145/1978942.1979217

[21] Marshini Chetty, Srikanth Sundaresan, Sachit Muckaden, Nick Feamster, and
Enrico Calandro. 2013. Measuring Broadband Performance in South Africa. In
Proceedings of the 4th Annual Symposium on Computing for Development (Cape
Town, South Africa) (ACM DEV-4 ’13). ACM, New York, NY, USA, Article 1,
10 pages. https://doi.org/10.1145/2537052.2537053

[22] Chrome Developers. [n. d.]. Avoid an Excessive DOM Size. https://developer.
chrome.com/docs/lighthouse/performance/dom-size/. Accessed: 2024-09-30.

[23] Google Chrome Developers. [n. d.]. Chrome User Experience Report. https:
//developer.chrome.com/docs/crux Accessed: 2024-10-14.

[24] Elementor Ltd. [n. d.]. Elementor. https://www.elementor.com. Accessed:
2024-05-12.

[25] Rodérick Fanou, Pierre Francois, and Emile Aben. 2015. On the Diversity of
Interdomain Routing in Africa. 41–54. https://doi.org/10.1007/978-3-319-15509-
8_4

[26] Mohammad Ghasemisharif, Peter Snyder, Andrius Aucinas, and Benjamin
Livshits. 2019. SpeedReader: Reader Mode Made Fast and Private. In The World
Wide Web Conference (San Francisco, CA, USA) (WWW ’19). Association for
Computing Machinery, New York, NY, USA, 526–537. https://doi.org/10.1145/
3308558.3313596

[27] J Gilmore, N Huysamen, and A Krzesinski. 2007. Mapping the african internet.
In Proceedings Southern African Telecommunication Networks and Applications
Conference (SATNAC), Mauritius.

[28] Google. 2023. Google Web Light. https://developers.google.com/speed/web-light.
https://developers.google.com/speed/web-light Discontinued service.

[29] Google. 2023. Year in Search 2023. https://trends.google.com/trends/yis/2023/
GLOBAL/ Accessed: 2024-09-09.

[30] Google. 2024. Speed Index. https://developer.chrome.com/docs/lighthouse/
performance/speed-index.

[31] Google Chrome Developers. [n. d.]. First Contentful Paint. https://developer.
chrome.com/docs/lighthouse/performance/first-contentful-paint Accessed:
2024-10-10.

[32] Arpit Gupta, Matt Calder, Nick Feamster, Marshini Chetty, Enrico Calandro, and
Ethan Katz-Bassett. 2014. Peering at the internet’s frontier: A first look at isp
interconnectivity in Africa. Passive Active Measurement Conference (PAM) (2014),
204–213.

[33] Miško Hevery. 2024. Angular. https://angular.dev/.
[34] International Monetary Fund. 2023. World Economic Outlook Database, April

2023: Groups and Aggregates. https://www.imf.org/en/Publications/WEO/weo-
database/2023/April/groups-and-aggregates Accessed: 2024-10-04.

[35] Sibren Isaacman and Margaret Martonosi. 2009. The C-LINK System for Collab-
orative Web Usage: A Real-World Deployment in Rural Nicaragua.

[36] Byungjin Jun, Fabián E. Bustamante, Sung Yoon Whang, and Zachary S. Bischof.
2019. AMP up your Mobile Web Experience: Characterizing the Impact of
Google’s Accelerated Mobile Project. In The 25th Annual International Confer-
ence on Mobile Computing and Networking (Los Cabos, Mexico) (MobiCom ’19).
Association for Computing Machinery, New York, NY, USA, Article 4, 14 pages.
https://doi.org/10.1145/3300061.3300137

[37] Terry K Koo and Mae Y Li. 2016. A guideline of selecting and reporting intraclass
correlation coefficients for reliability research. Journal of chiropractic medicine
15, 2 (2016), 155–163.

[38] Zahir Koradia, Goutham Mannava, Aravindh Raman, Gaurav Aggarwal, Vinay
Ribeiro, Aaditeshwar Seth, Sebastian Ardon, Anirban Mahanti, and Sipat
Triukose. 2013. First Impressions on the State of Cellular Data Connectivity in
India. In Proceedings of the 4th Annual Symposium on Computing for Development
(Cape Town, South Africa) (ACM DEV-4 ’13). ACM, New York, NY, USA, Article
3, 10 pages. https://doi.org/10.1145/2537052.2537064

[39] Jesutofunmi Kupoluyi, Moumena Chaqfeh, Matteo Varvello, Russell Coke,
Waleed Hashmi, Lakshmi Subramanian, and Yasir Zaki. 2022. Muzeel: Assessing
the Impact of JavaScript Dead Code Elimination on Mobile Web Performance.
In Proceedings of the 22nd ACM Internet Measurement Conference (Nice, France)
(IMC ’22). Association for Computing Machinery, New York, NY, USA, 335–348.
https://doi.org/10.1145/3517745.3561427

[40] MDN Web Docs. [n. d.]. Positioning. https://developer.mozilla.org/en-US/docs/
Learn/CSS/CSS_layout/Positioning Accessed: 2024-10-09.

