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Abstract

Cell segmentation is a crucial step in various biological and biomedical applications.
However, microscopic images could vary depending on the lighting conditions
employed. Training a deep learning model to handle various modalities could
prove quite difficult since it is much harder to create a comprehensive model. Our
proposed method tackles four different microscopic imaging modalities such as
brightfield, fluorescent, phase-contrast, and differential interference contrast to cre-
ate a flexible multi-modal cell segmentation model. Differentiable Neural Network
Topology Search (DiNTS) helps in providing a search space to accommodate the
different features between the four modalities, which resulted in an increase of
0.5% F1 on the validation set.

1 Introduction

Cell segmentation in microscopy images is often the first step in the quantitative analysis of imaging
data for biological and biomedical applications. Microscopy allows capturing structural and functional
properties of biological model systems, including cultures of cells, tissues, and organoids. The
advancement of microscopy for capturing such systems in greater detail reveals new insights about
understanding the complex biological patterns in living organisms. To extract meaningful information
from the imaging analysis using microscopy, the primary task is to identify (segment) the cell nuclei
which is used to count cells, track populations, locate proteins, and classify phenotypes or profile
treatments. Different approaches are used to identify nuclei using classical segmentation algorithms
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such as thresholding, watershed or active contours. However, these traditional approaches are not
suitable for segmenting cell in all types of microscopy images due to differences of microscopy
modalities, scales and experimental conditions and requires the need of deep learning based method
that extracts the features from various modalities. In general, different microscopy techniques are
used in research to capture biological patterns which are mainly divided into light and electron
microscopy due to their mechanism of capturing cellular images. Light microscopy, uses beams
of visible light to capture color images and it has less resolution and magnification power than
electron microscopy. As electron microscopic images have higher resolution, such images captured
by this technique are highly recommended for studying the 3D cellular structure at the atomic level.
But the use of light microscopy is always the optimum method for segmenting cells, whether by
manual effort or a computational approach. As implied by its name, light microscopy is used to
capture cellular structure in the presence of light. As visible light has different color, based on the
different lighting condition used in different circumstance, light microscopic images are divided
into different modalities which are named as: bright field, dark field, phase-contrast, differential
interference contrast, fluorescent, and confocal. There are various challenges present in multi-modal
cell segmentation. First, The deep learning model finds it considerably harder to generalize to the four
modalities because of the visual differences between the various modalities. Second, each modality
has its own unique artifacts, making it more difficult to customize solutions for each modality. Last
but not least, overlapping cells make it exceedingly challenging to get the best instance segmentation
masks.

The proposed architecture is a versatile algorithm to achieve optimal performance on all four modali-
ties. The most effective and economical topology for multi-modal cell segmentation is thus found
using Differentiable Neural Network Topology Search (DiNTS), which is employed to attain such
flexibility.

2 Method

2.1 Preprocessing

Given the various modalities, it is important to ensure that all the images consists of the same number
of channels. For this reason, if an image only has one channel, that channel would be repeated to
provide a 3-channel input. Then, all the images go through a normalization process.

2.2 2DiNTS

Differentiable Neural Network Topology Search (DiNTS) [1] was originally designed for 3D medical
image segmentation. It utilizes a differentiable search algorithm to find the optimal network, based
on the number of layers, the neurons of each layer and the cell operation used. For our method,
DiNTS was adapted for 2D Multi-Modal cell segmentation. Monai implementation [2] of DiNTS has
upsampling, downsampling, and two cell operations such as skip connection, or a 3x3 convolution.
Since there was initially two cell operations, four other cell operations were added to increase the
search space to eventually improve the overall performance, leading to the following cell operations:

1. Skip connection

2. 1x1 convolution

3. 3x3 convolution

4. Depthwise 3x3 convolution

5. 5x5 convolution

6. 7x7 convolution
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Figure 1: Redesigned for 2D cell segmentation [1] showing the additional cell operations in black in
the cell search block.

Table 1: Development environment and requirements.

System Ubuntu 20.04.4 LTS
GPU (number and type) One Quadro RTX 6000
CUDA version 11.0
Programming language Python 3.6.13
Deep learning framework Pytorch (Torch 1.10.1, torchvision 0.11.2)

3 Experiments

3.1 Dataset

The dataset contains 1000 labeled images from 4 modalities such as Brightfield (300), Fluorescent
(300), Phase-contrast (200), Differential interference contrast (200). These images are from different
tissue, staining techniques, and different resolutions.

