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ABSTRACT

All state-of-the-art (SOTA) differentially private machine learning (DP ML) meth-
ods are iterative in nature, and their privacy analyses allow publicly releasing
the intermediate training checkpoints. However, DP ML benchmarks, and even
practical deployments, typically use only the final training checkpoint to make
predictions. In this work, for the first time, we comprehensively explore vari-
ous methods that aggregate intermediate checkpoints to improve the utility of DP
training. Empirically, we demonstrate that checkpoint aggregations provide sig-
nificant gains in the prediction accuracy over the existing SOTA for CIFAR10
and StackOverflow datasets, and that these gains get magnified in settings with
periodically varying training data distributions. For instance, we improve SOTA
StackOverflow accuracies to 22.7% (+0.43% absolute) for ¢ = 8.2, and 23.84%
(+0.43%) for ¢ = 18.9. Theoretically, we show that uniform tail averaging of
checkpoints improves the empirical risk minimization bound compared to the last
checkpoint of DP-SGD. Lastly, we initiate an exploration into estimating the un-
certainty that DP noise adds in the predictions of DP ML models. We prove that,
under standard assumptions on the loss function, the sample variance from last
few checkpoints provides a good approximation of the variance of the final model
of a DP run. Empirically, we show that the last few checkpoints can provide a
reasonable lower bound for the variance of a converged DP model.

1 INTRODUCTION

Machine learning models can unintentionally memorize sensitive information about the data they
were trained on, which has led to numerous attacks that extract private information about the training
data (Ateniese et al., 2013} |Fredrikson et al.,|2014;2015; |Carlini et al.,|2019j;|Shejwalkar et al., 2021}
Carlini et al.||2021;/2022). For instance, membership inference attacks (Shokri et al.L[2017) can infer
whether a target sample was used to train a given ML model, while property inference attacks (Melis
et al., 2019; Mahloujifar et all [2022) can infer certain sensitive properties of the training data.
To address such privacy risks, literature has introduced various approaches to privacy-preserving
ML (Nasr et al.l 2018} |Shejwalkar & Houmansadr, 2021} Tang et al., [2022)). In particular, iterative
techniques like differentially private stochastic gradient decent (DP-SGD) (Song et al.| 2013} |Bassily
et al.| [2014; |Abadi et al, 2016b; McMahan et al., 2017) and DP Follow The Regularized Leader
(DP-FTRL) (Kairouz et al.,[2021) have become the state-of-the-art for training DP neural networks.

For establishing benchmarks, prior works in DP ML (Abadi et al.| |2016b; [McMahan et al., 2017;
2018 Thakkar et al.| 2019} [Erlingsson et al., 2019; Wang et al.l [2019b}; Zhu & Wang, 2019} Balle
et al., [2020; [Erlingsson et al.l |2020; Papernot et al., [2020; Tramer & Bonehl 2020; |Andrew et al.,
20215 Kairouz et al., [2021; |Amid et al., 2022; [De et al.| [2022} Feldman et al., 2022) use only the
final model output by the DP algorithm. This is also how DP models are deployed in practice (Ra-
maswamy et al., [2020; McMahan et al., [2022). However, the privacy analyses for the techniques
used allow releasing/using all of the intermediate training checkpoints. In this work, we comprehen-
sively study various methods that leverage intermediate checkpoints to 1) improve the utility of DP
training, and 2) quantify the uncertainty in DP ML models that is due to the DP noise.

Accuracy improvement using checkpoints: We propose two classes of aggregation methods based
on aggregating the parameters of checkpoints, or their outputs. We provide both theoretical and em-
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pirical analyses for our aggregation methods. Theoretically, we show that excess empirical risk of
the final checkpoint of DP-SGD is log(n) times more than that of the weighted average of the past
k checkpoints. Here, n is the size of dataset. Empirically, we demonstrate significant top-1 accu-
racy gains due to our aggregations for image classification (CIFAR10) and a next word prediction
(StackOverflow) tasks. Specifically, we show that our checkpoints aggregations achieve absolute
(relative) prediction accuracy improvements of 3.79% (7.2%) at ¢ = 1 for CIFAR10 (DP-SGD), and
0.43% (1.9%) at ¢ = 8.2 for the StackOverflow (DP-FTRLM) SOTA baselines, respectively. We
also show that our aggregations significantly reduce the variance in the performance of DP models
over training. Finally, we show that these benefits further magnify in more practical settings with
periodically varying training data distributions. For instance, we note absolute (relative) accuracy
gains of 17.4% (28.6%) at € = 8 for CIFAR10 over DP-SGD baseline in such a setting.

Uncertainty quantification using checkpoints: There are various sources of randomness in a ML
training pipeline (Abdar et al.,[2021)), e.g., choice of initial parameters, dataset, batching, etc. This
randomness induces uncertainty in the predictions made using such ML models. In critical do-
mains, e.g., medical diagnosis, self-driving cars and financial market analysis, failing to capture the
uncertainty in such predictions can have undesirable repercussions. DP learning adds an additional
source of randomness by injecting noise at every training round. Hence, it is paramount to quantify
reliability of the DP models, e.g., by quantifying the uncertainty in their predictions.

To this end, we take the first steps towards quantifying the uncertainty that DP noise adds to DP ML
training. As prior work, Karwa & Vadhan| (2017) develop finite sample confidence intervals but for
the simpler Gaussian mean estimation problem. Various methods exist for uncertainty quantifica-
tion in ML-based systems (Mitchell, 1980; Roy et al., 2018} Begoli et al.|[2019;|[Hubschneider et al.}
2019; McDermott & Wikle, 2019; [Tagasovska & Lopez-Paz, 2019; [Wang et al., 2019a; Nair et al.,
2020; [Ferrando et al., 2022). However, these methods either use specialized (or simpler) model
architectures to facilitate uncertainty quantification, or are not directly applicable to quantify the
uncertainty in DP ML due to DP noise. For e.g., a common way of uncertainty quantification (Bar-
rientos et al.l [2019; [N1ssim et al., [2007; Brawner & Honaker, 2018} [Evans et al., [2020) that we call
the independent runs method, needs k independent (bootstrap) runs of the ML algorithm. However,
repeating a DP ML algorithm multiple times can incur significant privacy and computation costs.

To address the above issue, we propose to use the last & checkpoints of a single run of a DP ML
algorithm as a proxy for the & final checkpoints from independent runs. This does not incur any ad-
ditional privacy cost to the DP ML algorithm. Furthermore, it is useful in practice as it does not incur
additional training compute, and can work with any algorithm having intermediate checkpoints.

Theoretically, we consider using the sample variance of a statistic f(6) at checkpoints 6y, , ..., 0y,
as an estimator of the variance of f(6;, ), i.e., the statistic at the final checkpoint, and give a bound on
the bias of this estimator. As expected, our bound on the bias decreases as the “burn-in” time ¢, as
well as the time between checkpoints both increase. Intuitively, our proof shows that (i) as the burn-
in time increases, the marginal distribution of each 6,, approaches the distribution of 6, , and (ii) as
the time between checkpoints increases, any pair 6, 0;, approaches pairwise independence. Both
(1) and (ii) are proven via a mixing time bound, which shows that starting from any point distribution
0o, the Markov chain given by DP-SGD approaches its stationary distribution at a certain rate.
Empirically, we show our method provides reasonable lower bounds on the uncertainty quantified
using the more accurate (but privacy and computation intensive) method that uses independent runs.

Related work on Checkpoint aggregations: (Chen et all 2017; Izmailov et al.l 2018) explore
checkpoint aggregation methods to improve performance in (non-DP) ML settings, but observe neg-
ligible performance gains. To our knowledge, De et al. (2022) is the only work in the DP ML
literature that uses intermediate checkpoints post training. They apply an exponential moving aver-
age (EMA) over the checkpoints of DP-SGD, and note non-trivial gains in performance. However,
we propose various aggregation methods that outperform EMA on standard benchmarks.

