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Abstract

Forecasting the behavior of real-world spatiotemporal systems often requires not
only accurate predictions but also interpretable regime trajectories, i.e. discrete
states that describe how dynamics change over time. However, existing approaches
often entangle space and time, obscuring regime structure or trading interpretabil-
ity for scale. We introduce ReGraSS, a unified framework that learns discrete,
interpretable latent regimes from spatiotemporal data, represented as dynamic
graphs, combining variational training with strictly time-ordered state-space infer-
ence. Predictions are produced by a mixture-of-experts modulated by the inferred
regime probabilities, enforcing regime-specific specialization and supporting inter-
pretability. Trained with self-supervised one-step prediction, the model learns in
label-scarce settings and provides calibrated uncertainty by estimating a distribution
over discrete regimes. ReGraSS matches or surpasses state-of-the-art spatiotempo-
ral baselines in one-step forecasting. It shows the smallest error spike at regime
changes and the fastest recovery thereafter, indicating regime-level interpretabil-
ity and reliable trajectory tracking without compromising accuracy. We believe
our interpretable, uncertainty-aware framework for regime-aware forecasting on
dynamic graphs has direct application in healthcare, finance, and epidemiology.

1 Introduction

Recent advances in modern sensing and data acquisition reveal how real-world systems evolve across
space and time [[1} 2, 3]. In these settings, accurate forecasting of the system’s trajectory is necessary
but often not sufficient: interpretable regime trajectories, i.e. discrete states governing the system’s
evolution, may also be required. They reveal to be critical in high-stakes domains such as healthcare
(e.g., disease progression staging [4} 5, 16]), finance (e.g., market regimes [7,18]]) or epidemiology (e.g.,
transmission phases [9,[10]]), where decisions rely on understanding when and why a regime shifts,
not only on accurate forecasting of future events. Yet, current learning systems lack regime-aware,
time-ordered explanations alongside forecasts, leaving a critical gap for models that jointly learn
spatial structure, temporal evolution, and discrete interpretable regimes.

Graph Neural Networks (GNNGs) [[11}[12] are powerful tools to model spatial relationships through
relational inductive biases, providing a unified framework for domains with hierarchical structure and
rich spatial interactions. Extending them to spatiotemporal settings is challenging because both the
graph topology and the node signals may evolve over time. Dynamic variants such as EvolveGCN
[L3] and ROLAND [14] address part of this challenge, yet they still interleave spatial aggregation
with temporal updates via recursive message passing. As topology evolves, this coupling obscures
what changed from when it changed, hindering interpretable identification of discrete regimes.

On the other hand, State Space Models (SSMs) provide a well-established framework for modeling
temporal dynamics via latent state representations and structured transitions. Recent work on
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learnable SSMs (e.g., S4 [15]], Mamba [16]]), achieve strong performance on sequence modeling tasks,
overcoming several limitations of classical SSMs such as adaptation to regime shifts and multi-scale
dynamics. However, they typically require large amounts of data and tend to sacrifice latent-state
interpretability, limiting their applicability where understanding the underlying dynamics is essential.

Recent efforts integrate SSMs with graphs by decoupling spatial and temporal reasoning, applying
state-space updates at the node level and mixing via GNN layers (e.g., GrassNet [17]], Graph Mamba
[L8]]). Dynamic variants further interleave Mamba-based sequence modules and spatiotemporal graph
blocks to handle evolving topologies (STG-Mamba [19]], DG-Mamba [20]). However, these models
typically use SSMs as feature extractors rather than for interpretable regime tracking through state
representation.