3.2 Implementation Details

Various implementations were tested such as increasing the number of blocks inside the search space,
cell operations, and the resolution. The model with the best performance is saved and used for
inference after the search is complete. Additionally, Multiple baselines such as UNet and SegResNet
were examined to confirm the viability of 2DiNTS. The development environment and requirements
are presented in Table 1. The training protocol used for all models is shown in table 2. Both training
and inference used the same patch size.

4 Results and Discussion

Table 4 shows the performance comparison between UNet, SegResNet, and DiNTS on Semantic
segmentation. This could be contributed to the adaptive nature of DiNTS. However, this comes at
the cost of a huge training time as shown in table 3. Opposite to my original hypothesis, increasing
the number of operations resulted in a lower Dice score to the original implementation of only 2
operations. One explanation is that having so many options for operations may eventually cause
people to select less-than-ideal cell procedures.

Table 2: Training protocol.

Network initialization Random Initialization
Training:Validation samples 900:100 images
Total epochs 2000
Optimizer AdamW
Initial learning rate (lr) 6e-4
Early stopping Patience = 100
Loss function DiceCELoss [3]
Patch size 224x224 or 384x384
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Table 3: Parameters and Training time for each model. All models were trained on 224x224, while *
indicates training on 384x384. All DiNTS models were trained on the original two operations, whilst
** indicates the usage of six 2D operations.

Architecture Training time Parameters
UNet ≈ 11 hours and 45 minutes 1,626,072
SegResNet (Pixel shuffle) ≈ 7 hours and 46 minutes 443,747
SegResNet (Non-trainable) ≈ 9 hours and 11 minutes 395,139
SegResNet (Deconv) ≈ 17 hours and 35 minutes 400,571
DiNTS (Mul = 0.5) (Depth = 8) ≈ 16 hours and 32 minutes 3,782,259
DiNTS (Mul = 1.0) (Depth = 8) ≈ 21 hours and 50 minutes 15,115,251
DiNTS (Mul = 1.0) (Depth = 8)* ≈ 34 hours and 5 minutes 15,115,251
DiNTS (Mul = 1.0) (Depth = 8)** ≈ 109 hours and 12 minutes 15,115,251
DiNTS (Mul = 1.0) (Depth = 12) ≈ 41 hours and 42 minutes 22,463,595

Table 4: Validation results.
Model Resolution Batch size Dice score
UNet 256×256 16 0.726
SegResNet (Non-trainable upsampling) 256×256 16 0.722
SegResNet (Deconv upsampling) 256×256 16 0.736
SegResNet (Pixel-Shuffle upsampling) 256×256 16 0.722
DiNTS (Mul 0.5) (Depth 8) 256×256 16 0.746
DiNTS (Mul 1) (Depth 8) 256×256 8 0.749
DiNTS (Mul 1) (Depth 8) (6 ops) 256×256 8 0.742
DiNTS (Mul 1) (Depth 8) 384×384 4 0.755
DiNTS (Mul 1) [Depth 12) 256×256 6 0.753

4.1 Quantitative Results on Tuning Set

Table 5 shows the instance segmentation performance on F1 score. The huge drop in performance
could be allocated to the difference between semantic and instance segmentation. Even though our
2D DiNTS model could perform well in semantic segmentation, this does not mean it is optimal for
instance segmentation; due to the fact that the semantic segmentation results are overlapping resulting
in poor instance differentiation.

4.2 Limitation and future work

One of the biggest limitations in the proposed method is the presence of clustered nuclei. 2DiNTS
uses 2D operations to find the most optimal topology to eventually obtain a final segmentation
mask, but these improvements does not necessarily reflect on instance segmentation as it is abundant
with clustered nuclei. A possible direction is to utilize SOTA method for cell segmentation such as
Omnipose [4] to carefully design a search space that is more customized towards touching cells.

Table 5: Results based on the Fine Tuning set

Model Resolution F1 score
SegResNet (Deconv upsampling) 256x256 0.540
DiNTS (Mul 1) (Depth 12) 256x256 0.549
DiNTS (Mul 1) (Depth 8) 384x384 0.553
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5 Conclusion

In this work, we propose the usage of DiNTS to obtain a flexible algorithm to accommodate the
variety between the four modalities. This resulted in an improvement of 2.9% DSC on the validation
set compared to Vanilla U-Net. However, this does not reflect on instance segmentation performance;
due to the over-segmentation present resulting in poorer instance predictions.
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