2 IMPROVING ACCURACY BY AGGREGATING DP TRAINING CHECKPOINTS

In this section, we describe our checkpoint aggregation methods, followed by the experimental setup
we use for evaluation. Next, we detail our experimental results that demonstrate the significant gains
in accuracy of DP ML models due to checkpoints aggregations.
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DP Preliminaries: Differential Privacy (DP) (Dwork et al., 2006) is a notion to quantify the privacy
leakage from the outputs of a data analysis procedure. A randomized algorithm M : D* — Y is
(e,9)-DP if, for all neighbouring datasets D, D’ € D* (i.e., datasets that differ in one data sample)
and all measurable sets of outputs S C Y, wehave P [M (D) € S] < e=-P[M(D’) € S]+6. We add
Gaussian noise to functions of bounded sensitivity to ensure DP. We also use DP’s post-processing
property, i.e., any analysis on the outputs of a DP algorithm does not worsen its DP guarantees.

We consider two state-of-the-art DP ML algorithms: 1) DP-SGD for the central learning setting, i.e.,
when all data is pooled at a central location, e.g., a server, and 2) DP-FTRL for the federated learning
(FL) setting, i.e., when all private data is distributed across remote collaborative devices. The privacy
analyses for both of these techniques involves composition across training rounds, allowing the
release of all intermediate checkpoints computed during training.

2.1 CHECKPOINTS AGGREGATION METHODS

We propose two types of aggregation methods: parameter aggregation, and output aggregation. Pa-
rameter aggregations compute a function of the parameters of intermediate checkpoints from a DP
run, and then use the resulting aggregate parameters for inference. On the other hand, output ag-
gregations compute a function of the outputs of the intermediate checkpoints, and use it for making
predictions. These classes can encompass a vast majority of possible aggregation algorithms, but for
brevity, we experiment with two algorithms in each of the classes: exponential moving average and
uniform past_k average that aggregate parameters, and predictions average and labels majority vote
that aggregate outputs. Note that all of our aggregation algorithms post-process the checkpoints, and
hence, do not incur any additional privacy cost. Additionally, our aggregation methods are general,
i.e., they are applicable to any training algorithm that computes intermediate checkpoints.

2.1.1 PARAMETER AGGREGATION METHODS

Exponential moving average (EMA): EMA has been previously used (Tan & Le, 2019} |Brock
et al.| 2021) to improve the performance of ML models at inference time. Starting from the last
checkpoint of the run, EMA assigns exponentially decaying weights to each of previous checkpoints;
the weights are a function of the EMA coefficient (; at step t. During training, at each step ¢, EMA
maintains a moving average 6%, that is a weighted average of #?! and the #*" checkpoint, #".
This is formalized as follows: 6, . = (1 — 3;) - 0.1 + 3, - 6. Following (Tan & Lel [2019; De
et al.,2022), we use a warm-up schedule for the EMA coefficient as: 3; = min (6 , llo—fé)

Uniform past_k average (UPA): For step ¢ of training, UPA computes the mean of the past k£ check-

points, i.e., checkpoints from steps [t — (k — 1), ]. We formalize this as: 05F = + S, (k—1) 6.

2.1.2 OUTPUT AGGREGATION METHODS

Output predictions averaging (OPA): For a given test sample x, OPA first computes prediction
vectors fyi(x) of the past k checkpoints, i.e., checkpoints from steps € [t — (k — 1), ], averages
the prediction vectors, and computes argmax of the average vector as the final output label. We

formalize OPA as §jop, (x) = argmax (% Zfzt_(k_l) foi (X))

Output labels majority vote (OMYV): For a given test sample x, OMV computes output predic-
tion vectors for x and the corresponding labels, i.e., argmax fp:(x). Finally, it uses the majority
label among the & labels (breaking ties arbitrarily) as its final output label. We formalize OPA as

Jomv (X) = Majority (argmax(fgi (X))E:tf(kfl))’
2.2  EXPERIMENTS

2.2.1 EXPERIMENTAL SETUP

Datasets: We evaluate our checkpoints aggregation algorithms on three benchmark datasets in two
different settings: CIFAR10 (Krizhevsky et al.| 2009) and CIFAR100 for image classification, and
simulated federated learning over StackOverflow (Kaggle, 2018)) for next word prediction. Privacy
guarantees are sample-level for CIFAR tasks and user-level for StackOverflow (as it is keyed by
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users). For experiments with DP, we fix the privacy parameter J to 10~° on CIFAR-10/CIFAR-
100, and 10~% on StackOverflow, ensuring that § < n~L, where n is the number of examples in
CIFAR10/CIFAR-100 and the number of users in StackOverflow.

Model architectures, and training details: Following the setup of the state-of-the-art (SOTA) in
(De et al) 2022)), we train a WideResNet-16-4 with depth 16 and width 4 using DP-SGD (Abadi
et al.,[2016b) in JAXline (Babuschkin et al.,[2020) for ¢ € {1,8}. For CIFAR100, we follow (De
et al.| 2022)) and fine-tune the last, classifier layer of a WideResNet-28-10 pre-trained on ImageNet
data. For StackOverflow, we follow SOTA in (Kairouz et al.| 2021} Denisov et al.| [2022) and train a
one-layer LSTM using DP-FTRL in TFF (Abadi et al., 2016a) for ¢ € {8.2,18.9}. For UPA, OPA
and OMYV, we treat k, the number of checkpoints to aggregate, as a hyperparameter and tune it using
validation data. All our results are computed over 5 runs of each setting. We provide additional
details of our experimental setup in Section[B.1]

2.2.2 EXPERIMENTAL RESULTS

First, we discuss the results for original datasets and then for more practical periodic distribution
shifting datasets. Below, the tables present results for the final training round/step, i.e., for the
aggregates computed until the last step/round, while plots show results over the last £ rounds for
some k much smaller than total number of training steps/rounds. For StackOverflow, due to large
size of its test data, we provide plots for accuracy on validation data and tables with test accuracy.

CIFARI10 results: Table [I| and the left-most two plots in Figure [I| present the accuracy gains in
CIFARIO for € € {1,8}. For e = 1, OPA provides the maximum accuracy gain of 3.79%, while
for ¢ = 8, EMA provides maximum gain of 2.23%[1_-] We note from Figure |1| that all checkpoints
aggregations improve accuracy for all the training steps of DP-SGD for both ¢’s. Next, note from
Figure [I| that the accuracy of baseline DP-SGD has a high variance across training steps, i.e., based
on the hyperparameters, DP-SGD can produce bad/good models which can be undesirable in prac-
tice. However, checkpoints aggregations significantly reduce the variance in accuracy of models,
and therefore, increase the confidence in the final DP-SGD model.

CIFAR10, Sample level e =1

CIFAR10, Sample level e =8

StackOverflow, User level € = 8.2 StackOverflow, User level € =18.9

[C ]
w B O

Accuracy (%)
o w
0

79.0
78.5
78.0
77.5

77.0

23.0
229
22.8
22.7
22.6
225

e | 282{ __ ——————

24.1

/v_,\_/*/'—/\’ﬂ 24.0
> M
w—ﬂ'd‘ﬂ—"_'// 23.8

23.7

51 76.5 2247 23.6 _—
0 76.0 ¥ 223 - 23.5 .
795 815 835 855 875 895 2967 2987 3007 3027 3047 3067 1998 2008 2018 2028 2038 2048 1998 2008 2018 2028 2038 2048
Train step Train step FL round FL round
------ Baseline =~ —— Params EMA Params average Outputs average ~ —— Outputs majority

Figure 1: Accuracy improvements due to checkpoints aggregation methods for DP-SGD trained
CIFAR10 and DP-FTRL trained StackOverflow.

