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Abstract

Forecasting the behavior of real-world spatiotemporal systems often requires not1

only accurate predictions but also interpretable regime trajectories, i.e. discrete2

states that describe how dynamics change over time. However, existing approaches3

often entangle space and time, obscuring regime structure or trading interpretabil-4

ity for scale. We introduce ReGraSS, a unified framework that learns discrete,5

interpretable latent regimes from spatiotemporal data, represented as dynamic6

graphs, combining variational training with strictly time-ordered state-space infer-7

ence. Predictions are produced by a mixture-of-experts modulated by the inferred8

regime probabilities, enforcing regime-specific specialization and supporting inter-9

pretability. Trained with self-supervised one-step prediction, the model learns in10

label-scarce settings and provides calibrated uncertainty by estimating a distribution11

over discrete regimes. ReGraSS matches or surpasses state-of-the-art spatiotempo-12

ral baselines in one-step forecasting. It shows the smallest error spike at regime13

changes and the fastest recovery thereafter, indicating regime-level interpretabil-14

ity and reliable trajectory tracking without compromising accuracy. We believe15

our interpretable, uncertainty-aware framework for regime-aware forecasting on16

dynamic graphs has direct application in healthcare, finance, and epidemiology.17

1 Introduction18

Recent advances in modern sensing and data acquisition reveal how real-world systems evolve across19

space and time [1, 2, 3]. In these settings, accurate forecasting of the system’s trajectory is necessary20

but often not sufficient: interpretable regime trajectories, i.e. discrete states governing the system’s21

evolution, may also be required. They reveal to be critical in high-stakes domains such as healthcare22

(e.g., disease progression staging [4, 5, 6]), finance (e.g., market regimes [7, 8]) or epidemiology (e.g.,23

transmission phases [9, 10]), where decisions rely on understanding when and why a regime shifts,24

not only on accurate forecasting of future events. Yet, current learning systems lack regime-aware,25

time-ordered explanations alongside forecasts, leaving a critical gap for models that jointly learn26

spatial structure, temporal evolution, and discrete interpretable regimes.27

Graph Neural Networks (GNNs) [11, 12] are powerful tools to model spatial relationships through28

relational inductive biases, providing a unified framework for domains with hierarchical structure and29

rich spatial interactions. Extending them to spatiotemporal settings is challenging because both the30

graph topology and the node signals may evolve over time. Dynamic variants such as EvolveGCN31

[13] and ROLAND [14] address part of this challenge, yet they still interleave spatial aggregation32

with temporal updates via recursive message passing. As topology evolves, this coupling obscures33

what changed from when it changed, hindering interpretable identification of discrete regimes.34

On the other hand, State Space Models (SSMs) provide a well-established framework for modeling35

temporal dynamics via latent state representations and structured transitions. Recent work on36
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learnable SSMs (e.g., S4 [15], Mamba [16]), achieve strong performance on sequence modeling tasks,37

overcoming several limitations of classical SSMs such as adaptation to regime shifts and multi-scale38

dynamics. However, they typically require large amounts of data and tend to sacrifice latent-state39

interpretability, limiting their applicability where understanding the underlying dynamics is essential.40

Recent efforts integrate SSMs with graphs by decoupling spatial and temporal reasoning, applying41

state-space updates at the node level and mixing via GNN layers (e.g., GrassNet [17], Graph Mamba42

[18]). Dynamic variants further interleave Mamba-based sequence modules and spatiotemporal graph43

blocks to handle evolving topologies (STG-Mamba [19], DG-Mamba [20]). However, these models44

typically use SSMs as feature extractors rather than for interpretable regime tracking through state45

representation.46

In this work, we propose ReGraSS, an unified framework that models discrete, interpretable regimes47

as latent states on dynamic graphs. A dynamic GNN encodes evolving structure and features, while48

temporal regime dynamics are decoupled and captured via a variational distribution over latent49

states. Predictions are state-conditioned via a mixture-of-experts weighted by regime probabilities, so50

the inferred state actively governs emissions, yielding trajectory-level explanations and calibrated51

uncertainty without degrading forecast accuracy. During training, a categorical VAE [21] with52

a learnable transition prior supports uncertainty-aware regime discovery; at inference, we switch53

to a strictly time-ordered state-space rollout that conditions only on past and present, enabling54

transparent trajectory analysis without future leakage. To function in label-scarce settings common in55

high-stakes applications, we adopt an autoregressive one-step forecasting objective that forces the56

model to internalize graph-coupled dynamics by predicting next-step node features and produces57

regime trajectories consistent with predictive performance. On controlled synthetic tests with induced58

non-stationarity, the framework captures regime transitions, supports uncertainty-aware trajectories,59

and matches or surpasses strong spatio-temporal and graph-SSM baselines, demonstrating that60

interpretable regime tracking can be achieved without a trade-off in accuracy.61

2 Proposed Approach62

2.1 Problem Statement63

We consider a discrete-time sequence of graph snapshots G = (Gt)
T
t=0, where each Gt = (Vt, Et, Xt)64

consists of a vertex set Vt, an edge set Et, and node features Xt ∈ RNt×D with Nt = |Vt| and65

feature dimension D. We assume that the topology and vertex set may vary over time (vertices may66

