
Multi-Strategy Deployment-Time Learning and
Adaptation for Navigation under Uncertainty

Abhishek Paudel, Xuesu Xiao, and Gregory J. Stein
Department of Computer Science

George Mason University
{apaudel4, xiao, gjstein}@gmu.edu

Abstract: We present an approach for performant point-goal navigation in unfa-
miliar partially-mapped environments. When deployed, our robot runs multiple
strategies for deployment-time learning and visual domain adaptation in parallel
and quickly selects the best-performing among them. Choosing between poli-
cies as they are learned or adapted between navigation trials requires continu-
ally updating estimates of their performance as they evolve. Leveraging recent
work in model-based learning-informed planning under uncertainty, we determine
lower bounds on the would-be performance of newly-updated policies on old trials
without needing to re-deploy them. This information constrains and accelerates
bandit-like policy selection, affording quick selection of the best-performing strat-
egy shortly after it would start to yield good performance. We validate the effec-
tiveness of our approach in simulated maze-like environments, showing improved
navigation cost and cumulative regret versus existing baselines.

Keywords: policy selection, domain adaptation, navigation under uncertainty

1 Introduction

Consider a robot deployed in an unknown environment and tasked to reach an unseen point goal. The
robot leverages learning to make decisions about where to go to most quickly find the goal. How-
ever, depending upon how different the training and deployment environments are, learning may not
always inform good behavior and the robot may demonstrate poor performance during deployment.
Thus, to perform well in a wide variety of environments, the robot must improve its behavior during
deployment, via strategies such as visual domain adaptation or online policy learning. Problemat-
ically, there is no one-size-fits-all approach to deployment-time learning or adaptation: each such
strategy is typically only suitable for addressing a subset of the types of changes a robot may en-
counter during deployment or are slow to converge, risking poor performance during a potentially
lengthy or error-prone learning phase and limiting most such approaches in general.

If robots in this goal-directed navigation scenario are to perform well when deployed in arbitrary
unfamiliar environments, they could ideally run many strategies for adaptation and online learning
in parallel and rely on run-time monitoring to select the best-performing policy or strategy. Bandit
algorithms [1, 2, 3] are potentially useful, yet are prohibitively slow to converge in this setting. Other
existing work in the space of run-time monitoring [4, 5, 6, 7, 8] or policy selection for reinforcement
learning [9, 10, 11, 12] are similarly limited to short time horizons or fully-known environments and
are not straightforwardly applicable. Moreover, such strategies typically presume that the policies
are static, posing a risk when the policies improve during deployment: deciding to not select a policy
that was deemed to perform poorly early on—yet has improved considerably since then—results in
poor overall performance. Instead, we require an approach that can reliably select between a family
of continually changing (non-stationary) policies being learned or adapted during deployment.

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.



Figure 1: Overview of our approach for fast selection between non-stationary policies.

In this work, we present an approach for data-efficient and reliable policy selection capable of choos-
ing the best-performing policies from an ensemble of policies, even when many of these policies are
being learned or adapted during deployment (Fig. 1). We leverage insights from the recent work
by Paudel and Stein [13] whose offline alt-policy replay uses data collected by the robot from a
navigation trial to simulate how another policy would have performed, yielding lower bounds on its
performance that constrain and improve policy selection. As this approach does not consider that
policies may change during deployment, the rolling estimates of the performance of each policy
quickly diverge from their true expected performance as old performance estimates become stale.
Instead, we leverage offline alt-policy replay to refresh old data and so compute up-to-date bounds
on the would-be performance of each policy, allowing us to quickly select the best performing policy
even as the robot’s policies improve during deployment.

We deploy our approach in simulated maze-like environments where visual cues indicate promis-
ing routes to the unseen goal. Via our approach, our robot is deployed with six policies—a static
pre-trained policy, a non-learned baseline policy, two policies being continually adapted via visual
domain adaptation, and two policies being trained from scratch using deployment-time data—and
quickly chooses the best performing ones among these when deployed. Notably, our approach cor-
rectly avoids the non-stationary policies early in deployment before they learn to understand the
environment yet quickly switches to them once they improve, a capability that allows our approach
to outperform all single-policy strategies and existing policy selection baselines.

2 Related Work

Domain Adaptation Advances in visual domain adaptation [14, 15, 16, 17, 18, 19] have made it
possible to adapt systems trained in one domain to a different domain during deployment. Visual
domain adaptation approaches have been used to compensate for differences in the robot’s visual
observations between the training and deployment environments [20, 21, 22, 23, 24]. However,
visual domain adaptation approaches, such as those that leverage CycleGAN [19], are not always
suitable for improving performance, especially when domains are drastically dissimilar, requiring
careful consideration for their uses on robotic systems where reliability is of critical importance.

Deployment-Time Adaptation The idea of adapting robots during deployment has been explored
widely in the robotics literature. Many approaches focus on short-horizon robot behavior such as
adapting low-level motor controls or locomotion in diverse terrains [25, 26, 27, 28, 29, 30]. As such,
they are not concerned with long-horizon behavior where the robot should consider the impacts of
its immediate actions far into the future, the focus of this work.

2



Policy Selection can be thought of as model selection applied to choosing between robot behav-
iors [13]. In reinforcement learning, model selection [9, 10, 11, 12] is often treated as a generalized
form of multi-armed bandit problem [31]. Using bandit algorithms [1, 2, 3]—which are often black-
box—for policy selection requires trade off between exploitation and exploration and hence the
robot has to potentially go through multiple trials with poor behavior before a better policy can be
identified. White-box policy selection [13] has shown recent promise in data efficiency, yet so far
only consider stationary policy selection, ill-suited for policies that evolve during deployment.