StackOverflow results: Table[T|and the rightmost two plots in Figure[|present the accuracy gains in
StackOverflow for e € {18.9, 8.2}; Figurepresent the results for ¢ = co. The maximum accuracy
gains are 0.57%, 0.43%, and 0.42% for € of oo, 18.9, and 8.2, respectively. We observe that UPA
aggregation always provides the best accuracy. Note that these improvements are very significant,
because there are 10,004 classes in StackOverflow data. Similarly for CIFAR10, Figures E] and E]
show that checkpoints aggregations improve accuracy for all training rounds by large margins and
also significantly reduce the variance of model accuracy across training rounds. Note that these
improvements are on top of the momentum optimizer used during training.

CIFAR100 results: Due to space constraints, we defer the results to Table [7]in Appendix [B] and
discuss the major observations here. First, we improve the SOTA baseline of De et al.|(2022))]

from

'Note that EMA (with default EMA coefficients from non-private settings) has also been used in De et al.
(2022) to improve DP-SGD’s performance. We observe that even a coarse-grained tuning of the EMA coeffi-
cient provides significant accuracy gains. For instance, for CIFAR10, our tuned EMA coefficients outperform
those of De et al.|(2022) by ~ 0.6% and 0.35% for € of 1 and 8, respectively.

2For CIFART100, [Bu et al.|(2022) achieve SOTA accuracy of 83% at € = 1 using 303M parameters vision
transformers pre-trained on ImageNet21k. However, due to computational constraints, we use the 36M pa-
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Table 1: Test accuracy gains for original CIFAR10 and StackOverflow.

Aggregation algorithms

Privacy level None Parameters aggregation Outputs aggregation

(Baseline) EMA [ UPA OPA [ OMV

CIFAR10; DP-SGD; sample-level privacy

=28 77.18 £1.46 | 79.41 £0.51 | 7939 £0.52 | 79.4+£0.59 | 79.34 £ 0.54

e=1 52.83 £2.17 | 56.61 £0.91 | 56.62 £ 0.89 | 56.68 = 0.89 | 56.4 + 0.69

StackOverflow; DP-FTRL; user-level privacy
€=00 2524 £0.16 | 25.72 £0.02 | 25.81 £0.02 | 25.79 £ 0.01 | 25.78 £ 0.01

=189 2341 £0.08 | 23.56 £0.02 | 23.84 £ 0.01 | 23.6 +0.02 | 23.57 +£0.02
€ =382 2228 £0.08 | 22.43 £0.04 | 22.7+0.03 | 22.57 £0.04 | 22.52 + 0.04

70.6% to 75.51% at € = 1, and from 77.6% to 80.8% at ¢ = 8. To achieve these gains, we perform
fine-tuning over the EMA checkpoint of ImageNet-trained WRN-28-10 instead of the final checkpoint
as in (De et al.} [2022)). Subsequently, we observe that for fine-tuning using CIFAR100, checkpoint
aggregations provide small accuracy gains: for both € of 1 and 8, we observe maximum gains are
0.11% due to UPA and OPA, respectively.

2.2.3 ACCURACY IMPROVEMENTS IN PERIODIC DISTRIBUTION SHIFTING SETTINGS

In many real-world settings, for instance, in federated learning (FL) settings, training data distribu-
tion may vary over time. |Zhu et al|(2021) demonstrate the adverse impacts of distribution shifts
in training data on the performances of resulting FL models. Considering the practical significance
of such distribution shifts, we consider settings where the training data distribution has diurnal
variations, i.e., it is a function of two oscillating distributions, D; and Ds; Figure E] shows these
distributions. Such a scenario commonly occurs in FL training, e.g., when a model is trained using
FL with client devices participating from two significantly different time zones.

Linear periodic distribution shifts

Experimental setup: Following |Zhu et al| (2021)), we con-
sider a setting where training data is a combination of
clients/samples drawn from two disjoint data distributions,
which oscillate over time as Figure [2] shows. Here the prob-
ability of sampling from, e.g., D1, at time ¢ is p(D;,t) =
2tmod T _ 1|, where T is the period of oscillation of Dy 2.

P(Sampling)
2228 %

o
N}

0.0{ 7

To simulate such diurnal distribution, for CIFAR datasets, we 9
design Dy; 9y such that Dy and Dy respectively contain the
data from even and odd classes of the original data. For Stack-
Overflow, we design Dy; 2y such that D; only has the ques-
tions from each user, while D5 only has answers from them.
Then, we draw clients from Dy oy. Apart from data distribution, the rest of experimental setup is
the same as before. We use test and validation data same as for the original StackOverflow setting.

50 100 150 200 250

Ti
Figure 2: Probabillirtnye of sampling
data from distributions D; and Ds.

CIFARI10 results: Table [2]and Figure [3| (left two plots) show accuracy gains for diurnal CIFAR10.
We note very large accuracy gains for both e € {1, 8}; the absolute accuracy gains are 7.45% and
17.37%, respectively, and are due to OPA. Observe that, such diurnal settings have large variances
in accuracy across training steps, but our aggregation methods almost completely eliminate the
variances. We note that the improvements in diurnal settings are significantly more than that in
original CIFAR10. This is because in diurnal settings, the variances in model accuracy over training
steps is very large, and hence, the benefits of checkpoints aggregations magnify in these settings.

StackOverflow results: Table [2] and Figure 3| (rightmost two plots) present accuracy gains for di-
urnal StackOverflow. The maximum accuracy gains are 0.09%, 0.44%, and 0.51% for € of oo,
18.9, and 8.2, respectively. In contrast to the diurnal CIFAR10 case, improvements in diurnal Stack-
Overflow and StackOverflow are similar. This is because the two distributions in diurnal CIFAR10
(completely different images from even/odd classes) are significantly farther apart compared to the
two distributions in diurnal StackOverflow (text from questions/answers).

rameter WRN pre-trained on downsampled ImageNetlk from |De et al.| (2022). Moreover, similar to [De et al.
(2022), we observe that in small € regimes, fine-tuning only the classifier layer provides better accuracy.
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Figure 3: Accuracy gains due to checkpoints aggregations for DP-SGD trained periodic distribution
shifting (PDS) CIFARI10 (test data) and DP-FTRL trained PDS StackOverflow (validation data).
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Table 2: Test accuracy gains for periodic distribution shifting (PDS) CIFAR10 and StackOverflow.

Aggregation algorithms
Privacy level None Parameters aggregation Outputs aggregation
(Baseline) EMA UPA OPA [ OMV
PDS CIFAR10; DP-SGD; sample-level privacy
e=8 60.74 = 1.75 | 78.24 £0.92 | 77.92 £0.89 | 78.27 +0.84 | 77.99 £ 0.94
e=1 4713 £1.76 | 54.04 = 0.81 | 5435+09 | 54.58 + 0.82 | 54.03 + 1.08
PDS StackOverflow; DP-FTRL; user-level privacy
£ =00 23.89 £0.14 | 23.92 £0.12 | 23.98 £ 0.02 | 23.87 £ 0.01 | 23.91 £ 0.07
e=18.9 21.6 £0.13 | 21.82 +£0.07 | 22.04 £ 0.11 | 21.99 £ 0.13 | 21.95 £0.16
€=28.2 20.24 £0.29 | 20.36 £0.06 | 20.75 £ 0.05 | 20.67 £ 0.03 | 20.72 £ 0.16

CIFAR100 results: Due to space constraints, we defer full results in Table [§] in Appendix [B] For
CIFAR100 also, we observe significant gains due to checkpoints aggregations in PDS setting: for ¢
of 1 and 8, we note maximum gains of 4.96% (due to UPA) and 3.37% (due to EMA), respectively.
Similar to CIFARI1O0, the gains due to checkpoints aggregation are significantly higher for PDS-
CIFAR100 than for non-PDS CIFAR100.

Table 3: Accuracy gains on test data due to data-dependent checkpoints aggregations for Stack-
Overflow (SO) and periodic distribution shifting StackOverflow (PDS-SO) trained using DP-FTRL.