[41] MDN Web Docs. 2024. Page load time - MDN Glossary. https://developer.
mozilla.org/en-US/docs/Glossary/Page_load_time Accessed: 2024-10-14.

[42] Ravi Netravali, Ameesh Goyal, James Mickens, and Hari Balakrishnan. 2016.
Polaris: Faster Page Loads Using Fine-grained Dependency Tracking.. In NSDI.
123–136.

[43] Leon Perlman and Michael Wechsler. 2019. Mobile Coverage and its Impact on
Digital Financial Services. (April 12 2019). Available at SSRN: https://ssrn.com/
abstract=3370669 or http://dx.doi.org/10.2139/ssrn.3370669.

[44] Juan Diego Rodríguez. 2024. Web Development Is Getting Too Complex, And It May
Be Our Fault. https://www.smashingmagazine.com/2024/02/web-development-
getting-too-complex/ Accessed: 2024-10-05.

[45] Lindsey Simon. [n. d.]. Minimize Browser Reflow. https://developers.google.
com/speed/docs/insights/browser-reflow. Accessed: 2024-09-30.

[46] William Thies, Janelle Prevost, Tazeen Mahtab, Genevieve T. Cuevas, Saad
Shakhshir, Alexandro Artola, Ro Artola, Binh D. Vo, Yuliya Litvak, Sheldon
Chan, Sid Henderson, Mark Halsey, Libby Levison, and Saman Amarasinghe.
2002. Searching the World Wide Web in Low-Connectivity Communities.

[47] Jeremy Wagner and Paul Lewis. [n. d.]. Reduce the Scope and Complexity of
Style Calculations. https://web.dev/articles/reduce-the-scope-and-complexity-
of-style-calculations. Accessed: 2024-09-30.

[48] Jordan Walke. 2024. The library for web and native user interfaces. https:
//react.dev/.

[49] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David
Wetherall. 2013. Demystifying Page Load PerformancewithWProf. In Proceedings
of the 10th USENIX Conference on Networked Systems Design and Implementation
(Lombard, IL) (nsdi’13). USENIX Association, Berkeley, CA, USA, 473–486. http:
//dl.acm.org/citation.cfm?id=2482626.2482671

[50] Xiao Sophia Wang, Arvind Krishnamurthy, and David Wetherall. 2016. Speeding
up Web Page Loads with Shandian.. In NSDI. 109–122.

[51] Webflow, Inc. [n. d.]. Webflow. https://www.webflow.com. Accessed: 2024-05-12.
[52] Wix.com Ltd. [n. d.]. Wix. https://www.wix.com. Accessed: 2024-05-12.
[53] Yasir Zaki, Jay Chen, Thomas Pötsch, Talal Ahmad, and Lakshminarayanan

Subramanian. 2014. Dissecting Web Latency in Ghana. In Proc. of the ACM
Internet Measurement Conference (IMC). Vancouver, BC, Canada.