3 Preliminaries

For robots to perform well across a variety of unfamiliar environments, they must have the abil-
ity to simultaneously apply multiple deployment-time learning and domain adaptation techniques
in parallel, so that they may choose the best-performing of them when deployed. We model this
scenario as an instance of policy selection. While the policies themselves are non-stationary—they
change over time as the robot is deployed and collects data—we must first discuss the fundamentals
of goal-directed navigation in partially-mapped environments and strategies for stationary (static)
policy selection in this domain, needed to understand our approach.

Goal-Directed Navigation in Partially-Mapped Environments For each trial, our robot is
placed in a partially-mapped environment and tasked to reach an unseen point-goal in minimum
expected cost, measured in units of distance. Planning under uncertainty is often formulated as a
partially observable Markov decision process (POMDP) [32]. As planning via the POMDP model
directly is computationally intractable, many planning strategies in this domain rely on learning to
anticipate what may lie in unseen space and thus inform good behavior. The robot’s policy π con-
sumes a belief state bt—including the robot pose qt, the partial map mt, and visual observations
collected onboard the robot ot—and returns a primitive action at specifying the robot’s behavior.
For all policies in this work, images are used to inform learning, which makes predictions about
unseen space to guide the robot more quickly to the unseen goal.

Policy Selection over Multi-Trial Deployments A single deployment consists of a sequence of
trials, each a single traversal from start to goal in a previously-unseen map. We consider the scenario
in which the robot is deployed with an ensemble of policies Π = {π1, π2, · · · , πN}, each defining a
different behavior. The objective of policy selection is to determine, during a deployment, which of
those policies performs best in the deployment-time environments:

π∗ = argmin
π∈Π

E[C(π)] , (1)

where E[C(π)] is the expected cost of policy π in the deployment environment distribution. In
practice, the expected cost is approximated by deploying the policy multiple times and averaging
the performance: E[C(π)] ≈ C̄(π), the average cost of the trials in which policy π was deployed.

3.1 Black-box Policy Selection via Multi-Armed Bandits

Selecting the policy that minimizes C̄(π) is unwise in general, since the randomness inherent in the
deployments means that the best-performing policy may be incorrectly ruled out early on and never
selected again to improve the estimate of E[C(π)] with no recourse to recover. Instead, the upper
confidence bound (UCB) multi-armed bandit [1] balances exploitation with exploration, incentiviz-
ing selection of policies that have been chosen less often to improve the estimate of E[C(π)]. For
trial k + 1, UCB bandit selection specifies one choose policy π(k+1) according to

π(k+1) = argmin
π∈Π

[
C̄k(π)− c

√
ln k

nk(π)

]
, (2)

where C̄k(π) is the average cost over trials 1-through-k in which policy π was selected, nk(π) is the
number of times policy π was selected through trial k, and c > 0 is a parameter controlling the rate
of exploration. In practice, each trial of goal-directed navigation is expensive and the resulting cost

3



samples have high variance. Thus, black-box policy selection approaches such as this are problem-
atically slow to converge, making them impractical for policy selection in this domain despite their
desirable guarantees on asymptotic sub-linear regret.

3.2 Data-Efficient Policy Selection via Offline Alt-Policy Replay

Figure 2: Offline Replay Overview

A central challenge of black-box model selection approaches
is their data inefficiency, as each deployment yields only a sin-
gle data point for a single policy. If it were instead possible
to use the images and partial map collected during a trial to
determine how well other policies could have performed—a
bound on performance—we could use it to inform policy se-
lection and so accelerate convergence to the best-performing
policy. Paudel and Stein [13] present an approach they term
offline alt-policy replay in which data collected during deploy-
ment of policy π is used to simulate the would-be behavior of
another policy π′ placed in the same environment.

Under this approach, deployment of policy π during trial k
yields a record Zk of all its poses and observations of the
environment. This partial snapshot of the environment is used to simulate how another policy
π′ would have acted, letting it navigate and reveal the environment and receive the image ob-
servations it needs to make predictions about unseen space that inform its behavior. Offline re-
play produces a lower bound on the performance of π′ had it instead been deployed: C lb

k (π
′) =

OFFLINEREPLAY(π′,Zk) ≤ Ck(π
′). Thus, each trial yields information about the performance of

all policies π ∈ Π. The average lower bound after k trials, C̄ lb
k (π

′), constrains bandit-like policy
selection:

π(k+1) = argmin
π∈Π

[
max

(
C̄ lb

k (π), C̄k(π)− c

√
ln k

nk(π)

)]
(3)

Offline alt-policy replay results in dramatically faster convergence to the best-performing policy
while still preserving guarantees on asymptotic sub-linear regret. However, like the bandit algorithm
before it, this approach presumes that the policies themselves are stationary, and so is not well-suited
to select between policies being learned or adapted online, the focus of this work.

3.3 Learning over Subgoals Planning: Learning-Augmented Model-Based Planning

Figure 3: Overview of learning over
subgoals planning (LSP).

A key enabler of offline alt-policy reply is the require-
ment that planning be done via a policy amenable to coun-
terfactual reasoning—i.e., What would policy π′ have
done if it had instead been placed in this situation?—
with which the behavior of policy π′ can be simulated.
As such, our policies are based on the learning-informed
model-based learning over subgoals planning (LSP) by
Stein et al. [33], which satisfies this requirement.