appear or disappear).67

Our main hypothesis is that a finite set of discrete regimes R = {r1, . . . , rK} modulates the dynamics,68

with Rt ∈ R being the active regime at time t. Discrete regimes align with how practitioners typically69

characterize system progression (physiological stages, market states) even when these categories70

coarsen underlying continuous dynamics.71

Focusing on node-feature dynamics, we assume that the next time point features Xt+1 are gen-72

erated from some probability distribution P
(
Xt+1

∣∣ X0:t, V0:t, E0:t, R0:t

)
conditioned on past73

history. Thus our objective is to learn a model f̂ that (i) approximates the probability distri-74

bution P
(
Xt+1

∣∣ X0:t, V0:t, E0:t, R0:t

)
in an autoregressive manner, (ii) while inferring the ac-75

tive regime without being provided regime annotations. Formally, the model can be defined as76

f̂(X0:t, V0:t, E0:t) =
(
X̂t+1, R̂t

)
. Extensions to topology prediction are straightforward.77

2.2 Architecture78

We introduce ReGraSS (Regime-aware Graph State Space model), an autoregressive generative79

framework for modeling spatio-temporal dynamics on graphs through an intepretable discrete latent80

state space, where the extracted states act as proxies for the underlying regimes governing the system81

evolution. ReGraSS follows a structured encoder-decoder design. The encoder approximates the82

posterior over discrete latent states and the decoder generates node features at future time steps,83

conditioned on both the latent state and observed inputs. The model operates differently during84

training and inference; we describe the training behavior here and defer the dual representation and85

inference details to Section 2.4. The architecture is illustrated in figure 2, and we describe its main86

building blocks below.87
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Figure 1: Visualization of the model’s architecture and dual formulation.

Figure 2: Visualization of the model architecture and dual-view formulation. Top panel (training
phase): At each time step, graph snapshots are processed sequentially through the LSTM-GNN
module to produce graph-level temporal embeddings. These embeddings are used to infer the current
latent state zt via the Gumbel-Softmax module, and to predict the next state zt+1 via the learnable
prior module Pθ. Given the inferred states, the temporal node-level embeddings hnodes are passed
through a MoE module, where expert outputs are modulated by zt, to generate the predicted node
features at time t+ 1. Bottom panel (inference structure): The framework can be decomposed into
two components: state transition and emission. This mirrors the classical state-space model (SSM)
formulation, while extending it to a non-linear and graph-based setting.

Encoder. The encoder’s first stage is a temporal GNN that aggregates information from past snapshots88

up to the current step t. We instantiate it with ROLAND ([14]), which maintains hierarchical node89

representations via GRU updates ([22]) and naturally supports evolving graph topology. We map the90

pooled temporal graph embedding ht
G∈RH to K unnormalized logits with a linear layer91

ℓt = Wht
G + b, W ∈ RK×H , b ∈ RK , K = |R|.

To obtain a posterior over the K regimes, we use the Gumbel–Softmax reparameterization [21]:92

qϕ(zt | ht
G) = softmax

(
ℓt + gt

τ

)
, gt ∼ Gumbel(0, 1)K , τ > 0.

Sampling zt ∼ qϕ(· | ht
G) yields a differentiable, discrete latent vector that encodes the current93

regime Rt (approaching one-hot as τ → 0). Our probabilistic approach quantifies uncertainty in94

the current regime and offers a distributional view that bridges continuous dynamics and discrete95

regimes. Yet, the framework remains compatible with continuous latents if the underlying system is96

better described by continuous variables.97

Learnable prior for causal transitions. We define a learnable prior pθ(zt | ht−1
G , zt−1),98

parametrized by a 2-layer MLP, that receives the temporal embedding ht−1
G and the previous latent99

state to predict zt. During training, we align this prior with the variational posterior qϕ (see Sec-100

tion 2.3), yielding SSM-like transitions and enabling the dual representation in Section 2.4. Compared101

with a fixed Markov prior, this data-driven conditional prior better captures non-stationary regime102

dynamics on evolving graphs.103

Decoder (mixture of experts). The decoder predicts the next-step node features Xt+1 conditioned104

on the current features Xt and the latent state zt. We implement it as a mixture-of-experts (MoE105

[23]): K experts {fk}Kk=1, each parametrized by an independent MLP, produce candidate outputs106

that are combined using the posterior mixing coefficients πt = qϕ(zt | ht
G). Equivalently, X̂t+1 =107 ∑M

k=1 πt,k fk(Xt). The choice of the number of experts is domain specific but is typically selected to108
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match the number or regimes in the data (K = |R|), thus encouraging a one-to-one correspondence109

between the variational-induced states zt and the regimes rk. This implementation induces state-110

conditioned output generation, mirroring classical SSM two-stage behavior, i.e., state transition then111

output emission [15]. It also encourages specialization: as the Gumbel–Softmax vector approaches112

one-hot, each expert learns the dynamics associated with a specific regime rk ∈ R. While our113

implementation uses MLPs, experts can be replaced with other modules such as GNNs when domain114

requires it, e.g. when regime transitions influence the diffusion process in the graph, which is better115

captured by GNN experts rather than MLPs.116

2.3 Training Procedure117

Training uses a variational objective derived from the categorical VAE ELBO ([21],[24]) with a118

forecasting likelihood. Formally, with qtz = qϕ(zt |ht
G) and ptz = pθ(zt |ht−1

G , zt−1), the graph-level119

loss over a sequence t = 0, . . . , T − 1 is120

L =

T−1∑
t=0

[
ℓforecast

(
X̂t+1, Xt+1

)︸ ︷︷ ︸
one-step prediction

+ β
(
KL

(
qtz)

