
How to set AdamW’s weight decay as you scale model and dataset size

Xi Wang 1 Laurence Aitchison 2

Abstract

The scaling of the optimal AdamW weight decay
hyperparameter with model and dataset size is
critical as we seek to build larger models, but is
poorly understood. We show that weights learned
by AdamW can be understood as an exponential
moving average (EMA) of recent updates. This
gives critical insights for how to set the weight de-
cay in AdamW, and how the weight decay should
scale with model and dataset size. In particular,
the key hyperparameter for an exponential mov-
ing average is the EMA timescale. Intuitively, the
EMA timescale can be understood as the num-
ber of recent iterations the EMA averages over.
We find that the optimal timescale, measured in
epochs, is roughly constant as we change model
and dataset size. Moreover, given a learning rate,
there is a one-to-one mapping from the EMA
timescale to the weight decay hyperparameter.
Thus, if the optimal EMA timescale is constant,
that implies that as the dataset size increases, the
optimal weight decay should fall and as the model
size increases, the optimal weight decay should
increase (if we follow the muP recommendation
for scaling the learning rate). We validate these
scaling rules on ResNet-18 and Vision Transform-
ers trained on CIFAR-10 and ImageNet, and on
NanoGPT pre-training on OpenWebText. Finally,
we found that as training progresses, muP’s learn-
ing rate scaling breaks down for AdamW unless
weight decay is scaled appropriately.

1. Introduction
A common machine learning workflow is to prototype by
training many smaller models, then at the end do one final
training run, with the largest possible model on the largest
possible dataset. This workflow is used in many settings,

1Johns Hopkins University, US 2University of Bristol, UK.
Correspondence to: Xi Wang <xidulu@gmail.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

from small-scale student projects to the largest LLM train-
ing runs. However, for this workflow to be effective, we
need to understand how to transfer optimal hyperparame-
ters from smaller-scale prototyping runs to the final, largest
model and dataset. This is very well studied for the optimal
learning rate as you scale up width and depth (e.g. Yang
et al., 2022; Bordelon et al., 2024; Noci et al., 2024; Everett
et al., 2024). However, the largest LLM pretraining runs (e.g.
Zhang et al., 2022; Touvron et al., 2023a;b; Tow et al., 2023)
use an optimizer with a weight decay term such as AdamW
(Loshchilov & Hutter, 2018), and it is not understood how to
scale the AdamW weight decay hyperparameter with model
sizes, and how to scale hyperparameters as we scale dataset
size. Here, we fix this gap, showing how the optimal weight
decay transfers across model width and dataset size.

To understand how to transfer weight decay across model
and dataset sizes, we argue that AdamW should be under-
stood as an Exponential Moving Average (EMA). Of course,
both Adam and AdamW use EMAs to estimate the average
gradient, mt, and average squared gradient, vt. That is not
what we are talking about. Instead, we observe that in algo-
rithms with decoupled weight decay (i.e. AdamW but not
Adam), the weights themselves are an EMA of recent up-
dates (see Sec. 3.1). The key hyperparameter in an EMA is
the EMA timescale, which intuitively describes the number
of previous iterations that the EMA averages over, which
is given by τiter = 1/(ηλ) (Sec. 3.1). In fact, we prove and
empirically verify that under a η-dependent initialization
and a fully-scale invariant network, AdamW’s optimization
trajectory is controlled solely by the timescale τiter for all
combinations of learning rate η and weight decay coefficient
λ (Sec. 3.2).

Perhaps more importantly, the EMA perspective tells us
how to set the weight decay parameter. Specifically, we
can take into account the dataset and batch sizes to mea-
sure the timescale in epochs, i.e. τepoch = τiter/M , where
M = N/B denotes the number of iterations per epoch in a
training dataset of N samples under a batch size of B, which
measures the fraction of the dataset that contributes to the
current weights through the EMA. We empirically observed
that the optimal τepoch is stable across model and dataset
sizes, which, consequently provides a guideline for scal-
ing weight decay. In particular, under a fixed learning rate
schedule, as the dataset size N increases, we find that the

1

How to set AdamW’s weight decay as you scale model and dataset size

optimal weight decay falls (Sec. 4.1). Moreover, if we fol-
low the usual µP recommendation to decrease the learning
rate η as the model width increases, we find that the optimal
weight decay should increase as the model size increases
(Sec. 4.2). We validate both of these predictions in ResNet,
vision transformer trained on CIFAR-10 and ImageNet, and
NanoGPT pre-training on OpenWebText.

In summary, our paper’s contributions are:

• The weights generated by AdamW can be written as an
EMA of recent weight updates.

• The optimal EMA timescale changes little as we scale the
model and dataset size.

• The optimal weight decay scales with 1/dataset size un-
der a fixed learning rate schedule.