Learning over subgoals planning (LSP) is a high-level
planning framework for learning-informed model-based
navigation in a partially-mapped environments. Under
this abstraction, subgoals correspond to frontiers, each
a boundary between free and unknown space; high-level
actions at correspond to navigation to a subgoal and then exploration beyond to attempt to reach the
unseen goal. The robot uses a learned model to make predictions about unseen space beyond each
subgoal, information it uses to decide where to reveal next. The learned subgoal property estimator,
a neural network Nθ parameterized by θ and trained via supervised learning, consumes panoramic
images in the vicinity of each subgoal to estimate the likelihood that each subgoal-action will suc-

4



cessfully reach the goal PS,θ and the expected costs associated with success RS,θ and failure RF,θ

to reach the goal in unseen space. Upon failing to reach the goal via a high-level action at, the
robot must select another action a ∈ A \ at. Planning is model-based, with the expected cost of a
high-level action defined by a Bellman Equation:

Qθ(bt, at) = D(bt, at)+PS,θ(at)RS,θ(at)+(1−PS,θ(at))

[
RF,θ(at) + min

a∈A(bt)\at

Qθ(b̃
′
t, a)

]
(4)

where bt is the robot’s belief, D(bt, at) is the travel cost to reach the subgoal at via known space,
and b̃′t is the approximate updated belief, which reflects that the robot has moved to the subgoal at.
Planning seeks to find the action at that minimizes expected cost: πθ(bt) = argmina Qθ(bt, a); the
robot replans whenever the map is updated, proceeding until the goal is reached.

As our approach builds upon the insights of offline replay, all navigation policies in this work rely on
the learning over subgoals planning abstraction. Planning for each is done via Eq. (4), and so policy
selection in this context can be thought of as choosing the network model Nθ whose predictions
about unseen space {PS,θ, RS,θ, RF,θ} result in the best performance when deployed.

4 Multi-Strategy Deployment-Time Learning and Adaptation

4.1 Problem Formulation: Non-stationary Policy Selection

We seek to achieve minimum-expected-cost performance for navigation in partially-revealed envi-
ronments. Our robot is deployed with an ensemble of learning-informed policies—many of which
are being learned or adapted after each trial—and seeks to pick the best performing strategy during
deployment. We formulate this problem as an instance of non-stationary policy selection. A deploy-
ment is a sequence of T trials, each a navigation from start to goal in a previously unseen map. As
many of the policies are learned or adapted and so evolve over time, we add an additional subscript
k to denote the policy after trial k. Thus, before trial k + 1, the robot has access to N policies
Πk = {π1,k, π2,k, . . . , πN,k} and seeks to pick the one that minimizes expected cost via

π(k+1) = argmin
πn,k∈Πk

E[C(πn,k)] . (5)

Though Eq. (5) resembles Eq. (1), computing the expected cost of policies in Eq. (5) is challenging
because the policies themselves are continually being updated via learning or adaptation during
deployment. The policy selection strategies discussed in Sec. 3 (Eq. (2) & (3)) use a rolling average
to estimate E[C(πn,k)], which quickly diverges from the true estimate for policies that improve via
deployment-time training or adaptation, reducing the robot’s performance. Instead, if selection is to
quickly and reliably converge to the best performing policy, there is a need for an approach that can
compute accurate bounds on the performance of each policy πn,k even as they improve.

4.2 Approach: Selection over Non-Stationary Policies being Continuously Learned or
Adapted During Deployment

We present an approach that performs data efficient policy selection over a set of policies that are
continually learned or adapted during deployment. Our policy selection approach chooses policies
based on the selection strategy of Eq. (3), yet rather than using rolling averages of the lower-bound
costs C̄ lb

k and the deployment costs C̄k that fail to consider the evolving nature of the robot’s policies,
we instead rely upon OFFLINEREPLAY to refresh the estimates of the robot’s performance.

Computing Up-to-Date Bounds on Performance Whenever one of the robot’s policies is up-
dated, via domain adaptation or learning with data it collects during deployment, its behavior may
have changed. Thus, Ck(πn,k) ̸= Ck(πn,k-1) ̸= · · · ≠ Ck(πn,1) in general and so using a rolling
average of performance will result in poor selection performance and miss out on choosing policies
that may have dramatically improved. Just as offline alt-policy replay can be used to determine the
would-be performance of alternate policies after each trial, we can leverage this approach to revisit
old trials to determine how well the robot’s updated policies would have performed. We use the data

5



the robot collects until trial k (the records {Zi}i=1,···,k) to replay how each of the robot’s updated
policies would have behaved in older trials, letting us get a much more accurate estimate of that
policy’s expected performance and performance bounds. For each updated policy πn,k ∈ Πk, the
updated lower bound performance is computed by replaying its behavior for all trials:

C̄ lb
k (πn,k) ≈

1

k

k∑
i=1

OFFLINEREPLAY(πn,k,Zi) (6)

The average cost of deployed policies C̄k(πn,k) is recomputed similarly. We note that our prob-
lem setting envisions that robots will not be in constant operation and can perform much of this
computation for training or re-evaluation while idle and waiting for its next navigation objective.

Policy Selection using Updated Performance Estimates We use the selection approach of
Eq. (3) to perform policy selection, yet use our updated estimates of the performance of the robot’s
policies—lower-bound costs C̄ lb

k and the deployment costs C̄k computed via Eq. (6)—in place of
their rolling averages. After each trial k, the robot initiates a procedure to learn or adapt its non-
stationary policies using the data it has so far collected {Zi}i=1,···,k. Before trial k+1, it computes
updated performance estimates for each of its updated policies πn,k ∈ Πk via Eq. (6) and selects
the policy to deploy via Eq. (3). Since data from new trials are continually added to record Z for
training and offline replay, these policies will asymptotically converge to static policies after many
trials, and we preserve bandit-like guarantees on sub-linear asymptotic regret.

4.3 Deploying an Ensemble of Policies

Facilitated by our approach, we deploy our robot with an ensemble of policies; some are unchanging
(e.g., the robot’s pre-trained policy) and others evolve and improve during deployment as more data
is collected—e.g., those that rely on visual domain adaptation or are trained from scratch. Policies
in the ensemble are chosen so as to capture potentially distinct scenarios during deployment. Each
such policy depends on the learning over subgoals planning (LSP) approach discussed in Sec. 3.3,
and so policy selection and domain adaptation in this context can be thought of as simultaneously
improving and choosing between feed-forward models that make predictions about unseen space.
Here, we discuss the different strategies employed by each policy our robot is deployed with.