A Survey Questionnaire and Results

9

http://www.seleniumhq.org/about/
https://about.citiprogram.org/
https://www.alexa.com
https://doi.org/10.1145/2068816.2068846
https://doi.org/10.1145/2068816.2068846
https://www.webpagetest.org/
https://www.webpagetest.org/
https://doi.org/10.1007/978-3-319-16886-9_7
https://doi.org/10.1007/978-3-319-16886-9_7
https://doi.org/10.1145/1963192.1963358
https://doi.org/10.1145/1963192.1963358
https://doi.org/10.1145/1963192.1963359
https://doi.org/10.1145/1963192.1963359
https://doi.org/10.1145/2592798.2592819
https://doi.org/10.1145/1526709.1526765
https://doi.org/10.1145/1978942.1979217
https://doi.org/10.1145/2537052.2537053
https://developer.chrome.com/docs/lighthouse/performance/dom-size/
https://developer.chrome.com/docs/lighthouse/performance/dom-size/
https://developer.chrome.com/docs/crux
https://developer.chrome.com/docs/crux
https://www.elementor.com
https://doi.org/10.1007/978-3-319-15509-8_4
https://doi.org/10.1007/978-3-319-15509-8_4
https://doi.org/10.1145/3308558.3313596
https://doi.org/10.1145/3308558.3313596
https://developers.google.com/speed/web-light
https://developers.google.com/speed/web-light
https://trends.google.com/trends/yis/2023/GLOBAL/
https://trends.google.com/trends/yis/2023/GLOBAL/
https://developer.chrome.com/docs/lighthouse/performance/speed-index
https://developer.chrome.com/docs/lighthouse/performance/speed-index
https://developer.chrome.com/docs/lighthouse/performance/first-contentful-paint
https://developer.chrome.com/docs/lighthouse/performance/first-contentful-paint
https://angular.dev/
https://www.imf.org/en/Publications/WEO/weo-database/2023/April/groups-and-aggregates
https://www.imf.org/en/Publications/WEO/weo-database/2023/April/groups-and-aggregates
https://doi.org/10.1145/3300061.3300137
https://doi.org/10.1145/2537052.2537064
https://doi.org/10.1145/3517745.3561427
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Glossary/Page_load_time
https://developer.mozilla.org/en-US/docs/Glossary/Page_load_time
https://ssrn.com/abstract=3370669
https://ssrn.com/abstract=3370669
http://dx.doi.org/10.2139/ssrn.3370669
https://www.smashingmagazine.com/2024/02/web-development-getting-too-complex/
https://www.smashingmagazine.com/2024/02/web-development-getting-too-complex/
https://developers.google.com/speed/docs/insights/browser-reflow
https://developers.google.com/speed/docs/insights/browser-reflow
https://web.dev/articles/reduce-the-scope-and-complexity-of-style-calculations
https://web.dev/articles/reduce-the-scope-and-complexity-of-style-calculations
https://react.dev/
https://react.dev/
http://dl.acm.org/citation.cfm?id=2482626.2482671
http://dl.acm.org/citation.cfm?id=2482626.2482671
https://www.webflow.com
https://www.wix.com

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Question Options
How much web development experience do you have? A. None

B. Beginner (understand the basics, can use templates and customize them)
C. Intermediate (can develop pages from scratch and write limited JS code
for interactivity)
D. Advanced (have developed webpages from scratch using modern web
development technologies and can write JS code from scratch)

How important is page load time for you when developing webpages? Rate
on a scale from 0 to 5.

0 - Not at all important

5 - Extremely Important
Table 6: Pre-competition survey questionnaire

Question Options
How would you rate the learning curve of the MAML Editor on a scale from 0 to 10? 0 - Extremely Hard

10 - Very easy to learn
Rate MAML Editor’s web interface on a scale from 0 to 10. 0 - Terrible

10 - Excellent
Rate the MAML editor usability on a scale from 0 to 10. 0 - Unusable

10 - Easy to use
Table 7: Post-competition survey questionnaire

Question Options
Rate the visual similarity of the two pages on a scale from 0 to 10. 0 - Not similar at all

5 - Moderately similar
10 - Identical

Rate the visual impact of the missing content on the user experience on a scale from 0 to 10. 0 - No impact
5 - Moderate impact
10 - Extreme impact

Rate your willingness to sacrifice missing content for a significant increase in loading speed. 0 - Not willing at all
5 - Moderately willing
10 - Extremely willing

Table 8: Content similarity study questionnaire on Prolific

Question Options
Rate the functional similarity of the two pages on a scale from 0 to 10. 0 - Not similar at all

5 - Moderately similar
10 - Identical

Rate the functional impact of the missing content on the user experience on a scale from 0 to 10. 0 - No impact
5 - Moderate impact
10 - Extreme impact

Table 9: Functional similarity study questionnaire for manual inspection

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

MAML: Towards a Faster Web in Developing Regions WWW ’25, April 28–May 02, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

B Sample Original vs. MAML pages

(a) ifttt.com original page (b) ifttt.com MAML page

(c) flickr.com original page (d) flickr.com MAML page

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

WWW ’25, April 28–May 02, 2025, Sydney, Australia Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

(e) doctorswithoutborders.org original page (f) doctorswithoutborders.org MAML page

12

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Motivation and Challenges
	4 The MAML Language
	4.1 Design Principles
	4.2 Flat DOM
	4.3 MAMLScript

	5 MAML Backward Compatibility
	5.1 Editor
	5.2 Translator

	6 MAML Benchmarking
	7 MAML Usability
	8 Conclusion
	References
	A Survey Questionnaire and Results
	B Sample Original vs. MAML pages