In this work, we propose ReGraSS, an unified framework that models discrete, interpretable regimes
as latent states on dynamic graphs. A dynamic GNN encodes evolving structure and features, while
temporal regime dynamics are decoupled and captured via a variational distribution over latent
states. Predictions are state-conditioned via a mixture-of-experts weighted by regime probabilities, so
the inferred state actively governs emissions, yielding trajectory-level explanations and calibrated
uncertainty without degrading forecast accuracy. During training, a categorical VAE [21]] with
a learnable transition prior supports uncertainty-aware regime discovery; at inference, we switch
to a strictly time-ordered state-space rollout that conditions only on past and present, enabling
transparent trajectory analysis without future leakage. To function in label-scarce settings common in
high-stakes applications, we adopt an autoregressive one-step forecasting objective that forces the
model to internalize graph-coupled dynamics by predicting next-step node features and produces
regime trajectories consistent with predictive performance. On controlled synthetic tests with induced
non-stationarity, the framework captures regime transitions, supports uncertainty-aware trajectories,
and matches or surpasses strong spatio-temporal and graph-SSM baselines, demonstrating that
interpretable regime tracking can be achieved without a trade-off in accuracy.

2 Proposed Approach

2.1 Problem Statement

We consider a discrete-time sequence of graph snapshots G = (G;)L_,, where each G = (V;, By, X;)
consists of a vertex set V;, an edge set E,;, and node features X; € RM*D with N, = |V;] and
feature dimension D. We assume that the topology and vertex set may vary over time (vertices may
appear or disappear).

Our main hypothesis is that a finite set of discrete regimes R = {r1, ...,k } modulates the dynamics,
with R; € R being the active regime at time ¢. Discrete regimes align with how practitioners typically
characterize system progression (physiological stages, market states) even when these categories
coarsen underlying continuous dynamics.

Focusing on node-feature dynamics, we assume that the next time point features X, are gen-
erated from some probability distribution IF’(XtH | Xo:t, Vout, Eo-t, RO:t) conditioned on past

history. Thus our objective is to learn a model f that (i) approximates the probability distri-
bution IP’(XH_l } Xo:t, Vo, Fout, RO:t) in an autoregressive manner, (ii) while inferring the ac-
tive regime without being provided regime annotations. Formally, the model can be defined as

f (Xo.t, Vour, Eoit) = ()A(Hl, ﬁt) Extensions to topology prediction are straightforward.

2.2 Architecture

We introduce ReGraSS (Regime-aware Graph State Space model), an autoregressive generative
framework for modeling spatio-temporal dynamics on graphs through an intepretable discrete latent
state space, where the extracted states act as proxies for the underlying regimes governing the system
evolution. ReGraSS follows a structured encoder-decoder design. The encoder approximates the
posterior over discrete latent states and the decoder generates node features at future time steps,
conditioned on both the latent state and observed inputs. The model operates differently during
training and inference; we describe the training behavior here and defer the dual representation and
inference details to Section[2.4] The architecture is illustrated in figure[2] and we describe its main
building blocks below.
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Figure 1: Visualization of the model’s architecture and dual formulation.
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Figure 2: Visualization of the model architecture and dual-view formulation. Top panel (training
phase): At each time step, graph snapshots are processed sequentially through the LSTM-GNN
module to produce graph-level temporal embeddings. These embeddings are used to infer the current
latent state z; via the Gumbel-Softmax module, and to predict the next state z;,; via the learnable
prior module Py. Given the inferred states, the temporal node-level embeddings hpeqes are passed
through a MoE module, where expert outputs are modulated by 2, to generate the predicted node
features at time ¢ 4+ 1. Bottom panel (inference structure): The framework can be decomposed into
two components: state transition and emission. This mirrors the classical state-space model (SSM)
formulation, while extending it to a non-linear and graph-based setting.

Encoder. The encoder’s first stage is a temporal GNN that aggregates information from past snapshots
up to the current step . We instantiate it with ROLAND ([[14]]), which maintains hierarchical node
representations via GRU updates ([22]) and naturally supports evolving graph topology. We map the
pooled temporal graph embedding hl, €R* to K unnormalized logits with a linear layer

0y = Wh, +b, W e REXH e RE K =|R|.