The Pre-Trained Learning-Informed Policy [Stationary] πPRETRAIN The robot is equipped with
a static policy trained in advance of deployment, a learning over subgoals planning (LSP) policy
well-suited to good performance in the training environments. If we were to know in advance that
the deployment-time environments matched the training environments, we would expect this policy
to perform well and so no policy selection would be necessary. However, this work considers the
more general case wherein the deployment environments may differ non-trivially compared to those
seen during training, leading to poor performance when relying on πPRETRAIN.

The Non-Learned Optimistic Policy [Stationary] πNONLEARNED We also deploy the robot with an
optimistic planning strategy: a common non-learned strategy in which unseen space is assumed to
be unoccupied. The non-learned optimistic policy can be thought of as a special case of LSP, in
which PS ≡ 1 and RS , RF ≡ 0, so that the robot simply selects the shortest path through the partial
map to the unseen goal, replanning when necessary as unseen space is revealed. This strategy of
optimism under uncertainty is unlikely to outperform πPRETRAIN when the deployment environments
match those seen during training. However, when deployed in an unfamiliar environment that differs
significantly from the training environment, the learned model underpinning πPRETRAIN may be misled
by visual features it cannot properly understand, making πNONLEARNED a reasonable backup strategy.

Visual Domain Adaptation via CycleGAN [Non-Stationary] πCYCLEGAN Our robot will use im-
ages it collects during deployment to perform visual domain adaptation via the CycleGAN algo-
rithm [19, 21]. Using unlabeled images from the training and deployment environments, CycleGAN
learns a mapping from one to the other, as shown in Fig. 4. This mapping is used as a preprocess-
ing step: deployment-time images are made to look like training-time images and then fed to the
robot’s pre-trained policy πPRETRAIN. The resulting policy πCYCLEGAN can thus compensate for visual

6



Figure 4: Adaptation of a pre-trained
policy using visual domain adaptation.

dissimilarities between training and deployment, and so
can improve performance when such changes are what
limits the robot’s behavior. However, visual domain
adaptation cannot perform well in all deployment envi-
ronments, something policy selection must judge during
deployment. For our experiments, we train two models,
one for 50 epochs πCYCLEGAN50 and one for 100 epochs
πCYCLEGAN100, and allow policy selection to choose be-
tween them. Additional details of the CycleGAN ap-
proach and training can be found in the Appendix.

Training from Scratch during Deployment [Non-Stationary] πSCRATCH Using data it collects
during deployment, the robot can additionally train an LSP-style policy from scratch while deployed.
For LSP, the robot’s learned model estimates for each subgoal (associated with a boundary between
free and unseen space that may lead to the unseen goal) the likelihood PS that the subgoal success-
fully leads to the goal and the expected costs associated with reaching the goal RS or needing to
explore and turn back RF . As the robot navigates, it can label image data using the partial map to
train an LSP model: routes the robot discovered to reach the goal correspond to PS = 1 and dead-
ends to PS = 0. Ambiguous routes—potential routes to the goal the robot did not explore during
deployment—can also be included in the training data under either an optimistic prior, i.e., where
all ambiguous routes are labeled with PS = 1, or a conservative prior, i.e., an assumption that un-
explored space is simply-connected, so that PS = 0. During deployment, we train one such policy
for each of the optimistic prior πSCRATCHOPT and conservative prior πSCRATCHCON. While these policies
will be invariably slow-to-converge towards good performance, they have the potential to success-
fully improve performance even in environments where visual domain adaptation is not well-suited.
We use 5-fold cross validation to determine an unbiased estimate of the updated lower bound on
performance and deploy a policy trained on all trials.

5 Experimental Results

We demonstrate the effectiveness of our approach in simulated maze-like environments, procedu-
rally generated so that each navigation trial sees a unique map. Each deployment consists of 50
navigation trials, each a traversal from start to goal through a previously-unseen map. As de-
scribed in Sec. 4.3, the robot has an ensemble of six policies to choose from during deployment:
Π = {πNONLEARNED, πPRETRAIN, πCYCLEGAN50, πCYCLEGAN100, πSCRATCHOPT, πSCRATCHCON}; to save computation,
the non-stationary policies are updated via learning or adaptation only every 10 trials. In addition to
our approach for non-stationary policy selection NONSTATIONARYREPLAY, we include results with
UCBBANDIT and ROLLINGREPLAY [13] policy selection, which performs selection via Eq. (3). See
the Appendix for more details on the choice of these baselines.

We deploy in three maze variants, each with differing (often conflicting) visual cues that signal
routes to the unseen goal. Results (Fig. 5) show average performance and cumulative regret of each
selection strategy over time. We additionally show (Fig. 5 bottom) our NONSTATIONARYREPLAY’s
estimate of the cost lower bound C̄ lb over time, lending insight into its selection process.

Deployment in Maze-Green: A green path signals routes to the
goal, the floor is gray, and a blue path leads to dead-ends. The
stationary πPRETRAIN is trained offline in held-out maps from this en-
vironment and so is the best. While the UCBBANDIT converges slowly, both NONSTATIONARYREPLAY

and ROLLINGREPLAY expectedly select πPRETRAIN quickly, achieving near-optimal performance.

Deployment in Maze-Gray: A gray path signals routes to goal,
the floor is green, and the blue path leads to dead ends. Mis-
led by the green flooring, πPRETRAIN performs poorly and so both
NONSTATIONARYREPLAY and ROLLINGREPLAY, initially select the non-learned πNONLEARNED. How-
ever, only our approach considers that policies may evolve during deployment. After 10 trials, the

7



Deployment UCB ROLLING NONSTATIONARY Our Improvement
Environment BANDIT REPLAY [13] REPLAY (ours) vs. UCB vs. ROLLING

Av
g.

