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Figure 1: Gesture Area Coverage (GAC) of twomotion sequences from the TWHdataset. From left to right: GAC; black represents
the total area covered in each sequence. Colored GAC for velocity in each frame; red is faster than blue. Colored GAC for
gesture occurrence frequency; red is more frequent than blue.

Abstract
This work introduces the analyses of Gesture Area Coverage (GAC)
for evaluating the expressiveness of co-speech gestures. GAC ex-
plicitly considers the spatial coverage of gestures within motion
sequences, an aspect existing metrics neglect. We employ a set of
metrics based on GAC to compare motion sequences across two
key scenarios. First, to differentiate between distinct gesture styles
and a neutral baseline, and second, to assess conditions from the
GENEA Challenge 2023, a benchmark for gesture generation sys-
tems. In particular, our findings reveal that one of these metrics, the
Dice Score, has a stronger correlation with human-likeness ratings
compared to the Fréchet Gesture Distance.

CCS Concepts
• Computing methodologies → Motion processing; • General
and reference → Metrics.
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1 Introduction
Gestures are an important aspect of human communication. Co-
speech gestures are movements of the hands, arms, head, and body
when talking. For the past years, data-driven gesture generation
has gained attention, intending to create digital humans capable of
interacting as naturally as possible with the user. However, human
gestures’ unstructured and highly variable nature introduces several
challenges for those systems.

Gestures carry expressive information similar to verbal and other
nonverbal behaviours. Behaviour expressiveness can be defined as
the dynamic variation of the behaviour [15]. It has been shown that
personality affects how people gesticulate [6], and that gestures can
aid personality perception [14]. Thus, envisioning characters with
unique and memorable personalities, gesture generation systems
should not only model the human gesture distribution but also
transform movement parameters to match the intended expressive-
ness.

Another challenge of gesture generation systems is the lack of
metrics to evaluate the motion output during development. Re-
searchers often rely on perceptual evaluations to assess human-
likeness and appropriateness of gestures to the input speech. How-
ever, user studies are time-consuming and expensive. Although
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some objective metrics have been proposed, most fail to accommo-
date the one-to-many nature of gestures, while others tend to focus
on motion dynamics, e.g., mean velocity and acceleration, but fail
to recognize the anatomic correctness of output poses.

2 Related Works
Perhaps the most straightforward metric to compare a motion se-
quence to a reference are objective metrics like Mean Squared Error
(MSE) or Mean Average Error (MAE). While they provide a basic
measure of the difference between gestures, they treat the reference
as the absolute truth. This approach disregards the inherent vari-
ability of human gestures. The same expressiveness or intent can be
achieved with variations in the movements while still being natural,
such as performing a gesture with the other arm. MSE and MAE
penalize these variations and neglect the dynamics of movement,
such as speed, acceleration, and deceleration. Other metrics to eval-
uate the appropriateness and semantic relationship to input speech
have been proposed, such as BeatAlign and SRGR [12]. However,
they are outside of the scope of this work since we’re only focusing
on motion data.

A previous study evaluated common objectivemetrics for gesture
generation systems submitted to the GENEA Challenge 2022 [11].
The challenge provided a synchronized dataset of motion, audio,
and text with the goal of generating gestures given new input. Sub-
mitted results from participating teams were evaluated on large-
scale user studies to assess human-likeness and appropriateness
to speech [25]. Four objective metrics were applied to every sub-
mission and compared to the median ratings of human-likeness
from the user study. The first is average acceleration and jerk, the
third time derivative of joint positions; the Hellinger distance be-
tween speed histograms; the Canonical correlation analysis; and
the Fréchet Gesture Distance (FGD), which computes the distance
between synthesized and ground truth gesture distributions [24].
However, only the last was reported to have a moderate correlation
to human-likeness ratings. Indeed, FGD has been widely employed
as a metric to compare motion quality and, thus, as a proxy to
human-likeness [16, 22, 28, 29].