To obtain a posterior over the K regimes, we use the Gumbel-Softmax reparameterization [21]:
14
qo(z | W) = softmax<m> , g: ~ Gumbel(0,1)%, 7> 0.
T

Sampling z; ~ g4(- | h%;) yields a differentiable, discrete latent vector that encodes the current
regime R; (approaching one-hot as 7 — 0). Our probabilistic approach quantifies uncertainty in
the current regime and offers a distributional view that bridges continuous dynamics and discrete
regimes. Yet, the framework remains compatible with continuous latents if the underlying system is
better described by continuous variables.

Learnable prior for causal transitions. We define a learnable prior pg(z; | his', z—1),

parametrized by a 2-layer MLP, that receives the temporal embedding htGTl and the previous latent
state to predict z;. During training, we align this prior with the variational posterior g4 (see Sec-
tion[2.3), yielding SSM-like transitions and enabling the dual representation in Section[2.4] Compared
with a fixed Markov prior, this data-driven conditional prior better captures non-stationary regime
dynamics on evolving graphs.

Decoder (mixture of experts). The decoder predicts the next-step node features X;; conditioned
on the current features X; and the latent state z;. We implement it as a mixture-of-experts (MoE
[23): K experts { fx}5_,, each parametrized by an independent MLP, produce candidate outputs

that are combined using the posterior mixing coefficients m; = g4(2: | h%;). Equivalently, X =
224:1 7.k fr(X¢). The choice of the number of experts is domain specific but is typically selected to
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match the number or regimes in the data (K = |R|), thus encouraging a one-to-one correspondence
between the variational-induced states z; and the regimes 7. This implementation induces state-
conditioned output generation, mirroring classical SSM two-stage behavior, i.e., state transition then
output emission [15]]. It also encourages specialization: as the Gumbel-Softmax vector approaches
one-hot, each expert learns the dynamics associated with a specific regime r; € R. While our
implementation uses MLPs, experts can be replaced with other modules such as GNNs when domain
requires it, e.g. when regime transitions influence the diffusion process in the graph, which is better
captured by GNN experts rather than MLPs.

2.3 Training Procedure

Training uses a variational objective derived from the categorical VAE ELBO ([21]],[24]]) with a
forecasting likelihood. Formally, with ¢° = gy (2| h%;) and p’. = pg(2¢ |his ", 2—1), the graph-level

loss over a sequence t =0,...,7T — 1is
T-1
L= Z [Eforecast(Xt-&-la Xt—i—l) + ﬂ(KL(qi) H Sg[pi]) + Y CE(Sg[qu ptz)) ):|7 (1)
— —_——— —_——
=0 one-step prediction encoder-prior alignment teacher-forced prior fitting

where lforecast 1S @ regression loss between the decoder prediction X;;1 (the MoE output) and the
observed features Xy 1, and sg[-] denotes the stop-gradient operator, i.e. that the gradients are not
backpropagated further in the computation tree. The KL term updates the encoder so that the posterior
q% agrees with the prior p!, while the cross-entropy (CE) term trains the transition module to match
the encoder’s next-time posterior ¢**1. This asymmetric pairing stabilises learning: the encoder does
not chase a moving prior, and the prior learns from the encoder without backpropagating through its
inputs. Detailed regularization and parameters schedules are provided in the Appendix [5.1]

By regressing X;; from information available at time ¢, the objective forces the model to internalize
the system’s transition mechanisms, remaining effective when regime annotations are missing,
unreliable, or available only at endpoints. This, in turn, enables reconstruction of regime trajectories
and stratification of sequences (Gy)7_ by regime and temporal evolution.

2.4 Dual Representation

Our framework couples variational training with state-space inference to bridge two limitations
encountered in the literature. By learning spatial representations with a dynamic GNN and evolving
them through discrete regimes, it disentangles space—time updates that obscure regime structure
in temporal GNNs. At the same time, the inference-time state-space rollout restores interpretable
state representation often lost in deep SSMs, while preserving forecasting accuracy through state-
conditioned emissions. This dual formulation is robust to scarce or unreliable labels and preserves
strict temporal causality. During training, a variational next-step regression objective learns a
posterior over regime trajectories, enabling trajectory-level explanations even without ground-truth
regime annotations. At inference, we replace the posterior, that benefits from future information
via backpropagation, with the learned transition prior and roll forward using only past observations,
eliminating future leakage. The probabilistic treatment yields calibrated uncertainty for the current
regime and a distributional view of transitions, bridging continuous dynamics and discrete regimes
without sacrificing predictive performance.