C
os

t Maze-Green 187.9 161.6 161.6 14.0% 0.0%
Maze-Gray 183.7 189.3 165.0 10.2% 12.8%
Maze-Blue 243.5 202.3 196.5 19.3% 2.9%

C
um

ul
.

R
eg

re
t Maze-Green 1375.2 61.2 61.2 95.6% 0.0%

Maze-Gray 1848.6 2131.2 916.2 50.4% 57.0%
Maze-Blue 2955.6 898.2 606.6 79.5% 32.5%

Figure 5: Our NONSTATIONARYREPLAY policy selection approach outperforms both UCBBANDIT and
ROLLINGREPLAY [13] baselines in both Average Navigation Cost and Cumulative Regret.

πCYCLEGAN policies improve via visual domain adaptation and our approach quickly switches to them,
achieving 57% lower cumulative regret compared to ROLLINGREPLAY. Notably, selecting πCYCLEGAN

before it improves would reduce performance; thus, our NONSTATIONARYREPLAY outperforms all
single-policy selection strategies.

Deployment in Maze-Blue: A blue path on the ground signals
routes to goal, the floor is gray, and the green path leads to dead
ends. πCYCLEGAN cannot resolve the visual dissimilarities between
training and deployment even after many trials, and so the policies trained from scratch πSCRATCH are
the most promising approaches despite their slow convergence. After 30 trials, πSCRATCHCON improves
sufficiently and our NONSTATIONARYREPLAY selects it, resulting in 32% lower regret compared to
ROLLINGREPLAY, a number that would continue to grow with further trials.

6 Conclusion, Limitations, and Future Work

We present an approach to monitor and quickly select between learning-informed navigation poli-
cies, many of which are being continuously learned or adapted during deployment. Our approach
facilitates deploying multiple-such strategies for learning and visual domain adaptation in parallel,
allowing our robot to choose the best among them over time as demonstrated in simulated visual
maze-like environments in which we outperform state-of-the-art selection strategies by a consider-
able margin. In future, we aim apply our approach to other domains like multi-robot planning and
task planing under uncertainty since these problems also show promise for formulation in a way that
allows counterfactual reasoning despite uncertainty and so hold promise for applying our approach.

Limitations Although our policy selection approach is not particularly computationally intensive
on its own, each strategy for learning/adaptation relies on training a deep neural network, and so re-
quires considerable computation as the number of non-stationary policies grows (see the Appendix
for further discussion). Moreover, our policy selection method relies on policies amenable to coun-
terfactual reasoning—of which learning over subgoals planning (LSP) is one—and so may not be
directly applicable for selection between model-free navigation methods, limiting its broad utility.

8



Acknowledgments

This material is based upon work supported by the National Science Foundation (NSF) under
Grant No. 2232733. This work was done at Robotic Anticipatory Intelligence & Learning (RAIL)
Group and RobotiXX Laboratory at George Mason University. RobotiXX research is supported by
National Science Foundation (NSF, 2350352), Army Research Office (ARO, W911NF2220242,
W911NF2320004, W911NF2420027), US Air Forces Central (AFCENT), Google DeepMind
(GDM), Clearpath Robotics, and Raytheon Technologies (RTX).

References
[1] T. L. Lai, H. Robbins, et al. Asymptotically efficient adaptive allocation rules. Advances in

Applied Mathematics, 1985.

[2] W. R. Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 1933.

[3] J. C. Gittins. Bandit processes and dynamic allocation indices. Journal of the Royal Statistical
Society: Series B (Methodological), 1979.

[4] Q. M. Rahman, P. Corke, and F. Dayoub. Run-time monitoring of machine learning for robotic
perception: A survey of emerging trends. IEEE Access, 2021.

[5] P. Mallozzi, E. Castellano, P. Pelliccione, G. Schneider, and K. Tei. A runtime monitoring
framework to enforce invariants on reinforcement learning agents exploring complex environ-
ments. In 2019 IEEE/ACM 2nd International Workshop on Robotics Software Engineering
(RoSE), 2019.

[6] W. Zhou, J. S. Berrio, S. Worrall, and E. Nebot. Automated evaluation of semantic segmen-
tation robustness for autonomous driving. IEEE Transactions on Intelligent Transportation
Systems, 2019.

[7] S. Daftry, S. Zeng, J. A. Bagnell, and M. Hebert. Introspective perception: Learning to predict
failures in vision systems. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016.

[8] H. Liu, S. Dass, R. Martı́n-Martı́n, and Y. Zhu. Model-based runtime monitoring with interac-
tive imitation learning. In IEEE International Conference on Robotics and Automation (ICRA),
2024.

[9] J. Lee, A. Pacchiano, V. Muthukumar, W. Kong, and E. Brunskill. Online model selection for
reinforcement learning with function approximation. In International Conference on Artificial
Intelligence and Statistics. PMLR, 2021.

[10] J. Reisinger, P. Stone, and R. Miikkulainen. Online kernel selection for bayesian reinforcement
learning. In Proceedings of the 25th International Conference on Machine Learning, 2008.

[11] A. Ghosh and S. R. Chowdhury. Model selection in reinforcement learning with general func-
tion approximations. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, 2022.

[12] A. Pacchiano, C. Dann, C. Gentile, and P. Bartlett. Regret bound balancing and elimination for
model selection in bandits and RL. arXiv preprint arXiv:2012.13045, 2020.

[13] A. Paudel and G. J. Stein. Data-efficient policy selection for navigation in partial maps via
subgoal-based abstraction. In International Conference on Intelligent Robots and Systems
(IROS), 2023.

9



[14] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and
V. Lempitsky. Domain-adversarial training of neural networks. Journal of Machine Learning
Research, 2016.

[15] M. Long, Y. Cao, J. Wang, and M. Jordan. Learning transferable features with deep adaptation
networks. In International Conference on Machine Learning, 2015.