∥∥ sg[ ptz])︸ ︷︷ ︸
encoder-prior alignment

+ γ CE
(
sg[ qtz], p

t
z)
)︸ ︷︷ ︸

teacher-forced prior fitting

)]
, (1)

where ℓforecast is a regression loss between the decoder prediction X̂t+1 (the MoE output) and the121

observed features Xt+1, and sg[·] denotes the stop-gradient operator, i.e. that the gradients are not122

backpropagated further in the computation tree. The KL term updates the encoder so that the posterior123

qtz agrees with the prior ptz , while the cross-entropy (CE) term trains the transition module to match124

the encoder’s next-time posterior qt+1
z . This asymmetric pairing stabilises learning: the encoder does125

not chase a moving prior, and the prior learns from the encoder without backpropagating through its126

inputs. Detailed regularization and parameters schedules are provided in the Appendix 5.1.127

By regressing Xt+1 from information available at time t, the objective forces the model to internalize128

the system’s transition mechanisms, remaining effective when regime annotations are missing,129

unreliable, or available only at endpoints. This, in turn, enables reconstruction of regime trajectories130

and stratification of sequences (Gt)
T
t=0 by regime and temporal evolution.131

2.4 Dual Representation132

Our framework couples variational training with state-space inference to bridge two limitations133

encountered in the literature. By learning spatial representations with a dynamic GNN and evolving134

them through discrete regimes, it disentangles space–time updates that obscure regime structure135

in temporal GNNs. At the same time, the inference-time state-space rollout restores interpretable136

state representation often lost in deep SSMs, while preserving forecasting accuracy through state-137

conditioned emissions. This dual formulation is robust to scarce or unreliable labels and preserves138

strict temporal causality. During training, a variational next-step regression objective learns a139

posterior over regime trajectories, enabling trajectory-level explanations even without ground-truth140

regime annotations. At inference, we replace the posterior, that benefits from future information141

via backpropagation, with the learned transition prior and roll forward using only past observations,142

eliminating future leakage. The probabilistic treatment yields calibrated uncertainty for the current143

regime and a distributional view of transitions, bridging continuous dynamics and discrete regimes144

without sacrificing predictive performance.145

3 Experiments and Results146

3.1 Dataset147

We generate 150 spatiotemporal graph sequences with T = 10 snapshots (TP1–TP10). At TP1,148

we sample C∼Unif{3, 4, 5} Gaussian clusters in Rd (d = 8), with centers µc∼Unif([−10, 10]d),149

isotropic covariance 0.62Id, and sizes Mc ∼ Unif{5, . . . , 100}; node features are the sampled150

coordinates. We build an undirected k-NN graph at TP1 and keep edges fixed thereafter (translation-151

invariant under our dynamics). Each sequence follows a discrete regime rt∈{r1, r2, r3} that induces152

a constant drift v(rt)∈{−21d, +21d, 0d}, with i.i.d. Gaussian noise ε
(t)
i ∼N (0, 0.62Id) at each153

step. The regime is resampled once between TP4 and TP5 to test models ability to remain robust to a154

mid-sequence nonstationarity (TP4→TP5). Full details are in Appendix 5.2.155
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3.2 Baseline Methods156

We compare against baselines spanning complementary assumptions: (i) no space/no time, (ii)157

time-only naïve dynamics, (iii) spatio-temporal without latent regimes, and (iv) spatio-temporal with158

deep state-space modules, to ensure gains are not attributable to unstructured aggregation or trivial159

autocorrelation. MLP (no space, no time) concatenates all node features into a single embedding,160

testing whether simple global aggregation suffices. Persistence (time only) is a parameter-free161

baseline that predicts Xt+1 = Xt to assess whether autocorrelation alone explains performance.162

LSTM–GNN (spatio-temporal) uses the GNN–LSTM encoder (adapted from ROLAND [14]) as a163

standalone predictor, isolating the contribution of discrete regimes and mixture-of-experts decoding164

in our method. STG-MAMBA ([19]) (spatio-temporal) integrates dynamic graph filtering with a165

Mamba block for multi-scale temporal modeling, providing a benchmark against state-space/dynamic-166

graph hybrids. These baselines rule out unstructured aggregation, trivial autocorrelation, and generic167

spatio-temporal encodings. Additional implementations details appear in the Appendix 5.3.168

3.3 One-Step Prediction under Changing Regimes169

First, we evaluate each model in a one-step regression setup to test whether it captures system170

evolution and adapts to regime changes. Given the observed history up to time t, (X0:t, V0:t, E0:t),171

each model predicts the next features Xt+1; we apply this procedure iteratively across time points on172

the dataset in Section 3.1. We pay particular attention to the induced shift between TP4 and TP5 as173

a stress test for non-stationarity. Performance is quantified by mean squared error (MSE) between174