Privacy level | Dataset Baseline Best of data-independent | Best of data-dependent
- — oo SO 2524 £0.16 25.81 £ 0.02 (UPA) 25.97 £ 0.01 (UPA)
PDS-SO | 23.89 £ 0.14 23.98 £ 0.02 (UPA) 24.18 £+ 0.02 (EMA)
- — 189 SO 23.41 £0.08 23.84 £ 0.01 (UPA) 23.92 £+ 0.03 (UPA)
’ PDS-SO | 21.60 £ 0.13 22.04 £ 0.11 (UPA) 22.18 + 0.07 (EMA)
=89 SO 22.28 £0.08 22.70 £ 0.03 (UPA) 22.80 £ 0.05 (UPA)
’ PDS-SO | 20.24 £ 0.29 20.75 £ 0.05 (UPA) 20.90 £ 0.06 (UPA)

2.3 DATA-DEPENDENT CHECKPOINT SELECTION FOR AGGREGRATION

So far, our aggregated methods operated over a fixed sequence of checkpoints, e.g., past k. However,
when some public data similar to the private training data is available, we propose a data-dependent
checkpoint selection method for aggregation: aggregate the checkpoints that perform the best on the
(held-out) public data. We expect this to improve over data-independent aggregation schemes. We
validate this hypothesis for StackOverflow dataset. We use 10,000 random samples (less than 0.01%
of the training data) from the StackOverflow validation data as the held-out public data. Note that
this is disjoint from the validation data that we use for hyperparameter tuning. We omit the CIFAR
datasets from this evaluation due to the lack of availability of additional similar data.

We compute accuracy of all training checkpoints on the held-out data, find the best k£ checkpoints,
and aggregate them as detailed above. We tune the hyperparameter %k using disjoint validation
data. Table [3] presents the gains due to data-dependent aggregations over the baseline and data-
independent aggregations; Tables |5 and E] in Appendix [B| present full resultsE] We see that data-

3Note that only the data-dependent aggregations use public data, so this comparison is just for illustration.
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dependent aggregations outperform data-independent aggregations for all €’s. For instance, at € of
8.2, accuracies of baseline, data-independent and data-dependent aggregations are 22.28%, 22.7%
and 22.8%, respectively. For £’s oo and 18.9, aggregating best past k checkpoints outperform aggre-
gating past k checkpoints (baseline) by 0.16% (0.73%) and 0.08% (0.51%), respectively. We make
the same observation for diurnal PDS StackOverflow dataset—the maximum accuracy gains due to
data-dependent aggregations are 0.29%, 0.58%, and 0.66% for ¢ of oo, 18.9, and 8.2, respectively.

2.4 IMPROVED EXCESS RISK VIA TAIL AVERAGING

In this section, we formally show that checkpoint aggregations like uniform tail averaging provably
improves the privacy/utility trade-offs, compared to that of the last checkpoint of DP-SGD. To for-
malize the problem, we define the following notation: Consider a data set D = {d,...,d,} and a

loss function £(6; D) = 1 3 £(6; d;), where each of the loss function ¢ is convex and L-Lipschitz
i=1
in the first parameter, and § € C with C C RP being a convex constraint set. We analyze the
following variant of DP-SGD, which is guaranteed to be p-ZCDPEl
1. 90 «— 0P,
2. Fort € [TV, Ou1 < Tle (6, — m, (VL(6,; D) +by)), where by ~ J\/(O “—Tﬂpxp) and

’ 2np
II¢ (-) being the ¢5-projection onto the set C.

We will provide the utility guarantee for this algorithm by directly appealing to the result of |Shamir
& Zhang| (2013). For a given o € (0,1), UPA (Section [2.1.1)) corresponds to the average of the
T

last o' models, i.e., 953;’ = ﬁ > 0;. One can also consider polynomial-decay averaging
t=(1—a)T+1
(PDA) with parameter y > 0, defined as follows: GEQ;’ [t] = ( - %) 022;’ [t—1]+ % -0y

For v = 0, PDA matches UPA over all iterates. As < increases, PDA places more weight on later
iterates; in particular, if ¥ = ¢T', the averaging scheme is very similar to EMA (Section2.1.1)), since
as t — T the decay parameter Zii approaches a constant 7. In that sense, PDA can be viewed as
a method interpolating between UPA and EMA.

Theorem 2.1 (Adapted from Theorems 2 and 4 of [Shamir & Zhang| (2013))). Consider the DP-SGD
algorithm above, and the associated parameters. Then there exists choice of learning rate 1, and
the number of time steps T s.t. the following are true for oo = ©(1):

E [£ (035 D)) —min £(0; D) = O (M), and E[£(0r; D)] —min £(0; D) = O (HClagplostr))

Furthermore, for v = ©(1), we have, E [E (952: [T]; D)} - %nig L(O;D)=0 (W) .
€

Proof. If we choose T' = [np] and set 7; appropriately, the proof of Theorem 2 (Shamir & Zhang,
2013) implies the following for 025 : E [£ (985 : D)] — min £(65 D) = O (1122 10g (1) ).
€

upa upa
Setting o = ©(1) gives the theorem’s first part, and o7 = 1, ie., 1/a = T = [np] gives the
second. The third follows from modifying Theorem 4 of [Shamir & Zhang| (2013) for the convex
case (see the end of Section 4 of |Shamir & Zhang|(2013) for details). O

The excess empirical risk for O is higher by factor of log(n) in comparison to 053;’ and 922;’ [T]. For
the step size selections typically used in practice (e.g., fixed or inverse polynomial step sizes), the
last iterate will suffer from the extra log(n) factor, and we do not know how to avoid it. Furthermore,
Harvey et al.|(2019) showed that this is unavoidable in the non-private, high probability regimeﬂ

*Using|Bun & Steinke| (2016), it is easy to convert the privacy guarantee to an (e, §)-DP guarantee.

Yain et al.| (2021) show that for carefully chosen step sizes, the logarithmic factor can be removed, and
Feldman et al.[(2020) extend this analysis to a DP-SGD variant with varying batch sizes. Unlike those methods,
averaging can be done as post-processing of DP-SGD outputs, rather than a modification of the algorithm.
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3  QUANTIFYING UNCERTAINTY IN PREDICTIONS DUE TO DP NOISE

In this section, we discuss our proposal of how to quantify the uncertainty that the differential privacy
(DP) noise adds to the outputs of ML algorithms, without additional privacy cost or computation.
First, we discuss the issues with the current established approach of uncertainty quantification in ML
when used in DP setting, and then discuss our proposal and theoretical results. Finally, we provide
experimental results that demonstrate the practical utility of our approach.

(Naive) uncertainty quantification, and its hurdles: As discussed in Section [T} although uncer-
tainty quantification has a long history of research, prior methods, including the most common
independent runs method, are not applicable in DP settings. The two major issues with the indepen-
dent runs method in DP settings are: First, the additional runs of a DP-ML algorithm can incur a
significant increase in the privacy cost. Second, the additional computation required in independent
runs method can be prohibitive, e.g., in production FL. Hence, it is not feasible to use the naive
method for uncertainty quantification in DP settings.

3.1 TwoO BIRDS, ONE STONE: OUR UNCERTAINTY QUANTIFICATION PROPOSAL

To address the two hurdles discussed above, we propose a simple yet efficient method that leverages
intermediate checkpoints computed during a DP run. Specifically, we substitute the k& output models
from the independent runs method with k checkpoints, e.g., the last k£ checkpoints, from a single DP
run. The rest of the confidence interval computation is the same for both the methods. Specifically,
we compute the most likely classification labels of the k£ models/checkpoints on a test input. Use the
set of k output labels as a sample from the student’s t-distribution and compute a confidence interval
of the mean of the distribution. Finally, we use the average of multiple such intervals over multiple
test inputs as a proxy for uncertainty of outputs of the DP ML algorithm.