• The optimal weight decay increases with model width
under µP scaling of learning rate.

• When using AdamW with fixed weight decay, µP learning
rate scaling breaks down, but proper weight decay scaling
restores its effectiveness

2. Background
Yang et al. (2022) considered how to transfer the learning
rates in SGD and Adam across model sizes. They considered
two key desiderata. First, the initial random weights, W 0 ∈
RD×fan_in, times an input, x ∈ Rfan_in, should not grow or
shrink as the model changes size. Here, fan_in is the input
dimension, and D is the output dimension. We could write
this requirement as, W 0x ∼ 1, where we use ∼ to indicate
“scales with”. This gives the usual W 0 ∼ 1/

√
fan_in scaling

of the standard deviation of the initial random weights. At
the same time, they required that the change in the outputs,
caused by the first weight update, ∆Wx, should not grow or
shrink as the model changes size; i.e. ∆Wx ∼ 1. Yang et al.
(2022) show that this requirement implies that the learning
rate should scale as 1/fan_in.

The distinction between the 1/
√

fan_in scaling of the initial
weights vs. the 1/fan_in scaling of the learning rate might
be a bit puzzling. The intuitive reason for this distinction
is given in Yang et al. (2022) Appendix J. In short, for the
initial weights,

yi =
∑fan_in

j=1 W 0
ijxj (1)

we know that yi ∼
√

fan_in×W 0
ij , so to ensure that yi ∼ 1,

we need W 0
ij ∼ 1/

√
fan_in. However, this square root

scaling only arises in very specific circumstances, when
each term in the sum, W 0

ijxj , is zero-mean and uncorrelated.
These requirements hold for the initial weights, as they
are sampled I.I.D from a zero-mean distribution. However,
these conditions do not hold for the update (the precise

reason why is complex; see Yang et al., 2022, for details),

∆yi =
∑fan_in

j=1 ∆Wijxj , (2)

thus, ∆yi ∼ fan_in ×∆Wij . To ensure that ∆yi ∼ 1, we
therefore need ∆Wij ∼ 1/fan_in. As the Adam updates,
∆Wij scale with the learning rate, η, this implies η must
also scale with 1/fan_in.

To see why Adam updates scale with the learning rate, con-
sider an Adam update,

∆Wij = ηm̂ij/
√

v̂ij (3)

where we have neglected the small ϵ. Here, m̂ij is an EMA
estimate of the gradient gij , while v̂ij is an EMA estimate
of the expected squared gradient g2ij . Thus, m̂ij ∼ gij and
v̂ij ∼ g2ij . That implies m̂ij/

√
v̂ij ∼ 1, so looking back at

Eq. 3, we have ∆Wij ∼ η. Hence, to get ∆Wij ∼ 1/fan_in,
we need η ∼ 1/fan_in, which is the origin of the 1/fan_in
scaling of the learning rates in µP with Adam.

Importantly, as Yang et al. (2022) considers the size of the
first updates relative to the random initial weights, it does
not give guidance about how to change the weight decay
with the model size, as the weight decay only becomes
relevant after many learning steps.

3. Methods
3.1. AdamW as an EMA

An AdamW update for a single parameter at the tth iteration
can be written as,

wt = (1− ηtλ)wt−1 − ηt
m̂t√
v̂t + ϵ

(4)

where wt is a neural network weight, ηt is the learning rate
(which potentially varies over time due to scheduling), λ is
the weight decay, ϵ is a small constant, m̂t is a bias-corrected
EMA estimate of the expected gradient, and v̂t is a bias-
corrected EMA estimate of the expected squared gradient.
Notice that here we adopt the parameterization used by ma-
jor optimization libraries such as torch.optim1, where
the decay for wt−1 is controlled by the product ηtλ. This
parameterization is different from the form suggested in the
original AdamW paper (Loshchilov & Hutter, 2018), which
we will discuss in detail in the related work section. Further,
we follow the usual convention, established by Loshchilov
& Hutter (2018) of scheduling the learning rate but not the
weight decay.

Now we will show that these weight updates (Eq. 4) can
be approximately understood as an EMA2. Recall that a

1https://pytorch.org/docs/stable/
generated/torch.optim.AdamW.html

2For an introduction to EMAs, see en.wikipedia.org/
wiki/Exponential_smoothing

2

https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
en.wikipedia.org/wiki/Exponential_smoothing
en.wikipedia.org/wiki/Exponential_smoothing

How to set AdamW’s weight decay as you scale model and dataset size

generic exponential moving average estimate, emat can be
written as,

emat = (1− 1/τiter;t) emat−1 +1/τiter;t qt. (5)

Here, emat forms an exponential moving average estimate
of qt, where the potentially time-varying EMA timescale is
τiter;t. We take this EMA (Eq. 5) and set:

1/τiter;t = ηtλ emat = wt qt = − 1

λ

m̂t√
v̂t + ϵ

(6)

then we recover the AdamW updates (Eq. 4). Of course,
AdamW uses EMAs to compute m̂t and v̂t. Our key insight
was that additionally, the overall AdamW updates for wt

can themselves be understood as EMAs. Intuitively, the
AdamW EMA computes the average of qt, i.e. the noisy
minibatch update scaled by the weight decay.