Although FGD reportedly correlates with human-likeness rat-
ings, it is unsuitable for tasks such as comparing gesture expressive-
ness since it focuses on the distance of gesture distributions. On the
other hand, aspects of motion dynamics (e.g., speed, acceleration,
jerk, among others) have been used to alter perceived expressive-
ness in virtual characters [14, 15, 18]. It is reasonable to assume
that natural-looking synthesized motion has similar values to real
human motion. Despite offering some insights, motion dynamics
also have limitations. They often analyze individual motion char-
acteristics in isolation, while human perception integrates these
dynamics across the entire gesture sequence. Furthermore, they
don’t provide any intuition on gesture volume, area, or extent. This
highlights the need for metrics that capture the holistic nature of
gesture communication.

We propose to analyze the area coverage of gesture motion to
overcome some limitations of previous metrics. We define the Ges-
ture Area Coverage (GAC) as the temporal grouping of gestures in
a motion sequence, i.e., the spatial footprint of gestures throughout
the sequence. Our analysis quantifies GAC by mapping a motion

sequence into a raster matrix. We employ two metrics to compare
the matrices of different motion sequences: the Dice Score and the
Relative Coverage, focusing on the intersection and the difference
between the sequences, respectively. In this paper, we show the
intuition behind analyzing area coverage and its application for
comparing motion in an expressive co-speech gesture dataset, and
we analyze its correlation with human-likeness ratings in a large-
scale user study. The GAC analysis and code are publicly available
at https://github.com/AI-Unicamp/gesture-area-coverage.

3 Method
The Gesture Area Coverage (GAC) analysis consists of rasterizing
the gesture poses in a motion sequence. Bresenham’s line algorithm
is used to convert each skeleton bone segment (from a joint to its
parent) into a corresponding line segment within a discrete grid, an
image. Each non-zero value in the resulting image corresponds to a
pixel close to a bone. The GAC of a motion sequence is quantified
as the union of the rasterized pose of each frame (as the top images
in Figure 2). The total area covered by gestures throughout the
motion sequence is calculated as the sum of all elements within the
GAC representation (Total GAC).

While evaluating motion sequences, a higher Total GAC for a
test sequence than a reference indicates greater overall coverage.
However, further insights can be gained by analyzing the distri-
bution of GAC using set theory concepts like True Positive, False
Positive, and False Negative. For the present context, True Pos-
itive GAC refers to the area covered by both the reference and
the test sequence, while True Negative GAC refers to the area not
covered by either sequence. False Positive GAC indicates the area
extrapolated by the test sequence, i.e., not covered in the reference
sequence. False Negative indicates the opposite. The bottom images
of Figure 2 provide examples of these sets.

Two metrics encapsulate useful information for evaluating hu-
man gestures and comparing motion sequences. The first is the Rel-
ative Coverage (RC), defined by the ratio of False Positive (FP) and
False Negative (FN) on a logarithmic scale, thus𝑅𝐶 = log (𝐹𝑃/𝐹𝑁 ) =
log (𝐹𝑃) − log (𝐹𝑁 ). Negative values for Relative Coverage suggest
a more constrained test sequence, while positive values indicate
an extrapolation of the covered area. The second is the Dice Score,
a commonly used metric for image segmentation [4], defined as
twice the True Positive divided by the sum of the Total GAC of both
the reference and test sequences. This metric measures the overlap
between the reference and test sequences in terms of covered area.
A value closer to one indicates a higher degree of overlap, while
values near zero suggest minimal overlap.

We employed these two metrics in two distinct scenarios. The
first one consisted of employing GAC to evaluate the ZEGGS dataset.
This dataset contains 67 motion sequences categorized into 19
different gesture styles performed by a single professional female
actor. We compared every motion sequence of a given style with
the neutral.

For the second approach, we applied the metrics in the condi-
tions of the GENEA Challenge 2023 [10]. The challenge provided a
large-scale subjective evaluation of gesture generation models from
participating teams. 15 conditions were evaluated, the ground truth,
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two baselines based on a system from the previous challenge [1, 25],
and 12 entries to the 2023 challenge [2, 3, 5, 7–9, 17, 19, 20, 23, 26, 27].