3 Experiments and Results

3.1 Dataset

We generate 150 spatiotemporal graph sequences with T = 10 snapshots (TP1-TP10). At TPI1,
we sample C'~ Unif{3, 4,5} Gaussian clusters in R? (d = 8), with centers j.. ~ Unif([—10, 10]%),
isotropic covariance 0.621,, and sizes M, ~ Unif{5,...,100}; node features are the sampled
coordinates. We build an undirected k-NN graph at TP1 and keep edges fixed thereafter (translation-
invariant under our dynamics). Each sequence follows a discrete regime r; € {ry, 2, 73} that induces
a constant drift v(r;) € {—214, +2 14, 04}, with i.i.d. Gaussian noise el(.t) ~N(0,0.621,) at each
step. The regime is resampled once between TP4 and TP5 to test models ability to remain robust to a
mid-sequence nonstationarity (TP4—TP5). Full details are in Appendix[5.2}
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3.2 Baseline Methods

We compare against baselines spanning complementary assumptions: (i) no space/no time, (ii)
time-only naive dynamics, (iii) spatio-temporal without latent regimes, and (iv) spatio-temporal with
deep state-space modules, to ensure gains are not attributable to unstructured aggregation or trivial
autocorrelation. MLP (no space, no time) concatenates all node features into a single embedding,
testing whether simple global aggregation suffices. Persistence (time only) is a parameter-free
baseline that predicts X;;; = X, to assess whether autocorrelation alone explains performance.
LSTM-GNN (spatio-temporal) uses the GNN-LSTM encoder (adapted from ROLAND [14]) as a
standalone predictor, isolating the contribution of discrete regimes and mixture-of-experts decoding
in our method. STG-MAMBA ([19]]) (spatio-temporal) integrates dynamic graph filtering with a
Mamba block for multi-scale temporal modeling, providing a benchmark against state-space/dynamic-
graph hybrids. These baselines rule out unstructured aggregation, trivial autocorrelation, and generic
spatio-temporal encodings. Additional implementations details appear in the Appendix [5.3]

3.3 One-Step Prediction under Changing Regimes

First, we evaluate each model in a one-step regression setup to test whether it captures system
evolution and adapts to regime changes. Given the observed history up to time ¢, (Xo.¢, Vo, Fo:t),
each model predicts the next features X, 1; we apply this procedure iteratively across time points on
the dataset in Section [3.1} We pay particular attention to the induced shift between TP4 and TP5 as
a stress test for non-stationarity. Performance is quantified by mean squared error (MSE) between

X ++1 and Xy 1, and we additionally report the mean absolute feature value at each time point to
contextualize error magnitude (Table|[T).

Across the synthetic dataset, ReGraSS attains the lowest mean error over the sequence (2.79 MSE
vs. 3.05 for LSTM-GNN; Table 1) and leads both before the induced shift (pre-TP5 average
1.33) and after it (post-TP5 average 3.96). The Persistence baseline (x;4; = x;) performs worst
throughout (6.77 MSE), confirming that temporal autocorrelation alone does not explain performance.
A structure-free MLP is competitive early but breaks at the shift (TP5), indicating that unstructured
aggregation cannot adapt to non-stationarity. The LSTM-GNN (ROLAND-based [[14]]) is a strong
spatio-temporal encoder without latent regimes; it matches or narrowly beats our method at isolated
time points (TP4 and TP9), yet falls behind on average and recovers more slowly after the shift.
STG-Mamba ([19]) underperforms on this setting, especially near the regime change, suggesting
limited robustness to non-stationary dynamics.