X̂t+1 and Xt+1, and we additionally report the mean absolute feature value at each time point to175

contextualize error magnitude (Table 1).176

Across the synthetic dataset, ReGraSS attains the lowest mean error over the sequence (2.79 MSE177

vs. 3.05 for LSTM–GNN; Table 1) and leads both before the induced shift (pre-TP5 average178

1.33) and after it (post-TP5 average 3.96). The Persistence baseline (xt+1 = xt) performs worst179

throughout (6.77 MSE), confirming that temporal autocorrelation alone does not explain performance.180

A structure-free MLP is competitive early but breaks at the shift (TP5), indicating that unstructured181

aggregation cannot adapt to non-stationarity. The LSTM–GNN (ROLAND-based [14]) is a strong182

spatio-temporal encoder without latent regimes; it matches or narrowly beats our method at isolated183

time points (TP4 and TP9), yet falls behind on average and recovers more slowly after the shift.184

STG-Mamba ([19]) underperforms on this setting, especially near the regime change, suggesting185

limited robustness to non-stationary dynamics.186

Two observations highlight the intended advantages of discrete regimes with state-conditioned187

emissions. First, the performance drop at the regime change is the smallest for our method (TP5-188

TP4 jump 4.72 vs. 4.99 for LSTM–GNN, 5.36 for MLP, 5.02 for STG-Mamba), indicating better189

alignment to the new dynamics. Second, our method shows the fastest one-step recovery (TP5-TP6190

drop −3.71 vs. −3.40 for LSTM-GNN) and post regime changes performances, consistent with rapid191

state reassignment and expert specialization once the system switches regimes. A residual limitation192

is a mild degradation within long single-regime segments (e.g., TP4 and TP9), which we attribute193

to occasional regime misassignment due to insufficient penalty on remaining in an incorrect state194

(see Figure 3). This suggests a simple mitigation with a calibrated self-transition regularizer without195

altering the overall architecture.196

Table 1: Validation performance on synthetic data at different time-points (TP1–TP9) of the sequence
(Gt)

9
t=1. For each method and time step we compute the MSE between X̂t+1 and Xt+1.

Model TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9

Persistence 6.57 6.55 6.69 6.66 6.90 6.92 6.92 6.97 6.74
MLP 2.26 1.98 2.17 1.87 7.23 3.79 3.46 4.12 3.92
LSTM-GNN 1.21 1.46 2.15 1.65 6.64 3.24 3.55 3.86 3.72
STG-Mamba 8.59 6.97 3.78 3.48 8.50 5.11 4.89 4.32 4.65
Our Method 1.01 1.14 1.40 1.75 6.47 2.76 3.11 3.51 3.96

Features Mean 3.52 3.98 4.76 5.77 5.96 6.27 6.80 7.56 7.26
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3.4 Regime Trajectory Analysis197

To evaluate the framework’s ability to recover latent dynamics without supervision, we visualize the198

learned latent trajectories. We evaluate (i) unsupervised recovery of state trajectories and (ii) the199

speed of convergence to an identifiable latent-state distribution. Regime estimation was performed by200

sampling the learned posterior distribution 100 times per graph and time step, followed by majority201

voting to assign discrete state labels to regimes. This setup enables us to track how the inferred state202

distribution evolves over time, and how it aligns with ground-truth regimes.203

In Figure 3, we visualize inferred state trajectories in our unsupervised setting. The model initially204

fails to recover the true state distribution. This is expected, as dynamic patterns must be inferred from205

sequential observations alone as no regime-predictive features are present. However, after a few time206

steps, the model converges to the true underlying regime distribution, demonstrating its capacity to207

infer system dynamics without regime-level supervision.208

Figure 3: Unsupervised recovery of regime trajectories. The flow diagram shows one trained run
across time points. Each block represents the distribution of samples (patients) by predicted/ground-
truth regime pair, labeled r̂i/rj . Green indicates correct assignments (r̂i = rj); red indicates
mismatches. Line widths encode the number of samples flowing between pairs over time. After a
short transient the mass concentrates on correct pairing flows, showing that the model recovers the
latent regimes and tracks their dynamics without supervision.

4 Conclusion209

We proposed a generative framework that integrates dynamic graph neural networks with discrete210

state space modeling to capture interpretable spatio-temporal dynamics. By separating spatial211

reasoning (via GNNs) from temporal inference (via a discrete latent state and learnable transition212

prior), our approach addresses key limitations of prior DGNN and deep SSM models, namely limited213

interpretability, entangled updates, and challenges in modeling evolving graph structures through214

discrete regimes changes. The variational training procedure enables uncertainty-aware learning215

of state transitions and current regime estimation, while the inference-time state-space formulation216

supports forecasting without future leakage and trajectory analysis. Across synthetic experiments,217