To build intuition, we consider a fixed timescale, τiter, and
write the EMA as a weighted average of all minibatch up-
dates (derivation in Appendix B),

wt = 1/τiter

t∑
t′=1

e−(t−t′)/τiter

(
− 1

λ

m̂t′√
v̂t′ + ϵ

)
. (7)

Thus, the unnormalized weights are e−(t−t′)/τiter . These
weights highlight that recent updates (i.e. t′ close to t)
contribute more to the weighted average. Specifically, for
recent updates where t − t′ is far smaller than τiter, the
weights, e−(t−t′)/τiter , are around 1. At the same time, up-
dates from further into the past contribute less: when t− t′

is far larger than τiter, then the weights, e−(t−t′)/τiter , decay
to zero. Thus, intuitively, the EMA averages over roughly
the last τiter minibatch updates.

Notice that AdamW’s optimization process differs slightly
from a standard EMA process. Standard EMA typically
assumes the updates qt’s are independent, while the qt’s
(Eq. 6) in AdamW’s EMA view are correlated since later
updates depend on the weight emat, which is affected by
the current update qt. However, we can still use EMA as an
approximation, and it provides useful insight and intuition
for understanding the hyperparameters.

3.2. Formalizing intuition from the EMA

In an EMA, perhaps the key parameter is the timescale, ηtλ.
Additionally, the initial value is also important; in AdamW,
this corresponds to the size of the first update relative to the
scale of the initialization, η0/σ. Indeed, Theorem 1shows
that, under a scale-invariant network, if these two quantities
are fixed, the whole optimization trajectory is determined.

Theorem 1. Consider two AdamW optimizers with differ-
ent learning rates, weight decays, initialization scales and
epsilons, (ηt, λ, σ, ϵ vs. η′t, λ

′, σ′, ϵ′). Take wt to be the

parameters learned by the first optimizer after the tth opti-
mization step, and w′

t to be the parameters learned by the
second optimizer. These optimizers are initialized by scaling
the same random init,

w0 = σξ w′
0 = σ′ξ, (8)

where ξ is random noise (e.g. IID Gaussian). Consider a
scale-invariant network, in the sense that multiplying the
weights, w, by an arbitrary positive constant, 1/c > 0 gives
the same output for all inputs, x,

net(x;w) = net(x; 1
cw). (9)

We use the same trajectory of EMA timescales, 1/τiter;t =
ηtλ = η′tλ

′, the same ratio of the first step, relative to the
initial parameter scale, η0

σ =
η′
0

σ′ . Now, the entire trajectory
of weights for each optimizer is the same (up to a scalar
multiplier,) w′

t =
1
cwt where c = σ

σ′ =
η
η′ =

λ′

λ = ϵ′

ϵ .

Thus, the network outputs are the same at all points along
the trajectory, net(x;wt) = net(x;w′

t). For the proof,
see Appendix A.1, and for empirical confirmation, see Ap-
pendix A.3. Thus, for scale-invariant networks, only two
parameters are relevant to the trajectory: the EMA timescale
(and its schedule), τiter;t, and the scale of the initial learning
rate relative to the weight init. We would usually expect the
influence of the init to diminish over time, leaving τiter;t as
the key hyperparameter.

4. Scaling weight decay across model and
dataset sizes

Since timescale is the key hyperparameter in an EMA, we
hypothesize that the optimal timescale should be trans-
ferrable across model and dataset sizes. In this section,
we empirically verify this hypothesis and consider the im-
plications for the optimal weight decay as we increase the
training dataset size (Eq. 11) and model size (Eq. 16).

For all experiments, we implemented the model using Py-
Torch and performed optimization using its AdamW imple-
mentation. For all tasks, we did not use weight decay on the
normalization layers. Experiments were conducted on an
internal cluster of Nvidia TitanX/1080ti/2080ti/L40s GPUs,
and only one GPU card was used at a time for each run. The
results for image classification tasks are the averages from
three distinct random seeds, for LLM pre-training tasks we
only use one seed due to resource constraints. Comprehen-
sive details on the hyperparameter search range and model
specifications can be found in Appendix G.