Two observations highlight the intended advantages of discrete regimes with state-conditioned
emissions. First, the performance drop at the regime change is the smallest for our method (TP5-
TP4 jump 4.72 vs. 4.99 for LSTM-GNN, 5.36 for MLP, 5.02 for STG-Mamba), indicating better
alignment to the new dynamics. Second, our method shows the fastest one-step recovery (TP5-TP6
drop —3.71 vs. —3.40 for LSTM-GNN) and post regime changes performances, consistent with rapid
state reassignment and expert specialization once the system switches regimes. A residual limitation
is a mild degradation within long single-regime segments (e.g., TP4 and TP9), which we attribute
to occasional regime misassignment due to insufficient penalty on remaining in an incorrect state
(see Figure[3). This suggests a simple mitigation with a calibrated self-transition regularizer without
altering the overall architecture.

Table 1: Validation performance on synthetic data at different time-points (TP1-TP9) of the sequence
(Gt)?zl. For each method and time step we compute the MSE between X, and X ;.

Model TPl TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9
Persistence 6.57 6.55 6.69 6.66 690 692 692 697 6.74
MLP 226 198 217 1.87 723 379 346 412 392

LSTM-GNN 121 146 215 1.65 6.64 324 355 386 3.72
STG-Mamba 859 697 378 348 850 5.11 489 432 465
Our Method 1.01 114 140 175 647 276 311 351 396

Features Mean 3.52 398 476 577 596 6.27 680 7.56 1726
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3.4 Regime Trajectory Analysis

To evaluate the framework’s ability to recover latent dynamics without supervision, we visualize the
learned latent trajectories. We evaluate (i) unsupervised recovery of state trajectories and (ii) the
speed of convergence to an identifiable latent-state distribution. Regime estimation was performed by
sampling the learned posterior distribution 100 times per graph and time step, followed by majority
voting to assign discrete state labels to regimes. This setup enables us to track how the inferred state
distribution evolves over time, and how it aligns with ground-truth regimes.

In Figure[3] we visualize inferred state trajectories in our unsupervised setting. The model initially
fails to recover the true state distribution. This is expected, as dynamic patterns must be inferred from
sequential observations alone as no regime-predictive features are present. However, after a few time
steps, the model converges to the true underlying regime distribution, demonstrating its capacity to
infer system dynamics without regime-level supervision.
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Figure 3: Unsupervised recovery of regime trajectories. The flow diagram shows one trained run
across time points. Each block represents the distribution of samples (patients) by predicted/ground-
truth regime pair, labeled 7;/r;. Green indicates correct assignments (7; = r;); red indicates
mismatches. Line widths encode the number of samples flowing between pairs over time. After a
short transient the mass concentrates on correct pairing flows, showing that the model recovers the
latent regimes and tracks their dynamics without supervision.

4 Conclusion

We proposed a generative framework that integrates dynamic graph neural networks with discrete
state space modeling to capture interpretable spatio-temporal dynamics. By separating spatial
reasoning (via GNNs) from temporal inference (via a discrete latent state and learnable transition
prior), our approach addresses key limitations of prior DGNN and deep SSM models, namely limited
interpretability, entangled updates, and challenges in modeling evolving graph structures through
discrete regimes changes. The variational training procedure enables uncertainty-aware learning
of state transitions and current regime estimation, while the inference-time state-space formulation
supports forecasting without future leakage and trajectory analysis. Across synthetic experiments,
ReGraSS achieves competitive predictive accuracy while exposing latent change in regimes aligned
with system dynamics. Results show that our framework can recover temporal regimes from minimal
supervision, highlighting its utility in settings with sparse labels.