ReGraSS achieves competitive predictive accuracy while exposing latent change in regimes aligned218

with system dynamics. Results show that our framework can recover temporal regimes from minimal219

supervision, highlighting its utility in settings with sparse labels.220

Our study has limitations that point to potential next directions. First, the current objective emphasizes221

feature dynamics and may underweight structural change in the graph; incorporating topology-aware222

terms could better capture evolving connectivity, though care is needed to avoid prohibitive costs on223

large graphs. Second, the mixture-of-experts decoder scales with the number of discrete regimes,224

which can hinder efficiency in fine-grained settings; lighter parameter-sharing schemes may retain225

state-conditioned emissions with lower overhead. Third, a purely discrete latent space can be rigid226

when regimes overlap or evolve smoothly. Beyond methodology, our evaluation on controlled227

synthetic sequences should be complemented by real-world deployments that test its capabilities to228

maintain interpretable regimes tracking in setups with noisy samples and complex spatio-temporal229

dynamics.230
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5 Appendix305

5.1 Training Procedure Details306

Decoder routing and teacher forcing. During training the MoE is routed by a convex state mix307

st = (1− η) pθ(zt |ht−1
G , zt−1) + η qϕ(zt |ht

G), (2)

with η∈ [0, 1]. Early in training the decoder relies more on the posterior (teacher forcing, η≈1/3);308

as training progresses, η is annealed to 0 so emissions are governed by the learned prior, matching309

the causal rollout used at inference. This reduces exposure bias without sacrificing stability.310

Temperature and alignment schedules. We parameterize qϕ with a Gumbel–Softmax at temper-311

ature τ . We anneal τ from 1.0 to a small floor (e.g., 0.2) over the first half of training to promote312

confident, non-degenerate state usage while avoiding premature hard assignments. The alignment313

weight β is linearly warmed from 0 to 1 over the first third of training so that forecasting stabilizes314

before the encoder–prior terms dominate. The prior-fitting weight γ is set to 1 and may be mildly315

reduced later (e.g., to 0.7 after 60% of training) if the learned prior becomes too reactive. The decoder316

mix η is annealed linearly to 0 over the first 40% of training to phase out teacher forcing. These317

schedules were chosen empirically to prevent posterior collapse, avoid chasing a moving prior, and318

align the training-time routing with the inference-time strictly time-ordered rollout.319

Lightweight regularization. We add two small regularizers that do not alter the loss but improve320

state usage: (i) a diversity term that keeps the batch-average posterior close to uniform, KL(q̄ ∥Unif)321

with q̄ = 1
B

∑
i q

(i)
ϕ (zt |ht

G), to avoid dead states; and (ii) a sharpness term that lowers the entropy322

of per-graph posteriors, E[H(qϕ(zt |ht
G))], ramped in after the temperature has decreased. Both are323

coefficients of small amplitudes (e.g., λmarg≈0.1, λsharp≤0.05).324

Implementation notes. The temporal encoder is instantiated with a ROLAND-style [14] dynamic325

GNN that maintains node memories via GRU updates and pools to ht
G, but we discard the the live326

update and caching mechanisms that are not relevant in our setup. All training were performed using327

internal cluster GPUs. A couple of workers (2-4) are sufficient due to the small size of the dataset.328

The dataset was randomly split with label stratification (based on regime) following a 75%/25% split329

for training/validation. Hyperparameters of each method were selected using 4-fold cross-validation330

on the training set.331

The MoE decoder comprises K independent MLP experts {fk}Kk=1 with outputs combined by st332

from Eq. (2). Experts can be replaced with domain-specific modules without changing the objective.333

We optimize with Adam, apply gradient clipping for stability, and select checkpoints on validation334

one-step error.335

5.2 Dataset Generation Process336

We generate 150 spatio-temporal graph sequences with T = 10 snapshots (TP1–TP10). Each337

sequence begins with a randomly sampled discrete regime r1 ∈ {r1, r2, r3}, and undergoes a single338

potential regime change before TP5, as detailed below.339

Node clusters. Let d = 8 denote the feature dimension. We sample the number of clusters340

C ∼ Unif{3, 4, 5}. For each cluster c ∈ {1, . . . , C}, we draw a center µc ∼ Unif([−10, 10]d) and341

use an isotropic covariance Σ = 0.62Id. We then sample the cluster size Mc ∼ Unif{5, . . . , 100}342

and node coordinates343

x
(1)
i ∼ N

(
µc(i), Σ

)
for i = 1, . . . ,

C∑
c=1

Mc.

Edges (spatial proximity). For each snapshot t, we build an undirected k-nearest neighbor graph344

on {x(t)
i }i in Rd with Euclidean distance and345

k = max
1≤c≤C

Mc + 1
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to assure bridges between clusters. We keep the same set of edges the graph at each t; since the346

dynamics below are global translations plus small noise, the topology is translation-invariant and347

empirically stable across t.348

Regimes and dynamics. Regimes induce constant drifts along all coordinates:349

v(r1) = −21d, v(r2) = +21d, v(r3) = 0d.

Let ε(t)i ∼ N
(
0, 0.62Id

)
be i.i.d. perturbations. For t = 1, . . . , 9, node positions evolve as350

x
(t+1)
i = x

(t)
i + v(rt) + ε

(t)
i .