[16] K. Bousmalis, N. Silberman, D. Dohan, and D. Erhan. Unsupervised pixel-level domain adap-
tation with generative adversarial networks. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017.

[17] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell. Cy-
CADA: Cycle-consistent adversarial domain adaptation. In International Conference on Ma-
chine Learning, 2018.

[18] Y. Taigman, A. Polyak, and L. Wolf. Unsupervised cross-domain image generation. In Inter-
national Conference on Learning Representations, 2017.

[19] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In 2017 IEEE International Conference on Computer Vision
(ICCV), 2017.

[20] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan, L. Downs, J. Ibarz,
P. Pastor, K. Konolige, et al. Using simulation and domain adaptation to improve efficiency of
deep robotic grasping. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), 2018.

[21] G. J. Stein and N. Roy. GeneSIS-RT: Generating synthetic images for training secondary real-
world tasks. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
2018.

[22] M. Wulfmeier, A. Bewley, and I. Posner. Addressing appearance change in outdoor robotics
with adversarial domain adaptation. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017.

[23] S. Palazzo, D. C. Guastella, L. Cantelli, P. Spadaro, F. Rundo, G. Muscato, D. Giordano, and
C. Spampinato. Domain adaptation for outdoor robot traversability estimation from RGB data
with safety-preserving loss. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2020.

[24] D. Bradley and J. A. D. Bagnell. Domain adaptation for mobile robot navigation. In NeurIPS
2009 Learning from Multiple Sources with Applications to Robotics Workshop, December
2009.

[25] A. Kumar, Z. Fu, D. Pathak, and J. Malik. RMA: Rapid motor adaptation for legged robots. In
Robotics: Science and Systems, 2021.

[26] Y. Zhu, P. Thangeda, M. Ornik, and K. Hauser. Few-shot adaptation for manipulating granular
materials under domain shift. In Proceedings of Robotics: Science and Systems, July 2023.

[27] A. S. Chen, G. Chada, L. Smith, A. Sharma, Z. Fu, S. Levine, and C. Finn. Adapt on-the-
go: Behavior modulation for single-life robot deployment. In NeurIPS 2023 Robot Learning
Workshop, 2023.

[28] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In 2022 International Conference
on Robotics and Automation (ICRA), 2022.

10



[29] N. Hansen, R. Jangir, Y. Sun, G. Alenyà, P. Abbeel, A. A. Efros, L. Pinto, and X. Wang. Self-
supervised policy adaptation during deployment. In International Conference on Learning
Representations, 2021.

[30] A. Nagabandi, I. Clavera, S. Liu, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn. Learn-
ing to adapt in dynamic, real-world environments through meta-reinforcement learning. In
International Conference on Learning Representations, 2019.

[31] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

[32] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observ-
able stochastic domains. Artificial Intelligence, 1998.

[33] G. J. Stein, C. Bradley, and N. Roy. Learning over subgoals for efficient navigation of struc-
tured, unknown environments. In Conference on Robot Learning. PMLR, 2018.

[34] K. Arndt, M. Hazara, A. Ghadirzadeh, and V. Kyrki. Meta reinforcement learning for sim-to-
real domain adaptation. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020.

[35] A. Ajay, A. Gupta, D. Ghosh, S. Levine, and P. Agrawal. Distributionally adaptive meta
reinforcement learning. In Advances in Neural Information Processing Systems, 2022.

[36] G. Schoettler, A. Nair, J. A. Ojea, S. Levine, and E. Solowjow. Meta-reinforcement learning
for robotic industrial insertion tasks. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2020.

[37] J. Shin, A. Hakobyan, M. Park, Y. Kim, G. Kim, and I. Yang. Infusing model predictive control
into meta-reinforcement learning for mobile robots in dynamic environments. IEEE Robotics
and Automation Letters, October 2022.

11



Multi-Strategy Deployment-Time Learning and
Adaptation for Navigation under Uncertainty:

Appendix

A CycleGAN Implementation and Training

We use the official PyTorch implementation of CycleGAN provided by Zhu et al. [19] on GitHub1.
As mentioned in Sec. 4.3, we train two models: one for 50 epoch and another for 100 epochs. We
use the default parameters for training except that we use a batch size of 8 and no learning rate
scheduling is done. We use learning rate of 0.0002 with Adam optimizer. The images are of size
512 × 128 and we perform default resizing and cropping as a preprocessing step. 1261 images from
10 distinct maps in Maze-Green (where πPRETRAIN is trained) are set aside as target domain images,
and we sample 1300 images from the source domain (either Maze-Gray or Maze-Blue) collected
during deployment for training the CycleGAN model. Using only 1300 images from deployment-
time environments additionally helps to get an unbiased estimate of performance when replaying
CycleGAN-adapted policy πCYCLEGAN on older trials from which the images were collected.

B Learning over Subgoals Planning: Subgoal Property Estimator Network
Implementation and Training

As discussed in Sec. 3.3, all learning-informed policies rely on the learning over subgoals planning
(LSP) abstraction for planning, a model-based approach that relies on a learned model to estimate
subgoal properties: statistics of unseen space associated with each of the robots temporally-extended
high-level actions to explore unseen space. The subgoal property estimator network Nθ correspond-
ing to πPRETRAIN is trained with data-collected in 500 distinct maps in Maze-Green where the robot
navigates using the πNONLEARNED policy. Data labelling procedure is similar to the one described for
πSCRATCH (Sec. 4.3) except that at training time the underlying map is known and so can be used to
generate ground truth labels for subgoal properties PS , RS and RF corresponding to all subgoals.