3.1.1 THEORY

In this section, we give a theoretical motivation for using checkpoints to estimate the variance of a
statistic. We show that under certain assumptions, if we take the sample variance of a statistic f(6)
computed at the checkpoints 6;,, ..., 6,,, in expectation it is a good approximation of the sample
variance of the limiting distribution of DP-SGD. As expected, the quality of the approximation
improves by increasing the length of the “burn-in” time as well as the time between checkpoints.
To simplify the proof, we actually prove the theorem for DP-LD, a continuous-time version of DP-
SGD. DP-LD can be defined as follows. We first reformulate (unconstrained) DP-SGD with step

size 7 as: 0(,4_1)77 Oy — NV L(Or; D) + by, by ~ N(0,2001,,).

Notice that we have reparameterized 0 so that its subscript refers to the sum of all step-sizes so far,

i.e. after t iterations we have 9”, and not 9t Also notice that the variance of the noise we added is
proportional to the step size 7). In turn, for any 7 that divides ¢, after ¢ /7 iterations with step size 7,
the sum of variances of noises added is 2to2. Now, taking the limit as 7 goes to 0 of the sequence

of random variables {@n}tezzo defined by DP-SGD, we get a continuous sequence {9t}teR20~ In

particular, if we fix some ¢, then 6, is the limit as n goes to 0 of 0, defined by DP-SGD with step
size 7. This sequence is exactly the sequence defined by DP-LD, which is more formally given by
the following stochastic differential equation:

db; = =V L(0y; D)dt 4+ o/ 2dW,. (1)

Here, W; is a standard Brownian motion and o2 is analogous to the variance of noise added in
DP-SGD. In Appendix[A]we show the following:

Theorem 3.1 (Simplified version of Theorem[A.T). Suppose L is 1-strongly convex and M -smooth,
and o = 1 in . Let 0 < t1 < tg < ... < t be such that t;y1 > t; +v,Vi > 0 and some
v. Let {0, : i € [k]} be the checkpoints, and f : © — [—1,1] be a statistic whose variance we
wish to estimate. Let S be the sample variance of f over the checkpoints, and V' be the variance of
f(64,), i.e. the statistic at the final checkpoint. Then, for some “burn-in” time B that is a function
of 0o, M, p, we have: |E[S] — V| = exp(—Q(min{t1,v} — B)).

Intuitively, Theorem [A.T]and its proof say the following: (i) As we increase ¢1, the time before the
first checkpoint, each of the checkpoints’ marginal distributions approaches the distribution of 6, ,
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and (ii) As we increase -, the time between checkpoints, the checkpoints’ distributions approach
pairwise independence. So increasing both ¢; and «y causes our checkpoints to approach k pairwise
independent samples from the distribution of 6,, , i.e., our variance estimator approaches the true
variance in expectation. To show both (i) and (ii), we build upon past results from the sampling liter-
ature to show a mixing bound of the following form: running DP-LD from any point initializatio
0o, the Rényi divergence between 6, and the limit as ¢ — oo of DP-LD, 6., decays exponentially
in t. This mixing bound shows (i) since if ¢; is sufficiently large, then the distributions of all of
0t,,04,, ..., 0, are close to 0, and thus close to each other. This also shows (ii) since DP-LD is
a Markov chain, i.e. the distribution of th conditioned on 6,, is equivalent to the distribution of
0¢, ¢, if we run DP-LD starting from 6y, instead of 6. So our mixing bound shows that even after
conditioning on 6y, 0;, has distribution close to 6. Since 6y, is close to 6, conditioned on any
value of 6;,, then Htj is almost independent of 6.

Empirical analysis: We compare  oos StackOverflow 0zs CIFAR10

the uncertainty quantified using the
independent runs method and us-
ing our method; experimental setup
is the same as in Section 2.2.1]
First, for both StackOverflow and CI-
FAR10 datasets, we do 100 indepen-
dent training runs. Then to com-
pute uncertalnty USIHg the lndepen_ 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
dent runs method, we take the final Number of samples (N) Number of samples (N)

model from / of these runs (chosen  Figure 4: Uncertainty due to DP noise measured using con-
randomly), compute prediction labels  fidence interval widths. We compute the intervals using N

jforagiven.input, compute confidence bootstrap (independent) runs, and using the last N check-
interval widths for the input, and fi- points of a single run.

nally, use the average of confidence

interval widths of a large number of inputs as the final uncertainty estimate. To compute uncertainty
using our checkpoints based method, we instead select our £ models to be the last k£ checkpoints of
a random training run, and obtain average confidence intervals as before.
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Figure [4] shows the results for StackOverflow and CIFAR10. Plots show intervals averaged over 5
runs, i.e., by sampling k final models 5 times or by using the last k¥ models of 5 random runs. We
observe that uncertainty computed using the intermediate checkpoints consistently give a reasonable
lower bound on the uncertainty computed using the independent runs.

4 CONCLUSIONS

In this work, we explore methods for aggregating intermediate checkpoints to improve the utility of
DP training. Using checkpoints aggregation methods, we show significant improvements in predic-
tion accuracy over the SOTA for CIFAR and StackOverflow datasets. We also show that uniform
tail averaging of checkpoints improves the ERM bound compared to the last checkpoint of DP-SGD.
Lastly, we prove that for some standard loss functions, the sample variance from last few checkpoints
provides a good approximation of the variance of the final model of a DP run. We also conduct ex-
periments demonstrating that the last few checkpoints can provide a reasonable lower bound for the
variance of a converged DP model. For future work, using checkpoint aggregates during DP training
could be an interesting direction to further improve its utility. Leveraging intermediate checkpoints
to provide variance estimates for checkpoint aggregates could also be a promising direction.
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A PROOF OF THEOREM

For convenience/formality, we review the setup for the theorem we wish to prove. Recall that given
aloss function L, by taking the limit as 7 goes to 0 in DP-SGD, we recover the stochastic differential
equation , restated here for convenience:

df; = =V L(0y; D)dt + o/ 2dW,.

Note that the solutions 6, to this equation are random variables. A key property of (1)) is that the
stationary distribution (equivalently, the limiting distribution as ¢ — o0) has pdf proportional to
exp(—L(0; D) /o) under mild assumptions on £ (which are satisfied by strongly convex and smooth
functions).

To simplify proofs and presentation in the section, we will assume that (a) 6 is a point distribution,
(b) we are looking at unconstrained optimization over R?, i.e., there is no need for a projection
operator in DP-SGD and (1)), (c) the loss £ is 1-strongly convex and M-smooth, and (d) o = 1. We
note that (a) can be replaced with 8y being sampled from a random initialization without too much
work, and (c) can be enforced for Lipschitz, smooth functions by adding a quadratic regularizer. We
let 6* refer to the (unique) minimizer of £ throughout the section.

Now, we consider the following setup: We obtain a single sample of the trajectory {0; : ¢t € [0,T]}.
We have some statistic f : © — [—1, 1], and we wish to estimate the variance of the statistic for
the final value d7, i.e. the variance V' := Var (f(6r)). To do so, we use the sample variance of
the checkpoints at times 0 < t; < t9 < t3 < ... < t = T. That is, our estimator is defined as

k ~ ~ k
S = g7 2ima (F(0r,) — [i)? where fi = £ 370, f(6r,).
Theorem A.1. Under the preceding assumptions/setup, for some sufficiently large constant c, let

v =537 +In(cM(p+In(1/A) + || — 9*||3)) + cIn(1/A) (recall that p is the dimensionality of
the space). Then, ifty > v and t;1 > t; + vy foralli > 0, for S,V as defined above:

Before proving this theorem, we need a few helper lemmas about Rényi divergences:
Definition A.2. The Rényi divergence of order o > 1 between two distributions P and Q (with
support R?), D, (P, Q), is defined as follows:

— P(0)~
DAL= | Q™

We refer the reader to e.g. ivan Erven & Harremos| (2014); [Mironov| (2017)) for properties of the
Rényi divergence. The following property shows that for any two random variables close in Rényi
divergence, functions of them are close in expectation:

Lemma A.3. [Adapted from Lemma C.2 of|Bun & Steinke|(2016)] Let P and Q be two distributions
onQandg:Q — [—1,1]. Then,

Esnp [9(2)] ~ Bano [g@)]] < VeP2PID — 1.