Before applying the update to obtain TP5 (i.e., between TP4 and TP5), we resample the regime351

rTP5
k ∼ Unif{r1, r2, r3} independently of rTP1

k ; consequently, some sequences keep their regime352

while others switch. The labels {rTPi
k } are not used for supervision.353

The dataset was randomly split with label stratification (based on regime) following a 75%/25% split354

for training/validation.355

Rationale. This construction test models’ ability to infer discrete regime trajectories from spatially356

structured observations and to remain robust to a mid-sequence non-stationarity (TP4→TP5).357

5.3 Baselines Implementation Details358

MLP (no space, no time) The MLP receives a concatenation of node features across the observed359

horizon, so the per-node input dimensionality grows linearly with time (e.g., with base feature size360

d = 8, inputs are 8 at TP1, 16 at TP2, etc.). To accommodate dynamic topology (variable node361

counts across graphs and time), we mimic message passing with self-loops only: a shared per-node362

MLP processes each node independently (no neighbor aggregation), producing per-node embeddings363

at time t. We then apply parametric pooling via a small pooling MLP (DeepSets-style [25]) to obtain364

a graph-level context vector. Final node-level predictions X̂t+1 are produced by another shared MLP365

that conditions on both the node’s self-updated embedding and the pooled context. This design366

ignores explicit topology while still permitting information mixing through learnable pooling.367

Persistence (Xt+1 = Xt) A parameter-free, time-only baseline that copies the last observation to368

the next step. It has a slight advantage in regimes with near-constant dynamics (r3 in the synthetic369

dataset, where the drift is absent) but remains weak overall, providing a lower bound that tests whether370

temporal autocorrelation alone explains performance.371

LSTM–GNN (ROLAND-based) We instantiate a ROLAND-style dynamic GNN encoder ([14])372

with GRU updates ([22]) for hierarchical node states. At each time step, node embeddings are373

updated by a graph layer and then temporally evolved via GRUs; the model natively supports374

dynamic topology. As in our main architecture, we discard caching and live-update mechanisms. For375

this baseline we directly project to node features with a linear head (no graph-level pooling), yielding376

a strong spatio-temporal encoder without discrete regimes or state-conditioned emissions.377

STG-Mamba We follow STG-Mamba [19]: blocks interleave spatial mixing (graph filter-378

ing/propagation on the current adjacency) with temporal Mamba modules that implement selective379

state-space updates along time. Each block uses residual connections, normalization, and pointwise380

MLPs. Stacking several blocks yields multi-scale spatio-temporal modeling. Training minimizes381

next-step MSE. Other GNN-SSM hybrids were considered, but most lacked robustness to topological382

change (relevant for our real-world, public results not yet available) or had no public implementations,383

so we did not include them.384

All baselines follow a similar training procedure as described in section 5.1 and 2.3. Notably all385

trainings were performed on internal cluster with GPUs. The hyperparameters of each baseline were386

selected using 4-fold cross-validation on the training set, later evaluated on the validation set as387

reported in table 1.388
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NeurIPS Paper Checklist389

1. Claims390

Question: Do the main claims made in the abstract and introduction accurately reflect the391

paper’s contributions and scope?392

Answer: [Yes]393
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section 3.3.397

Guidelines:398

• The answer NA means that the abstract and introduction do not include the claims399

made in the paper.400

• The abstract and/or introduction should clearly state the claims made, including the401

contributions made in the paper and important assumptions and limitations. A No or402

NA answer to this question will not be perceived well by the reviewers.403
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much the results can be expected to generalize to other settings.405

• It is fine to include aspirational goals as motivation as long as it is clear that these goals406

are not attained by the paper.407

2. Limitations408

Question: Does the paper discuss the limitations of the work performed by the authors?409

Answer: [Yes]410

Justification: Yes in the end of the conclusion section 4 we give some drawbacks and411

limitations of the methods together with some possible improvements.412
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• The answer NA means that the paper has no limitation while the answer No means that414
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• The paper should point out any strong assumptions and how robust the results are to417

violations of these assumptions (e.g., independence assumptions, noiseless settings,418

model well-specification, asymptotic approximations only holding locally). The authors419

should reflect on how these assumptions might be violated in practice and what the420

implications would be.421

• The authors should reflect on the scope of the claims made, e.g., if the approach was422

only tested on a few datasets or with a few runs. In general, empirical results often423

depend on implicit assumptions, which should be articulated.424

• The authors should reflect on the factors that influence the performance of the approach.425

For example, a facial recognition algorithm may perform poorly when image resolution426

is low or images are taken in low lighting. Or a speech-to-text system might not be427

used reliably to provide closed captions for online lectures because it fails to handle428

technical jargon.429

• The authors should discuss the computational efficiency of the proposed algorithms430

and how they scale with dataset size.431

• If applicable, the authors should discuss possible limitations of their approach to432

address problems of privacy and fairness.433

• While the authors might fear that complete honesty about limitations might be used by434

reviewers as grounds for rejection, a worse outcome might be that reviewers discover435

limitations that aren’t acknowledged in the paper. The authors should use their best436

judgment and recognize that individual actions in favor of transparency play an impor-437

tant role in developing norms that preserve the integrity of the community. Reviewers438

will be specifically instructed to not penalize honesty concerning limitations.439

3. Theory assumptions and proofs440
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a complete (and correct) proof?442

Answer: [NA]443

Justification: No theoretical theorem or results provided in the paper.444
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-447

referenced.448

• All assumptions should be clearly stated or referenced in the statement of any theorems.449