Our study has limitations that point to potential next directions. First, the current objective emphasizes
feature dynamics and may underweight structural change in the graph; incorporating topology-aware
terms could better capture evolving connectivity, though care is needed to avoid prohibitive costs on
large graphs. Second, the mixture-of-experts decoder scales with the number of discrete regimes,
which can hinder efficiency in fine-grained settings; lighter parameter-sharing schemes may retain
state-conditioned emissions with lower overhead. Third, a purely discrete latent space can be rigid
when regimes overlap or evolve smoothly. Beyond methodology, our evaluation on controlled
synthetic sequences should be complemented by real-world deployments that test its capabilities to
maintain interpretable regimes tracking in setups with noisy samples and complex spatio-temporal
dynamics.
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5 Appendix

5.1 Training Procedure Details
Decoder routing and teacher forcing. During training the MoE is routed by a convex state mix

se = (L=m)po(z|h " 2e-1) + nas(ze| b)), ()

with n € [0, 1]. Early in training the decoder relies more on the posterior (teacher forcing, n~1/3);
as training progresses, 7 is annealed to 0 so emissions are governed by the learned prior, matching
the causal rollout used at inference. This reduces exposure bias without sacrificing stability.

Temperature and alignment schedules. We parameterize g4 with a Gumbel-Softmax at temper-
ature 7. We anneal 7 from 1.0 to a small floor (e.g., 0.2) over the first half of training to promote
confident, non-degenerate state usage while avoiding premature hard assignments. The alignment
weight 3 is linearly warmed from O to 1 over the first third of training so that forecasting stabilizes
before the encoder—prior terms dominate. The prior-fitting weight +y is set to 1 and may be mildly
reduced later (e.g., to 0.7 after 60% of training) if the learned prior becomes too reactive. The decoder
mix 7 is annealed linearly to 0 over the first 40% of training to phase out teacher forcing. These
schedules were chosen empirically to prevent posterior collapse, avoid chasing a moving prior, and
align the training-time routing with the inference-time strictly time-ordered rollout.

Lightweight regularization. We add two small regularizers that do not alter the loss but improve
state usage: (i) a diversity term that keeps the batch-average posterior close to uniform, KL(g || Unif)

withg = %Y, q((;) (z¢| hL), to avoid dead states; and (ii) a sharpness term that lowers the entropy

of per-graph posteriors, E[H (¢, (2 | hi;))], ramped in after the temperature has decreased. Both are
coefficients of small amplitudes (€.g., Amarg 0.1, Apharp < 0.05).

Implementation notes. The temporal encoder is instantiated with a ROLAND-style [[14] dynamic
GNN that maintains node memories via GRU updates and pools to hl;, but we discard the the live
update and caching mechanisms that are not relevant in our setup. All training were performed using
internal cluster GPUs. A couple of workers (2-4) are sufficient due to the small size of the dataset.
The dataset was randomly split with label stratification (based on regime) following a 75%/25% split
for training/validation. Hyperparameters of each method were selected using 4-fold cross-validation
on the training set.

The MoE decoder comprises K independent MLP experts { fk}f: , with outputs combined by s;
from Eq. (2). Experts can be replaced with domain-specific modules without changing the objective.
We optimize with Adam, apply gradient clipping for stability, and select checkpoints on validation
one-step error.

5.2 Dataset Generation Process

We generate 150 spatio-temporal graph sequences with 7' = 10 snapshots (TP1-TP10). Each
sequence begins with a randomly sampled discrete regime r1 € {r1, 72,3}, and undergoes a single
potential regime change before TPS, as detailed below.

Node clusters. Let d = 8 denote the feature dimension. We sample the number of clusters
C ~ Unif{3,4,5}. For each cluster ¢ € {1,...,C}, we draw a center ji. ~ Unif([—10,10]¢) and
use an isotropic covariance ¥ = 0.621;. We then sample the cluster size M, ~ Unif{5,...,100}
and node coordinates

3

C
)~ Msegay, B) fori=1,.... 3" M,.
c=1

Edges (spatial proximity). For each snapshot ¢, we build an undirected k-nearest neighbor graph
on {xz(-t)}i in R? with Euclidean distance and

k = max M, + 1
1<e<C
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to assure bridges between clusters. We keep the same set of edges the graph at each ¢; since the
dynamics below are global translations plus small noise, the topology is translation-invariant and
empirically stable across ¢.