The subgoal property estimator network Nθ is trained via supervised learning using the data col-
lected during an offline training phase. Our neural network architecture and training procedure
resemble that of Paudel and Stein [13]. The network takes as input a 512 × 128 panoramic image
centered on a subgoal, relative distance to the subgoal and relative distance to the goal. The image
is encoded by passing through 4 convolutional layers and then concatenated with features corre-
sponding to relative distances to subgoal and goal after which the concatenated features are passed
through 9 convolutional layers and finally 5 fully connected layers to output 3 subgoal properties
PS , RS and RF . We use a learning rate of 0.002 with a decay factor of 0.5 every epoch and train
for 8 epochs with Adam optimizer. We use cross-entropy loss for learning logits associated with PS

and L2 loss for learning RS and RF . The deployment-time training of subgoal property estimators
for πSCRATCH follows a similar architecture and procedure.

C Offline Alt-Policy Replay Details

As discussed in Sec. 3.2, we use offline alt-policy replay to replay the behavior of a policy without
deploying it. To replay the behavior of a policy π′, we leverage the record Zk collected during
trial k under a deployed policy π. At every time step during offline alt-policy replay, the robot
leverages the final partial map mfinal observed in trial k to simulate the laser scan and updates its
observed map as the robot moves. The frontiers—boundaries between free and unknown space—
revealed in the observed map corresponds to the subgoal-actions that the robot can take to explore
the region. To get the robot-view panoramic image corresponding to a subgoal-action, we retrieve

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

12

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


existing image in record Zk that is closest to and in line of sight to the subgoal and recenter it at
the subgoal. This image is used to estimate the subgoal properties PS , RS and RF using a neural
network corresponding to π′ which is then used to compute the next high-level action using Eq. (4).
The robot then simulates the low-level motion primitive to move towards the selected subgoal and
this process is repeated. At any point during simulated navigation, if the robot attempts to enter a
region that is unknown in the final partial map mfinal via a frontier, we mask that frontier and force
the robot to pick a different subgoal-action. The net distance travelled to reach the goal via this
procedure is the replay cost of policy π′.

D Cross Validation for Reevaluating Older Trials

As mentioned in Sec. 4.3, we use 5-fold cross validation to get an unbiased estimate of the per-
formance of updated policies. Since our policies trained during deployment from scratch (πSCRATCH)
are based on the same data in record Z that is also used for offline alt-policy replay to reevaluate
older trials after updating the policies, such cross-validation approach overcomes the risk of overes-
timation of performance during replay due to data leak. With 5-fold cross validation, 5 policies are
trained, each on the data from four-fifth of older trials, and replayed on the remaining one-fifth of
the trials to get the revised performance estimates for all older trials. Finally, a new policy is trained
on data from all previous trials and made available for the robot to choose from in the next trial.

E Ablation Studies

We study the effect of removing the most effective learning/adaptation strategies from Maze-
Gray and Maze-Green and see how the performance varies. Specifically, we remove CycleGAN-
based policies (πCYCLEGAN50 and πCYCLEGAN100) from Maze-Gray and policies trained from scratch
(πSCRATCHCON and πSCRATCHOPT) from Maze-Blue. The results are shown in Table 1. We observe that in
both environments, removing the corresponding best learning/adaptation strategies leads our NON-
STATIONARYREPLAY approach still outperforming or on-par with baselines. We also observe that the
average navigation cost for our NONSTATIONARYREPLAY approach increases when the best learn-
ing/adaptation strategies are removed compared to those in Fig. 5 where these strategies were in-
cluded.

Table 1: Results of ablation with removing best learning/adaptation strategies corresponding to
Maze-Gray and Maze-Blue

Environment/ UCB ROLLING NONSTATIONARY Our Improvement
Ablation BANDIT REPLAY [13] REPLAY (ours) vs. UCB vs. ROLLING

Av
er

ag
e

C
os

t

Maze-Gray
(w/o πCYCLEGAN) 190.8 197.1 176.3 7.6% 10.56%

Maze-Blue
(w/o πSCRATCH) 234.6 202.3 202.3 13.8% 0.0%

C
um

ul
at

iv
e

R
eg

re
t

Maze-Gray
(w/o πCYCLEGAN) 1917.0 2232.0 1191.6 37.8% 46.6%

Maze-Blue
(w/o πSCRATCH) 2053.8 441.0 441.0 78.5% 0.0%

F Additional Discussion of Trends in Results

Adaptation of πCYCLEGAN in Maze-Gray and Maze-Blue As is mentioned in Sec. 5, Maze-Blue
has blue path signaling routes to goal and green path leading to dead ends, and is deliberately de-
signed to be indistinguishable from Maze-Green based only on visual observations in absence of the

13



Figure 6: Sample Trajectories for πPRETRAIN in Maze-Blue

Figure 7: Sample Trajectories for πPRETRAIN in Maze-Gray

information about goal location. To clarify, CycleGAN does learn a reasonable visual mapping be-
tween the two environments: it learns an approximate identity mapping (see images corresponding
to Maze-Blue in Fig. 8) from the visual observations from each. However, we note that this mapping
is not helpful for resolving the best path to the goal since the robot is still drawn to follow the green
path, which no longer leads in the direction of the unseen goal. Hence, the performance of πCYCLEGAN

is poor in Maze-Blue and say that “visual domain adaptation fails” to properly adapt. On the other
hand, in Maze-Gray, the color of the floor and goal-routes are swapped compared to Maze-Green.
CycleGAN learns a mapping between the two that “swaps back” the colors of floor and path, a map-
ping that then allows the robot to correctly identify the best path to the goal, resulting in improved
performance of πCYCLEGAN in Maze-Gray.

Performance Differences of πPRETRAIN in Maze-Blue and Maze-Gray The πPRETRAIN policy trained
in Maze-Green would have learned to follow the green path to find the goal and avoid the blue
path to dead ends. As such, deploying it in Maze-Blue where green path leads to dead ends and
blue path leads to goal (as illustrated in the respective environment’s figures in Sec. 5) would often
mislead πPRETRAIN to navigate towards the dead ends increasing the cost to find the goal (see example
trajectories in these environments as shown in Fig. 6 and 7). In Maze-Gray, this phenomenon is less
severe since the dead ends are still blue and are often avoided by πPRETRAIN.