4 Results and discussion
Figure 2 shows examples of our approach for comparing two expres-
sive motion sequences with a neutral one. The Dice Score equals
two times the medium blue area divided by the sum of the black
area of each corresponding sequence. The Relative Coverage equals
the light blue divided by the dark blue on a logarithmic scale.

Figure 2: Total GAC of one motion sequence of the Neutral,
Sad, and Happy styles from the ZEGGS dataset (top). At the
bottom, Sad and Happy are subtracted from Neutral; dark
blue represents False Negative (FN), and light blue False Pos-
itive (FP). Blue and white represent True Positive (TP) and
True Negative (TN), i.e., areas covered and not covered in
both sequences, respectively.

Table 1 summarizes the Dice Score, Relative Coverage, and Total
GAC for a selection of styles from the ZEGGS dataset (complete
data available in the repository). As expected, there is a correlation
between Total GAC and Relative Coverage. Lower energy styles,
such as Tired, Old, and Sad, cover smaller areas than the neutral
baseline. This results in negative RC values, as most of their GAC
overlaps with the neutral reference, as can be seen by the True
Positive in Figure 2. Conversely, high-energy styles like Happy
and Angry exhibit positive values due to a larger deviation from
the neutral reference. These findings suggest that the RC is sen-
sitive to variations in motion style, potentially making it useful
for applications such as emotion detection, and identity or style
classification.

The Dice Score, on the other hand, shows a narrower range
across styles: 0.70 to 0.84 with a standard deviation of 0.04, except-
ing Still. It is reasonable to expect only small variations in Dice
Scores in different styles since all sequences comprise real human
motion from a single professional performer. While no significant
correlation between Dice Score and specific styles was found in this
dataset, further investigation with more performers and diverse
style sets (e.g., emotions and personality) is needed to assess its
role in gesture evaluation definitively.

Table 1: Comparison of GAC metrics between different and
neutral styles from the ZEGGS dataset. From left to right:
Dice Score, Relative Coverage (RC), and Total GAC (×103
pixels).

Style Dice RC Total
Neutral - - 52.2
Happy 0.74 4.71 85.7
Angry 0.83 1.01 58.2
Speech 0.77 0.70 60.2
Scared 0.73 0.32 47.2
Tired 0.72 -0.45 46.3
Old 0.74 -1.12 40.9
Sad 0.79 -1.58 41.3
Still 0.32 -7.06 11.6

Figure 3 presents the human-likeness median ratings over FGD
and the Dice Score on GAC for each condition from the GENEA
Challenge 2023. These metrics are also detailed in Table 2, along-
side the Relative Coverage. Each condition consists of 70 motion
sequences, each lasting approximately one minute, from the chal-
lenge’s extended test set. GAC-based metrics were extracted using a
pair-wise comparison between motion sequences of each condition
and the ground truth (condition NA) and taking their average. The
FGD was computed by comparing all sequences of each condition
against all sequences in the ground truth. Note that the human-
likeness evaluation was performed in a subset comprised of 41
motion sequences with an average duration of 9 seconds, while the
objective metrics considered the whole set.

Figure 3: Human-likeness median ratings versus FGD (near
0 is better) and Dice Score on GAC (near 1 is better) of each
condition of the GENEA Challenge 2023. SA to SL represent
team submissions, and BD and BM are the baselines.

We used Spearman’s rank correlation coefficient and its associ-
ated statistical test to validate using FGD and Dice Score as alter-
natives to perceptual evaluations. The results presented in Table 3
show that the Dice Score provided a higher correlation than FGD.
However, neither metric achieved a statistically significant correla-
tion (𝑝 < 0.05).
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Table 2: Comparison of GENEA Challenge 2023 conditions.
From left to right: human-likeness median ratings (Hum.),
Dice Score, Relative Coverage (RC), and FGD. NA is the
ground truth, SA to SL represents team submissions, and
BD and BM are the baselines.