Here, D2('P||Q) corresponds to Rényi divergence of order two between the distributions P and Q.

The next lemma shows that the solution to (I) approaches 6, exponentially quickly in Rényi diver-
gence.

Lemma A.4. Fix some point 60y. Assume L is I-strongly convex, and M-smooth. Let P be the
distribution of 0 according to (1)) for o = 1 and:

t:=1/2M + In(c(M ||6 — 6|3 + pIn(M))) + ¢In(1/A).

Where c is a sufficiently large constant. Let Q be the stationary distribution of (I). Then:
Dy(P, Q) = O(A?).
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The proof of this lemma builds upon techniques in |Ganesh & Talwar| (2020)), and we defer it to the
end of the section. Our final helper lemma shows that 6, is close to 8* with high probability:

Lemma A.5. Let 6, be the random variable given by the stationary distribution of (l)) for o = 1.
If L is 1-strongly convex, then:

Pr(|0oc — 6", > v/ + 2] < exp(—2?/2).

Proof. We know the stationary distribution has pdf proportional to exp(—L(6;; D)). In particular,
since L is 1-strongly convex, this means 6, is a sub-Gaussian random vector (i.e., its dot product
with any unit vector is a sub-Gaussian random variable), and thus the above tail bound applies to
it. O

We now will show that under the assumptions in Theorem [A.I] every checkpoint is close to the
stationary distribution, and that every pair of checkpoints is nearly pairwise independent.

Lemma A.6. Under the assumptions/setup of Theorem[A.1} we have:

(E1) Vi [E[(f(0:,))] — E[(f(6:))]| = O(A),
(E2) Vi: [E[(f(6:,)%)] — E[f(0:)%]] = O(Q),
(E3) Vi < j:|Cov (f(b:,), f(6:,)) | = O(A).
Proof. We assume without loss of generality A is at most a sufficiently small constant; otherwise,

since f has range [—1, 1], all of the above quantities can easily be bounded by 2, so a bound of O(A)
holds for any distributions on {6, }.

For (E1), by triangle inequality, it suffices to prove a bound of O(A) on [E[f(0:,)] —E[f(0)]|- We
abuse notation by letting 8; denote both the random variable and its distribution. Then:

Lemmal[AJ] (*1)
[E[f(0:.)] —E[f(6)]] < \/eD2(f(9ti)7f(goo)) -1 §1 \/eDz(Gti,eoo) -1

temmBdl 0% 21 2 o().

In (%1) we use the data-processing inequality (Theorem 9 of jvan Erven & Harremos|(2014))), and in
(%2) we use the fact e” — 1 < 2z, € [0, 1] and our assumption on A.

(E2) follows from (E1) by just using f2 (which is still bounded in [—1, 1]) instead of f.

For (E3), note that since (I is a (continuous) Markov chain, the distribution of f¢, conditioned on
0, is the same as the distribution of 6;, ;, according to (1) if we start from 6, instead of §,. Let P
be the joint distribution of 0;,, 0y, . Let Q be the joint distribution of ;,, 6, (since (I)) has the same
stationary distribution regardless of its initialization, this is a pair of independent variables). Let
P’, Q' be defined identically to P, Q, except when sampling 6, , if ||6;, — 6*[|, > /p++/2In(1/A)
we instead set §;, = 6* (and in the case of P’, we instead sample 0, from 0, |6:, = 6* when this
happens). Let R denote this distribution over 6;,. Then similarly to the proof of (E1) we have:

Lemmal[AJ3] —
[Epr[f(0r,)f(0r,)] — B [f(O)IE[f ()]l < VeP2(Phe) —1
(*SB) \/eInaXSti€supp(R){D2(at]‘ ‘atl,goc)} —1.

LenmS3 /S6(8%) 1 — o(A

Here (x3) follows from the convexity of Rényi divergence, and in our application of we are
using the fact that for all 6;, € supp(R), ||0;, — 0*|, < /p + /2In(1/A). Furthermore, by
Lemma we know P and P’ (resp. @ and Q') differ by at most A in total variation distance. So,
since f is bounded in [—1, 1], we have:

[Ep[f(00)f(0r,)] = Epr[£(0:,) f(01))]] < A,
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[Eo[f(0::)]ESf (00)] — Eor [£(0:)]E[f (0c0)]] < A.
Then by applying triangle inequality twice:

[Ep[f(6:,)f(0:,)] — Eolf(0:,)]E[f(00)]| = O(A)

Now we can prove (E3) as follows:

=

Oy,

|Cov (f(ati)7 f(atj)) ‘

—
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(6;) = ELf(0:,)D]
1 )IELS (6;)]]

0:)IE[f (000)] + [E[f (0:)[E[f (00 )] — E[f (0:)]E[S (0:,)]]
[£(62;)]] = O(A).
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Proof of Theorem[A.I} We again assume without loss of generality A is at most a sufficiently small
constant. The proof strategy will be to express E[S] in terms of individual variances Var (f(6;,)),
which can be bounded using Lemma[A.6]

We have the following:
2
1< 1 & k-1 1
E[S]ZHZE[U(@M*@Z} :mZE <k> f(ati)*m Z f(0;)
i=1 i=1 N Jelk].ii

|
RCY
From (2)), we have the following:
E [(z; — %:)*] = E[#]] — 2E[z;y:] + E[y]]
= (B2 - Elzi])?) + (Bl - Elyi)*) + ((Elwi)® + Ely)® - 2E [wii])
— Var (a;) + Var () + ((Ele:))* + (Ely))* - 2E [ean]) (3)
N N —

c

In the following, we bound each of the terms A, B, and C individually. First, let us consider the
term B. We have the following:

1
B = Var (y;) = w12 E Var (f(6,,)) + 2 E Cov (f(0s,), f(6:,)) |- @
(k—1) jelk],j#i 1<tk
VESIRA

Plugging Lemma[A:6] (E3) into @) we bound the variance of y; as follows:

B = Var (y;) = ( > Var(f ) +0(A). (5)
( ) JElk],j#i
We now focus on bounding the term C'in (3). Lemma@ (E1) and (E3) implies the following:
(Efz:))* = (E[f(8:.)])* £ O(A), (6)
(E[y])* = (E[f(0:)])* £ O(A), @)
Elziyi] = (E[f(0:,)])* + O(A). ®)
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Plugging (6),(7), and (8) into (3)), we have
1
E [(2: —y:)?] = Var (f(0.,)) + (e > Var (f(6,,)) | £0(A). 9)
JElk],i#1
Now, Lemma[A.6] (E1) and (E2) implies Vi : [Var (f(6;,)) — Var (f(6;,)) | = O(A). So from ()
we have the following:
k
E [(2i —9:)*] = Var (£(6,,) - 7— + O(A). (10)
Plugging this bound back in (), we have the following:
1 (k-1)\° k
is] = oy (S0) e (Var(r0)) - 5 £0(8) ) = Var (7(61)) £ 0(8). (D
Which completes the proof. O

A.1  OPTIMIZING THE NUMBER OF CHECKPOINTS

In Theorem [AJ] we fixed the number of checkpoints and gave lower bounds on the burn-in time
and separation between checkpoints needed for the sample variance bound to have bias at most A.
We could instead consider the problem where 7', the time of the final checkpoint, is fixed, and we
want to choose k£ which minimizes the (upper bound on) mean squared error of the sample variance
of { f(0i7/1)}ick)- Here, we sketch a solution to this problem using the bound from this section.

The mean squared error of the sample variance is the sum of the bias and variance of this estimator.
We will use the following reparameterization of Theorem [A-T}
Theorem A.7 (Reparameterized version of Theorem [A.1). Let ¢; = 517 + In(coM(p +

|60 — 9*“;)) where co is a sufficiently large constant. Then if S is the sample variance of
{f(Xir ) }ick), V is the true variance of Xr, and T [k > c;:

E[S] - V[ < exp (—T/’“‘) |

C2

One can also show the variance of S is close to the true sample variance:

Lemma A.8. If S is the sample variance of k > 1 i.i.d. samples of O, then if co is a sufficiently
large constant, for ¢y as defined in theorem[A7}

Var (5) < —,|[Var (S) — Var (5) | < 2exp (—T/k_Q> .