Performance Similarities of πPRETRAIN and πCYCLEGAN in Maze-Blue As discussed in the afore-
mentioned paragraph, the visual observations from Maze-Blue and Maze-Green are similar in ab-
sence of the knowledge about goal. This causes CycleGAN generator in πCYCLEGAN to effectively
learn an identity mapping (see images for Maze-Blue in Fig. 8) and therefore πCYCLEGAN policies are
effectively equivalent to πPRETRAIN (see Fig. 4 on how πPRETRAIN is used by πCYCLEGAN) resulting in very
similar performances over trials in Fig 5.

G Sample Images from Deployment-Time Visual Domain Adaptation

Image samples transformed from deployment-time environments (Maze-Gray or Maze-Blue) to the
training-time environment (Maze-Green) are shown in Fig. 8. The CycleGAN models trained after
40th trial are used to generate the images.

14



Figure 8: Images transformed from deployment-time environments (input) to look like training-time
environments (output) with CycleGAN-based visual domain adaptation.

H Additional Related Work

Runtime Monitoring Runtime monitoring approaches aim to evaluate the reliability of learned
models used to guide the robot’s behavior during deployment [4, 5, 6, 7, 8] and decide whether a
fallback policy should instead be used. However, these approaches focus primarily on evaluating
certain subsystems (e.g., the perception system) [5, 8] or scrutinizing a learned model’s raw output
instead of the robot’s task performance [6, 7], thus limiting their applicability for evaluating the
robot’s long-horizon behavior for navigation in partially-mapped environments.

Adaption with Meta-Reinforcement Learning Many problems in robotics have leveraged meta-
reinforcement learning (meta-RL) approaches for learning robot policies that can be adapted to new
tasks or scenarios [30, 34, 35, 36, 37]. While meta-RL is most effective when provided access
during training to a distribution over environments to which the deployment-time environments may
belong, our work is geared more towards reliably identifying and deploying existing general-purpose
online training and domain adaptation tools meant to handle systematic differences between training
and deployment-time environments. As such, our approach allows for integrating a wide range of
existing learning/adaptation strategies as demonstrated in our experiments with a mix of different
policies—something that meta-RL is not geared towards. Additionally, our approach makes no
assumptions about similarities between training and deployment environments while still benefiting
from asymptotic performance guarantees.

I Choice of Baselines

We compare our NONSTATIONARYREPLAY approach with UCBBANDIT and ROLLINGREPLAY baselines
both of which assume that the policies are stationary. While it would have been more suitable to

15



compare our approach with non-stationary policy selection approaches, existing potential baselines
in this area either assume policies are stationary or leverage knowledge we do not have access to
in the context of robot navigation, e.g. underlying distribution of a policy’s navigation cost. As
such, ours is the first to propose such non-stationary policy selection algorithm for robot navigation
under uncertainty, and hence our baselines only include the most suitable stationary policy selection
approaches from the literature.

J Scalability and Computational Limitations

Our approach scales linearly in terms of both the number of policies and the number of trials: the ad-
dition of a new trial requires that offline alt-policy be run for the policies that were not deployed and,
as policies are retrained, each old trial is re-evaluated. Such replay isn’t computationally intensive—
replaying a policy in a single typical trial takes roughly 20 seconds—and hence scales well over
larger number of trials and policies. Additionally, our policy selection approach is not particularly
computationally demanding on its own, but that the underlying strategies for training or adapting
policies online (e.g., via CycleGAN) can be expensive, costs that are not specific to our policy selec-
tion approach, and so should not be seen as a limitation specific to our policy selection approach.

In real-world settings, the computation associated with training policies and selecting between them
will not preclude using policy selection via our approach; specifically, our problem setting envisions
that robots will not be in constant operation and can perform much of this computation and policy
selection while idle and waiting for its next navigation objective. Thus, such computation associated
with our approach would not necessarily impede navigation performance. For very lengthy deploy-
ments spanning thousands of trials, indeed our approach might run into practical limitations since
determining an accurate estimate of the robot’s performance requires replaying all previous trials.
In future work, one could consider only selectively replaying specific trials or randomly sampling
a subset of trials to replay to save on computation while preserving our asymptotic performance
guarantees.

K Compute Platform and Execution Time

We ran our experiments on Intel i9 CPU with NVIDIA RTX A6000 GPU. As mentioned earlier, the
most computational intensive tasks in our experiments are training the CycleGAN and the neural
networks. While deploying the robot with our approach, training a policy from scratch (8 epochs
using data from 50 maps) would take around 5 minutes, and training a CycleGAN (100 epochs with
about 1300 images in each domain) would take around 3 hours. By contrast, performing offline
alt-policy replay for a single policy on a single typical trial takes about 20 seconds.

16


	Introduction
	Related Work
	Preliminaries
	Black-box Policy Selection via Multi-Armed Bandits
	Data-Efficient Policy Selection via Offline Alt-Policy Replay
	Learning over Subgoals Planning: Learning-Augmented Model-Based Planning

	Multi-Strategy Deployment-Time Learning and Adaptation
	Problem Formulation: Non-stationary Policy Selection
	Approach: Selection over Non-Stationary Policies being Continuously Learned or Adapted During Deployment
	Deploying an Ensemble of Policies

	Experimental Results
	Conclusion, Limitations, and Future Work
	CycleGAN Implementation and Training
	Learning over Subgoals Planning: Subgoal Property Estimator Network Implementation and Training
	Offline Alt-Policy Replay Details
	Cross Validation for Reevaluating Older Trials
	Ablation Studies
	Additional Discussion of Trends in Results
	Sample Images from Deployment-Time Visual Domain Adaptation
	Additional Related Work
	Choice of Baselines
	Scalability and Computational Limitations
	Compute Platform and Execution Time