• The proofs can either appear in the main paper or the supplemental material, but if450

they appear in the supplemental material, the authors are encouraged to provide a short451

proof sketch to provide intuition.452

• Inversely, any informal proof provided in the core of the paper should be complemented453

by formal proofs provided in appendix or supplemental material.454

• Theorems and Lemmas that the proof relies upon should be properly referenced.455

4. Experimental result reproducibility456

Question: Does the paper fully disclose all the information needed to reproduce the main ex-457

perimental results of the paper to the extent that it affects the main claims and/or conclusions458

of the paper (regardless of whether the code and data are provided or not)?459

Answer: [Yes]460

Justification: We extensively described the generation of the dataset together with imple-461
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• The answer NA means that the paper does not include experiments.466

• If the paper includes experiments, a No answer to this question will not be perceived467

well by the reviewers: Making the paper reproducible is important, regardless of468

whether the code and data are provided or not.469

• If the contribution is a dataset and/or model, the authors should describe the steps taken470

to make their results reproducible or verifiable.471

• Depending on the contribution, reproducibility can be accomplished in various ways.472

For example, if the contribution is a novel architecture, describing the architecture fully473

might suffice, or if the contribution is a specific model and empirical evaluation, it may474

be necessary to either make it possible for others to replicate the model with the same475

dataset, or provide access to the model. In general. releasing code and data is often476

one good way to accomplish this, but reproducibility can also be provided via detailed477

instructions for how to replicate the results, access to a hosted model (e.g., in the case478

of a large language model), releasing of a model checkpoint, or other means that are479

appropriate to the research performed.480

• While NeurIPS does not require releasing code, the conference does require all submis-481

sions to provide some reasonable avenue for reproducibility, which may depend on the482

nature of the contribution. For example483

(a) If the contribution is primarily a new algorithm, the paper should make it clear how484

to reproduce that algorithm.485

(b) If the contribution is primarily a new model architecture, the paper should describe486

the architecture clearly and fully.487

(c) If the contribution is a new model (e.g., a large language model), then there should488

either be a way to access this model for reproducing the results or a way to reproduce489

the model (e.g., with an open-source dataset or instructions for how to construct490

the dataset).491

(d) We recognize that reproducibility may be tricky in some cases, in which case492

authors are welcome to describe the particular way they provide for reproducibility.493

In the case of closed-source models, it may be that access to the model is limited in494
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to have some path to reproducing or verifying the results.496

5. Open access to data and code497

Question: Does the paper provide open access to the data and code, with sufficient instruc-498

tions to faithfully reproduce the main experimental results, as described in supplemental499

material?500

Answer: [No]501

Justification: The process for generating data is explained in extensive details, allowing502

replication. The code base is kept private until final publication.503
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/506
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• While we encourage the release of code and data, we understand that this might not be508
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• The instructions should contain the exact command and environment needed to run to512

reproduce the results. See the NeurIPS code and data submission guidelines (https:513

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.514

• The authors should provide instructions on data access and preparation, including how515

to access the raw data, preprocessed data, intermediate data, and generated data, etc.516

• The authors should provide scripts to reproduce all experimental results for the new517

proposed method and baselines. If only a subset of experiments are reproducible, they518

should state which ones are omitted from the script and why.519

• At submission time, to preserve anonymity, the authors should release anonymized520

versions (if applicable).521

• Providing as much information as possible in supplemental material (appended to the522

paper) is recommended, but including URLs to data and code is permitted.523

6. Experimental setting/details524

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-525

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the526

results?527

Answer: [Yes]528
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• The answer NA means that the paper does not include experiments.533

• The experimental setting should be presented in the core of the paper to a level of detail534

that is necessary to appreciate the results and make sense of them.535

• The full details can be provided either with the code, in appendix, or as supplemental536

material.537

7. Experiment statistical significance538
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information about the statistical significance of the experiments?540

Answer: [NA]541
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• The answer NA means that the paper does not include experiments.547
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dence intervals, or statistical significance tests, at least for the experiments that support549

the main claims of the paper.550

• The factors of variability that the error bars are capturing should be clearly stated (for551
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• The method for calculating the error bars should be explained (closed form formula,554

call to a library function, bootstrap, etc.)555

• The assumptions made should be given (e.g., Normally distributed errors).556
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of Normality of errors is not verified.561

• For asymmetric distributions, the authors should be careful not to show in tables or562

figures symmetric error bars that would yield results that are out of range (e.g. negative563

error rates).564

• If error bars are reported in tables or plots, The authors should explain in the text how565

they were calculated and reference the corresponding figures or tables in the text.566

8. Experiments compute resources567

Question: For each experiment, does the paper provide sufficient information on the com-568

puter resources (type of compute workers, memory, time of execution) needed to reproduce569

the experiments?570

Answer: [Yes]571

Justification: In the appendix (5.1), we provide information about annealing rate and general572

details on the training procedure.573

Guidelines:574

• The answer NA means that the paper does not include experiments.575

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,576

or cloud provider, including relevant memory and storage.577

• The paper should provide the amount of compute required for each of the individual578

experimental runs as well as estimate the total compute.579

• The paper should disclose whether the full research project required more compute580

than the experiments reported in the paper (e.g., preliminary or failed experiments that581

didn’t make it into the paper).582

9. Code of ethics583

Question: Does the research conducted in the paper conform, in every respect, with the584