Regimes and dynamics. Regimes induce constant drifts along all coordinates:
v(ry) = =214, v(re) = 4214, v(rg) = 0g4.
Let el(.t) ~ J\/(O, 0.621d) be i.i.d. perturbations. For ¢t = 1,...,9, node positions evolve as
xgtﬂ) = mgt) +o(ry) + EZ(-t).
Before applying the update to obtain TPS5 (i.e., between TP4 and TP5), we resample the regime
75 ~ Unif{ry, 72,73} independently of I '!; consequently, some sequences keep their regime
while others switch. The labels {r ¥} are not used for supervision.

The dataset was randomly split with label stratification (based on regime) following a 75%/25% split
for training/validation.

Rationale. This construction test models’ ability to infer discrete regime trajectories from spatially
structured observations and to remain robust to a mid-sequence non-stationarity (TP4—TP5).

5.3 Baselines Implementation Details

MLP (no space, no time) The MLP receives a concatenation of node features across the observed
horizon, so the per-node input dimensionality grows linearly with time (e.g., with base feature size
d = 8, inputs are 8 at TP1, 16 at TP2, etc.). To accommodate dynamic topology (variable node
counts across graphs and time), we mimic message passing with self-loops only: a shared per-node
MLP processes each node independently (no neighbor aggregation), producing per-node embeddings
at time ¢. We then apply parametric pooling via a small pooling MLP (DeepSets-style [25]) to obtain
a graph-level context vector. Final node-level predictions Xt+1 are produced by another shared MLP
that conditions on both the node’s self-updated embedding and the pooled context. This design
ignores explicit topology while still permitting information mixing through learnable pooling.

Persistence (X;; = X;) A parameter-free, time-only baseline that copies the last observation to
the next step. It has a slight advantage in regimes with near-constant dynamics (r3 in the synthetic
dataset, where the drift is absent) but remains weak overall, providing a lower bound that tests whether
temporal autocorrelation alone explains performance.

LSTM-GNN (ROLAND-based) We instantiate a ROLAND-style dynamic GNN encoder ([14]])
with GRU updates ([22]) for hierarchical node states. At each time step, node embeddings are
updated by a graph layer and then temporally evolved via GRUs; the model natively supports
dynamic topology. As in our main architecture, we discard caching and live-update mechanisms. For
this baseline we directly project to node features with a linear head (no graph-level pooling), yielding
a strong spatio-temporal encoder without discrete regimes or state-conditioned emissions.

STG-Mamba We follow STG-Mamba [19]: blocks interleave spatial mixing (graph filter-
ing/propagation on the current adjacency) with temporal Mamba modules that implement selective
state-space updates along time. Each block uses residual connections, normalization, and pointwise
MLPs. Stacking several blocks yields multi-scale spatio-temporal modeling. Training minimizes
next-step MSE. Other GNN-SSM hybrids were considered, but most lacked robustness to topological
change (relevant for our real-world, public results not yet available) or had no public implementations,
so we did not include them.

All baselines follow a similar training procedure as described in section [5.1] and 2.3] Notably all
trainings were performed on internal cluster with GPUs. The hyperparameters of each baseline were
selected using 4-fold cross-validation on the training set, later evaluated on the validation set as
reported in table|[T]
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We claim that current methods often disregards regime detection and tracking in
spatio-temporal systems. We show how our method leverage the regimes trajectory through
the discrete state space in Section [3.4] and how it does not interfer with performances in

section3.3]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Yes in the end of the conclusion section ff] we give some drawbacks and
limitations of the methods together with some possible improvements.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: No theoretical theorem or results provided in the paper.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We extensively described the generation of the dataset together with imple-
mentation details of both our method and baselines in the Sections We provide
additional information on training procedure, scheduling and implementation in Section[5.2]

B.15.3l

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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495 some way (e.g., to registered users), but it should be possible for other researchers

496 to have some path to reproducing or verifying the results.

497 5. Open access to data and code

498 Question: Does the paper provide open access to the data and code, with sufficient instruc-
499 tions to faithfully reproduce the main experimental results, as described in supplemental
500 material?