C2

T =

Proof. Letxy,...,xy be k ii.d. samples of f(fr), then since each x; is in the interval [—1, 1]:

E[x}] _ Var (z1) (k- 3)
k Kk — 1)

Var (5*) = <

1
=
Giving the first part of the lemma. For the second part, let 2; be the sampled value of f(0;7 /).
Then:

2\ 2

1 1
21 _
B =E| | ;=7 2 (w5 2@
i€[k] JE[K]

For some coefficients ¢; j ¢, this can be written as Zi§j<£<m Cijo.mElxizjzer,,] where

Do <j<t<m |cijem| < 2. By a similar argument to Theorem the change in this expecta-

o T/]{)*Cl
C2

tion if we instead use z; that are i.i.d. is then at most exp ( as long as co is a sufficiently
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E[S?] — E[S?]| < exp (7%}%1) A similar argument applies to
E[S)?, giving the second part of the lemma. O

Putting it all together, we have an upper bound on the mean squared error of the sample variance of:

1 P
Ly 3exp (T/kﬁ>

k Co
Assuming k > 1,T/k > ¢;. Minimizing this expression with respect to k gives
B T
o+ eaIn(3T/er)’

which we can then round to the nearest integer larger than 1 to determine the number of checkpoints
to use that minimizes our upper bound on the mean squared error. Of course, if 7' < 2¢; then
Theorem [AT] cannot be applied to give a meaningful bias bound for any number of checkpoints, so
this choice of k is not meaningful in that case.

A.2 PROOF OF LEMMA[A 4]

We will bound the divergences D, (P, P2), Do (Ps, P3), Do (Ps, Py) where P is the distribution
6, that is the solution to (I), P» is a Gaussian centered at the point 0y —nV L(6y; D), Ps is a Gaussian
centered at 0*, and P; is the stationary distribution of (I)). Then, we can use the approximate triangle
inequality for Rényi divergences to convert these pairwise bounds into the desired bound.

Lemma A.9. Fix some 0y. Let Py be the distribution of 0, that is the solution to (1)), and let P; be
the distribution N (6g — 1V L(0o; D), 2n). Then:

Da(Py, P2) = O (M21n(a) - max{pn®, 9o — 03"}

Proof. Let 6, be the solution trajectory of (T) starting from 6, and let 8, be the solution trajectory if
we replace VL(0;; D) with VL(0; D). Then 0y, is distributed according to P; and ¢;, is distributed
according to Ps.

By a tail bound on Brownian motion (see e.g. Fact 32 in|Ganesh & Talwar] (2020)), we have that

maxyeo, ] Hfot AW dsH < nlp+ 21n(2/(5)) w.p. 1 — 4. Then following the proof of Lemma 13
in|Ganesh & Talwar] (2020), w.p. 1 —
max [0 — boll, < eM(v/p+ v/In(1/6))/5 + M |6 — 7], m,

te[0,n]

for some sufficiently large constant ¢, and the same is true w.p. 1 — § over 6;. Now, following
the proof of Theorem 15 in|Ganesh & Talwar] (2020), for some constant ¢/, we have the divergence
bound D, (P, P2) < ¢ as long as:

M*In*a .
———(on* + 160 = 0" |57°) < .

In other words, for any fixed 7, we get a divergence bound of:

D,(P1,P) =0 (M2 In(a) ~max{p772, 160 — 9*||§ 773}> ,

as desired. O

Lemma A.10. Let P; be the distribution N(6p — nVL(0o; D),2n) and Ps be the distribution
N(6*,2n). Then forn < 2/M:

a oo —0*]l5

Do (Py, P3) <
(P2, P3) P
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Proof. By contractivity of gradient descent we have:
160 — NV L(60; D) = 07l < [10 =67,

Now the lemma follows from Rényi divergence bounds between Gaussians (see e.g., Example 3 of
van Erven & Harremos| (2014)). O

Lemma A.11. Ler Ps be the distribution N (0*,2n) and let Py be the stationary distribution of (T).
Then forn < 1/2M we have:
Do(Ps, Py) < —2 (9 In(1/n) — ln(27‘r)> + Lin(a/amy).
a—11\2 2

d
Proof. We have P3(6) = P3(6%)exp(— [0 — 67[13) where Py(6") = (ﬁ) . By M-

smoothness of the negative log density of P, we also have Py(0) > Py(6*) exp(—2L [0 — 6" Hg)

In addition, since P is 1-strongly log concave, Py(0*) > (5=)° /? (as the 1-strongly log concave
density with mode 6* that minimizes P, (6*) is the multivariate normal with mean 6* and identity
covariance). Finally, for « > 1 and n < 1/2M, we have a/4n > (o — 1)M /2. Putting it all
together:

exp(e~ )Du(Pa.P0) = [ 8o

— ot [ (<~ (= D5 10~ 0712 ) a9
< (m)w R (—q; =Dl 071E) ao
~ (5 ) (21)/ / exp(—@’—(a—/ D50~ 713) df

@ ap o ()M P/?
Q@) (25
) ) (&)

(gln(l/n) (2%)) 1n(a/47r77

S

IN

= Dy(Ps,Py) <

a—1
In (*), we use the fact that a/4n > (o — 1) M /2 to ensure the integral converges.
O

Lemma A.12. Fix some point 0. Let P be the distribution 0,, that is the solution to () from 6, for
timen < 1/2M. Let Q be the stationary distribution of (I). Then:

allfy — 073

Da(P,Q) =0 <M2 In(a) - max{pn®, [0 — 0" (57"} + +pln(a/77)->

Proof. By monotonicity of Rényi divergences (see e.g., Proposition 9 of Mironov| (2017)), we can
assume « > 2. Then by applying twice the approximate triangle inequality for Rényi divergences
(see e.g. Proposition 11 of Mironov|(2017))), we get:

5 4
Do (P, Py) < §D3a(P1, Py) + gDSa—l(P% P3) + D3q—2(Ps, Py).
The lemma now follows by Lemmas O

Lemma|A .4 now follows by plugging o = 2,7 = 1/2M into Lemma and then using Theorem
2 of |Vempala & Wibisono|(2019)).
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Table 4: StackOverflow LSTM architecture details.

Layer Output shape | Parameters
Input 20 0
Embedding (20, 96) 960384
LSTM (20, 670) 2055560
Dense (20, 96) 64416
Dense (20, 10004) 970388
Softmax - -

B MISSING DETAILS FROM SECTION[2.2]
Below we provide the experimental setup and results that are missing from Section [2.2]

B.1 EXPERIMENTAL SETUP

Training hyperparameters:

CIFARIO training: We use Jaxline (Bradbury et al.l 2018) to train on CIFARIO using DP-
SGD (Berrada et al., |[2022). For CIFARTO, we use a WideResNet with depth 16 and width 4. We
fix clip norm to 1, batch size to 4096 and augmentation multiplicity to 16 as in (De et al.l [2022).
Then, we set learning rate and noise multiplier, respectively, to 2 and 10 for e = 1 and to 4 and 3 for
€ = 8. For periodic distribution shifting (PDS) CIFAR10, we set learning rate and noise multiplier,
respectively, to 2 and 12 for € = 1 and to 4 and 4 for € = 8. We stop the training when the intended
privacy budget exhausts.

CIFARI0O training: For CIFAR100 also, we use Jaxline (Bradbury et al., 2018) and use DP-SGD
to fine-tune the last, classifier layer of a WideResNet with depth 28 and width 10 that is pre-trained
on entire ImageNet data. We fix clip norm to 1, batch size to 16,384 and augmentation multiplicity
to 16 as in (De et al., [2022). Then, we set learning rate and noise multiplier, respectively, to 3.5
and 21.1 for ¢ = 1 and to 4 and 9.4 for ¢ = 8. For periodic distribution shifting (PDS) CIFAR100,
we set learning rate and noise multiplier, respectively, to 4 and 21.1 for ¢ = 1 and to 5 and 9.4 for
€ = 8. We stop the training when privacy budget exhausts.