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?585

Answer: [Yes]586

Justification: We acknowledge the NeurIPS Code of Ethics and believe that the method587

described in this paper has no specific negative societal impact and potential harmful588

consequences.589
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.591

• If the authors answer No, they should explain the special circumstances that require a592

deviation from the Code of Ethics.593

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-594

eration due to laws or regulations in their jurisdiction).595
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societal impacts of the work performed?598
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Answer: [Yes]599

Justification: We discussed how our work can be helpful in high-stake applications (Sections600

1 and 4) where the interpretability of the spatio-temporal dynamics can be mapped to well601

established regimes, like in healthcare or finance.602
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strategies (e.g., gated release of models, providing defenses in addition to attacks,623
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feedback over time, improving the efficiency and accessibility of ML).625

11. Safeguards626

Question: Does the paper describe safeguards that have been put in place for responsible627

release of data or models that have a high risk for misuse (e.g., pretrained language models,628

image generators, or scraped datasets)?629

Answer: [NA]630

Justification: The paper poses no such risk.631
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• The answer NA means that the paper poses no such risks.633

• Released models that have a high risk for misuse or dual-use should be released with634
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that users adhere to usage guidelines or restrictions to access the model or implementing636
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• Datasets that have been scraped from the Internet could pose safety risks. The authors638
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not require this, but we encourage authors to take this into account and make a best641
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Justification: We credited all previous work, especially previous published methods, that648

were used throughout the paper.649
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• The answer NA means that the paper does not use existing assets.651
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• The authors should cite the original paper that produced the code package or dataset.652

• The authors should state which version of the asset is used and, if possible, include a653

URL.654

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.655

• For scraped data from a particular source (e.g., website), the copyright and terms of656

service of that source should be provided.657
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has curated licenses for some datasets. Their licensing guide can help determine the660

license of a dataset.661

• For existing datasets that are re-packaged, both the original license and the license of662

the derived asset (if it has changed) should be provided.663

• If this information is not available online, the authors are encouraged to reach out to664

the asset’s creators.665

13. New assets666

Question: Are new assets introduced in the paper well documented and is the documentation667

provided alongside the assets?668

Answer: [Yes]669

Justification: The generated synthetic dataset has been extensively described in section 5.2.670

Guidelines:671

• The answer NA means that the paper does not release new assets.672

• Researchers should communicate the details of the dataset/code/model as part of their673

submissions via structured templates. This includes details about training, license,674

limitations, etc.675

• The paper should discuss whether and how consent was obtained from people whose676

asset is used.677

• At submission time, remember to anonymize your assets (if applicable). You can either678

create an anonymized URL or include an anonymized zip file.679

14. Crowdsourcing and research with human subjects680

Question: For crowdsourcing experiments and research with human subjects, does the paper681

include the full text of instructions given to participants and screenshots, if applicable, as682

well as details about compensation (if any)?683

Answer: [NA]684

Justification: No involvement of crowdsourcing or research with human subjects.685

Guidelines:686

• The answer NA means that the paper does not involve crowdsourcing nor research with687

human subjects.688

• Including this information in the supplemental material is fine, but if the main contribu-689

tion of the paper involves human subjects, then as much detail as possible should be690

included in the main paper.691

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,692

or other labor should be paid at least the minimum wage in the country of the data693

collector.694

15. Institutional review board (IRB) approvals or equivalent for research with human695

subjects696

Question: Does the paper describe potential risks incurred by study participants, whether697

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)698

approvals (or an equivalent approval/review based on the requirements of your country or699

institution) were obtained?700

Answer: [NA]701

Justification: No involvement of crowdsourcing or research with human subjects.702
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Guidelines:703

• The answer NA means that the paper does not involve crowdsourcing nor research with704

human subjects.705

• Depending on the country in which research is conducted, IRB approval (or equivalent)706

may be required for any human subjects research. If you obtained IRB approval, you707

should clearly state this in the paper.708

• We recognize that the procedures for this may vary significantly between institutions709

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the710

guidelines for their institution.711

• For initial submissions, do not include any information that would break anonymity (if712

applicable), such as the institution conducting the review.713

16. Declaration of LLM usage714

Question: Does the paper describe the usage of LLMs if it is an important, original, or715

non-standard component of the core methods in this research? Note that if the LLM is used716

only for writing, editing, or formatting purposes and does not impact the core methodology,717

scientific rigorousness, or originality of the research, declaration is not required.718

Answer: [NA]719

Justification: The core method development in not centered around LLMs.720

Guidelines:721

• The answer NA means that the core method development in this research does not722

involve LLMs as any important, original, or non-standard components.723

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)724

for what should or should not be described.725

17

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Proposed Approach
	Problem Statement
	Architecture
	Training Procedure
	Dual Representation

	Experiments and Results
	Dataset
	Baseline Methods
	One-Step Prediction under Changing Regimes
	Regime Trajectory Analysis

	Conclusion
	Appendix
	Training Procedure Details
	Dataset Generation Process
	Baselines Implementation Details