501 Answer:

502 Justification: The process for generating data is explained in extensive details, allowing
503 replication. The code base is kept private until final publication.

504 Guidelines:

505 » The answer NA means that paper does not include experiments requiring code.

506 * Please see the NeurIPS code and data submission guidelines (https://nips.cc/
507 public/guides/CodeSubmissionPolicy) for more details.

508 * While we encourage the release of code and data, we understand that this might not be
509 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
510 including code, unless this is central to the contribution (e.g., for a new open-source
511 benchmark).

512 * The instructions should contain the exact command and environment needed to run to
513 reproduce the results. See the NeurIPS code and data submission guidelines (https |
514 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

515  The authors should provide instructions on data access and preparation, including how
516 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
517 * The authors should provide scripts to reproduce all experimental results for the new
518 proposed method and baselines. If only a subset of experiments are reproducible, they
519 should state which ones are omitted from the script and why.

520 * At submission time, to preserve anonymity, the authors should release anonymized
521 versions (if applicable).

522 * Providing as much information as possible in supplemental material (appended to the
523 paper) is recommended, but including URLSs to data and code is permitted.

524 6. Experimental setting/details

525 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
526 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
527 results?

528 Answer: [Yes]

529 Justification: All the details are present in the appendix (Section [5.3). We keep a
530 couple of specific implementation details and hyperparameters search for the main publica-
531 tion.

532 Guidelines:

533 * The answer NA means that the paper does not include experiments.

534 » The experimental setting should be presented in the core of the paper to a level of detail
535 that is necessary to appreciate the results and make sense of them.

536 ¢ The full details can be provided either with the code, in appendix, or as supplemental
537 material.

538 7. Experiment statistical significance

539 Question: Does the paper report error bars suitably and correctly defined or other appropriate
540 information about the statistical significance of the experiments?

541 Answer: [NA]

542 Justification: The set of experiments reported in this paper is directly performed on the
543 left-out test set after cross-validation on the training set. Thus no direct measure of statistical
544 significance can be performed on the results reported in Table[I] We could report the detailed
545 cross-validation results if the reviewers wish it.

546 Guidelines:
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8.

10.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the appendix (5.1), we provide information about annealing rate and general
details on the training procedure.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We acknowledge the NeurIPS Code of Ethics and believe that the method
described in this paper has no specific negative societal impact and potential harmful
consequences.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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11.

12.

Answer: [Yes]

Justification: We discussed how our work can be helpful in high-stake applications (Sections
and [d) where the interpretability of the spatio-temporal dynamics can be mapped to well
established regimes, like in healthcare or finance.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risk.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We credited all previous work, especially previous published methods, that
were used throughout the paper.

Guidelines:

* The answer NA means that the paper does not use existing assets.
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13.

14.

15.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The generated synthetic dataset has been extensively described in section[5.2]
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No involvement of crowdsourcing or research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No involvement of crowdsourcing or research with human subjects.
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703 Guidelines:

704 * The answer NA means that the paper does not involve crowdsourcing nor research with
705 human subjects.

706 * Depending on the country in which research is conducted, IRB approval (or equivalent)
707 may be required for any human subjects research. If you obtained IRB approval, you
708 should clearly state this in the paper.

709 * We recognize that the procedures for this may vary significantly between institutions
710 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
711 guidelines for their institution.

712 * For initial submissions, do not include any information that would break anonymity (if
713 applicable), such as the institution conducting the review.

714 16. Declaration of LLM usage

715 Question: Does the paper describe the usage of LLMs if it is an important, original, or
716 non-standard component of the core methods in this research? Note that if the LLM is used
717 only for writing, editing, or formatting purposes and does not impact the core methodology,
718 scientific rigorousness, or originality of the research, declaration is not required.

719 Answer: [NA]

720 Justification: The core method development in not centered around LLMs.

721 Guidelines:

722 * The answer NA means that the core method development in this research does not
723 involve LLMs as any important, original, or non-standard components.

724 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
725 for what should or should not be described.
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