We would like to highlight that we obtain a significant improvement over the SOTA baseline of |De
et al.| (2022): In particular, unlike in (De et al.| 2022)), we fine-tune the final EMA checkpoint, i.e.,
the one computed using EMA during pre-training over ImageNet. This modification (without any
additional checkpoints aggregations) gives a major accuracy boost of 5% (70.3% — 75.51%) for
e =1and of 3.2% (77.6% — 80.81%) for € = 1 for the normal CIFARIO0 baseline. We obtain
similarly high improvements by fine-tuning the EMA of pre-trained checkpoints (instead of just the
final checkpoint) for the PDS-CIFAR100 case. We leave the further investigation of this phenomena
to the future work.

StackOverflow training: We follow the SOTA in (Kairouz et al., 2021; Denisov et al.| [2022) and
use TFF to train a one-layer LSTM (detailed architecture in 'l'able (Reddi et al.;[2020)) on Stack-
Overflow using DP-FTRLM full version from (Denisov et al., 2022). StackOverflow is naturally
user-partitioned data, and we process 100 clients in each FL round. We train for 2048 FL rounds
and set clip norm, noise multiplier, server learning rate, client learning rate, and server momentum,
respectively, to 1, 0.341, 0.5, 1.0, 0.95 for ¢ = 18.9 and to 1, 0.682, 0.25, 1.0, 0.95 for € = 8.2. For
PDS-StackOverflow, the same set of hyperparameter performs the best based on our tuning of the
aforementioned hyperparameters.

Hyperparameters tuning of checkpoints aggregations: Here we provide the methodology we fol-
low to obtain the best hyperparameters for our checkpoints aggregation methods (Section [2.1)). For
EMA, De et al.| (2022) simply use the EMA coefficient that works the best in non-private baseline.
However, for each of the settings we consider, we tune EMA coefficient in {0.85, 0.9, 0.95, 0.99,
0.999, 0.9999} and observe that the best EMA coefficients for private and non-private settings need
not be the same (Table E]) For instance, for CIFAR10, for € of 1 and 8, EMA coefficient of 0.95
and 0.99 perform the best and outperform 0.9999 by 0.6% and 0.3%, respectively. Hence, we advise
future works to perform tuning of EMA coefficient. Full results are given in Table 9]
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Table 5: Accuracy gains on test data due to data-dependent checkpoints aggregation algorithms for
StackOverflow trained using DPFTRLM to achieve user-level DP.

Aggregation algorithms
Privacy level None Parameters aggregation Outputs aggregation
(Baseline) EMA UPA OPA OMV
€=00 2524 £0.16 | 25.97 £0.01 | 25.97 £0.01 | 2594 £0.03 | 25.97 £ 0.02
=189 2341 £0.08 | 23.88 £0.04 | 23.92 £ 0.03 | 23.81 £ 0.06 | 23.76 & 0.07
€=28.2 2228 £0.08 | 22.66 £0.05 | 22.80 = 0.05 | 22.7 +0.01 | 22.69 £ 0.01

Table 6: Accuracy gains on test data due to data-dependent checkpoints aggregation algorithms for

periodic distribution shifting StackOverflow trained using DPFTRLM to achieve user-level DP.

Aggregation algorithms
Privacy level None Parameters aggregation Outputs aggregation
(Baseline) EMA UPA OPA OMV
€ =00 23.89 £0.04 | 2418 £0.02 | 24.15+0.02 | 24.15 £ 0.01 | 24.19 £ 0.01
=189 21.6 £ 0.13 | 22.18 £ 0.07 | 22.17 £ 0.06 | 22.21 £ 0.08 | 22.19 &+ 0.09
€=28.2 20.24 £0.29 | 20.84 £0.13 | 20.85 £0.12 | 20.90 = 0.06 | 20.82 £ 0.08

StackOverflow, User level € = » PDS StackOverflow (& = «)

24.0
23.8
—_ _.23.6
X X
2234
9 3 R NIRE P
e g i it
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Figure 5: Accuracy gains due to checkpoints aggregations for StackOverflow (left) and periodic
distribution shifting StackOverflow (right) trained using DP-FTRLM without any DP, i.e., € = co.

For the past & checkpoints aggregation based methods, our tuning methodology is general and as
follows: we use some validation data (which is disjoint from training data) and evaluate the efficacy
of aggregating k checkpoints where we vary k over a large enough range, and select the &k that
performs the best on average over 5 runs. Finally, we present results on test data using the best
k value. Our hyperparameters tuning method is easy to replicate hence for conciseness, here we
only provide the ranges of k that we use for tuning. For CIFAR10 and CIFAR100, we tune k €
{3,5,10,20,...,200} for both parameters and outputs aggregation. For StackOverflow, we tune
k € {3,5,10,20,...,200} for parameters aggregations (i.e., UPA) and for outputs aggregation (i.e.,
OPA and OMYV). However, as for outputs aggregations, one should store & checkpoints on device in
the FL setting of StackOverflow, we reduce tuning range and tune k € {3, 5, 10, 20, ..., 100}.

Details of data dependent checkpoints selection for StackOverflow: Here we provide precise
method for selecting the best k of all checkpoints and aggregate them. We perform these experiments
for StackOverflow due to availability of additional data, and omit CIFAR datasets. Specifically, we
use 10,000 samples from the validation partition of the original StackOverflow data and use it as
held-out data. Note that held-out data is disjoint from both training and validation data we use for
other parts of experiments. We compute performance of all checkpoints on held-out data and order
them from highest to lowest performing checkpoints. Then we tune k as detailed in the previous
section. The aggregation function remains the same for all, but EMA, our aggregation methods
from Section 211

Recall that traditional EMA is computed over all the checkpoints computed during training. We
compute EMA over best k checkpoints as %, = (1 — ) - 0.1 + 3. 6%, where i € {1,2,....,k}.

We keep EMA coefficient, 5, constant through out. For EMA, we further tune /3 using validation
data.
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Table 7: Accuracy gains on test data for CIFAR100 fine-tuned using DP-SGD and sample-level DP.
Aggregation algorithms

Privacy level None Parameters aggregation Outputs aggregation
(Baseline) EMA UPA OPA OMV
=28 80.81 £ 0.11 | 80.88 + 0.10 | 80.83 £ 0.09 | 80.92 + 0.10 | 80.82 + 0.10
e=1 7551 £ 0.15 | 7542 £0.13 | 75.62 £0.12 | 75.51 £ 0.16 | 75.57 £0.18

Table 8: Accuracy gains on test data for periodic distribution shifting CIFARI00 fine-tuned using
DP-SGD and sample-level DP.

Aggregation algorithms

Privacy level None Parameters aggregation Outputs aggregation
(Baseline) EMA UPA OPA oMV
e=38 77.16 £0.11 | 80.53 £0.07 | 80.53 = 0.08 | 80.49 £ 0.06 | 80.41 £ 0.09
e=1 70.84 £0.16 | 7483 £0.15 | 75.81 £0.16 | 75.02 £ 0.17 | 7497 £ 0.18

Table 9: We observe that tuning the EMA coefficient can provide significant gains in accuracy over
the default value of 0.9999 that De et al.|(2022) use; with warm-up schedule and number of training
steps that|De et al.[(2022) use, 0.9999 and 0.999 provide the same results. This implies that tuning
EMA coefficients for each different privacy budget is required for the best performances.

Privacy level EMA coefficient
0.9 0.95 0.99 | 0.999 (De et al.|(2022))
=38 79.41 | 79.35 | 79.41 79.16 T
e=1 56.59 | 56.61 | 56.06 56.05
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