Cond. Hum. Dice RC FGD
NA 71 - - -
SG 69 0.76 -0.21 22.1
SF 65 0.77 -0.47 4.9
SJ 51 0.72 -2.68 10.4
SL 51 0.68 -2.23 24.0
SE 50 0.71 -1.28 11.0
SH 46 0.65 -2.14 30.7
BD 46 0.66 -2.48 12.1
SD 45 0.70 -2.18 10.7
BM 43 0.71 -2.31 9.4
SI 40 0.74 0.07 9.6
SK 37 0.72 -0.18 9.5
SA 30 0.66 0.73 24.0
SB 24 0.68 -0.68 18.1
SC 9 0.64 1.54 81.8

Table 3: Spearman’s rank correlation of the Dice Score and
the FGD to human-likeness median ratings.

Dice FGD
Spearman 0.47 -0.17
𝑝-value 0.09 0.55

From Table 2, negative RC values indicate that gestures are con-
strained to the ground truth gesture area. However, different than
before, since we are dealing with synthetic data, here positive val-
ues might indicate erratic and possibly unnatural gestures. This
can be seen in Table 2 for conditions SI, SA and SC; their RC are
positive while obtaining lower ratings for human-likeness. Most
conditions did not achieved positive RC, which is expected since it
can be hard for learning-based algorithms to grasp gesture varia-
tions fully and most loss functions might restrain results around
the average. Although a lower RC indicates that the gesture cov-
erage was smaller than the ground truth, perhaps over-smoothed,
it is worth noting that it appears to have little or no correlation
with perceived human-likeness, especially given the high rating of
conditions SJ and SL.

Although it might be tempting to compare the Dice Scores from
the GENEA Challenge 2023 (Table 2) with the ZEGGS dataset (Ta-
ble 1), we stress that they represent different things. ZEGGS’ Dice
Scores compare ground truth motion sequences from the same pro-
fessional performer in different styles and speech, while the other
is a pair-wise comparison between ground truth and synthesized
gestures from the same speech input.

4.1 Limitations
The present analysis focused solely on the front-view plane for
gesture coverage. The same core concepts and methods described
in this work could be extended to include the top-view plane or

to analyze gesture volume, possibly providing a more comprehen-
sive picture of gesture expressiveness and motion comparisons.
Additionally, human gestures often exhibit asymmetries, such as
one hand being used more frequently [21]. Future investigations
could explore methods to handle these asymmetries. One potential
approach is to take the union of the left and right GAC, treating a
gesture performed with either hand as valid for both sides.

The current method equally considers every pose of the refer-
ence motion sequence. However, gestures tend to be heavily concen-
trated around a single area [13], as seen in the third pair of images
in Figure 1. The Dice Score and the Relative Coverage primarily
focus on the overlap in the covered area between the reference and
test sequences, potentially overlooking the temporal distribution of
poses within the sequence. Thus, the motion sequence might still
appear unnatural or lead to a different perceived style or expres-
siveness. A weighting term might be considered to account for this
limitation. Similar considerations are also valid for joint velocities,
as shown in the second pair of images in Figure 1.

Motion sequence length can also impact the metrics employed.
Short sequences might not provide sufficient area coverage, leading
to minimal overlap between sequences. On the other hand, long
sequences might produce overly broad areas that fails to provide
meaningful information. Further research is needed to estimate this
impact and assess an optimal sequence length.

5 Conclusion
This work proposes an analysis of Gesture Area Coverage (GAC)
and introduces a set of metrics for evaluating human gestures. We
explored GAC to quantify gesture expressiveness and its poten-
tial relationship with perceived human-likeness. First, we assessed
gesture style variations by comparing them to a neutral baseline.
Second, we applied the Dice Score to analyze the conditions evalu-
ated in the GENEA Challenge 2023.

The results suggest that the Dice Score on GAC is promising as a
complementary metric to existing methods like the Fréchet Gesture
Distance (FGD) for gesture evaluation. However, while the Dice
Score exhibited a higher correlation with human-likeness ratings
than FGD, neither achieved a statistically significant correlation.
These findings highlight the potential of GAC but also emphasize
the need for further investigation on more diverse and extensive
data to assess its efficacy as an evaluation metric.
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