4.1. Transferring weight decay across dataset sizes

First, we study the relationship between the optimal λ and
the training dataset size. Remember that the timescale, τiter,

3

How to set AdamW’s weight decay as you scale model and dataset size

Dataset size
80,000 160,000 320,000 640,000 1,280,000

10 3 10 1 101 103
0.0

0.5

1.0
Train Acc (top-1)

10 3 10 1 101 103
0.0

2.5

5.0

Train loss

10 3 10 1 101 103
0.0

0.2

0.4

0.6
Test Acc (top-1)

10 3 10 1 101 103
2

4

6

Tune

Test loss

10 4 10 2 100 102

Initial epoch = 1/ M

0.0

0.5

1.0(A
) R

es
Ne

t

10 4 10 2 100 102

Initial epoch = 1/ M

0.0

2.5

5.0

10 4 10 2 100 102

Initial epoch = 1/ M

0.0

0.2

0.4

0.6

10 4 10 2 100 102

Initial epoch = 1/ M

2

4

6

Tune
epoch

10 3 10 1 101 103
0.0

0.5

1.0
Train Acc (top-1)

10 3 10 1 101 103
1

4

7

Train loss

10 3 10 1 101 103
0.0

0.2

0.4

Test Acc (top-1)

10 3 10 1 101 103
3

5

7

Tune

Test loss

10 4 10 2 100 102

Initial epoch = 1/ M

0.0

0.5

1.0(B
) V

iT

10 4 10 2 100 102

Initial epoch = 1/ M

1

4

7

10 4 10 2 100 102

Initial epoch = 1/ M

0.0

0.2

0.4

10 4 10 2 100 102

Initial epoch = 1/ M

3

5

7
Tune

epoch

Figure 1: The optimal τepoch transfers across dataset sizes. We trained ResNet-18 (A) and ViT (B) on subsets of
downsampled ImageNet of various sizes (lines of different colors) under different weight decay (dots on the lines) under a
fixed batch size of 100. An initial learning rate of 10−3 is used with cosine decay scheduling. The performance metrics after
100 epochs are plotted against the weight decay λ and the corresponding timescale τepoch computed with the initial learning
rate. The dashed lines show the optimal τepoch at a subset size of 320, 000: In both models, the optimal τepoch is fairly stable
across dataset sizes whereas the optimal λ decreases dramatically as dataset size grows.

intuitively measures the number of previous weight updates
that we average over to get the weights. To understand just
what proportion of the whole dataset we are averaging over,
we propose to work with the timescale in epochs,

τepoch = τiter/M = 1/ (ηλN/B) , (10)

where N is the number of training samples, B is the batch
size, and M = N/B denotes the number of iterations in an
epoch. Therefore, τepoch tells us how many epochs of past
updates AdamW’s EMA averages over, where one epoch
passes over all the data in the dataset.

Our prediction is that as dataset size increases, the optimal
τepoch should remain approximately fixed. If we increase the
dataset size with minibatch size fixed, then the number of
minibatches in the dataset/an epoch, M , increases. Rear-
ranging Eq. (10), that implies that τiter increases with dataset

size, τiter = Mτepoch. And rearranging τiter = 1/(ηλ),

λ = 1/ (ητiter) = 1/ (ηMτepoch) , (11)

tells us that if the optimal τepoch changes a little as the dataset
size increases, we would predict that the optimal λ should
decrease as the dataset size increases. We confirmed this
hypothesis on a ResNet-18 and a ViT trained on ImageNet
(Fig. 1), along with NanoGPT (124M parameters) trained
on OpenWebText (Fig. 2).

For the ImageNet experiments, we used the 32× 32 down-
scaled version of ImageNet provided by (Chrabaszcz et al.,
2017) to ensure that we were able to perform the large
number of training runs required to assess performance for
different hyperparameter settings and dataset sizes. We
trained the models on different subsets of ImageNet, where
we randomly drew 80, 160, 320, and 640 samples from each

4

How to set AdamW’s weight decay as you scale model and dataset size

10 2 10 1 100

3.2

3.3

3.4

Va
lid

at
io

n
lo

ss
Subset ratio

0.25 0.5 1

10 1 100 101

Initial epoch = 1/ M

Figure 2: For LLM pre-training, optimal weight decay
shifts with dataset sizes but τepoch transfers. We trained a
124M NanoGPT on subsets of OpenWebText with different
sizes (line colors) for 4 epochs under a fixed batch size,
an initial learning rate of 6× 10−4 and various λ (dots on
lines, varied in powers of 2). As dataset size increases,
weight decay that gives optimal validation loss (red crosses)
decreases, whereas τepoch (Eq. 10) is stable across scales.

of the 1, 000 classes except for the largest subset of 1.28M
samples in total, where we randomly drew a subset from
the whole dataset. We used a fixed batch size of 100 for all
runs, an initial learning rate of 10−3, swept λ from 10−3

to 103, and then plotted the performance metrics after 100
epochs. The top row of Fig. 1A, 1B, shows performance
vs. λ. Note that the optimal λ decreases dramatically as
the dataset size increases. The bottom row of Fig. 1A, 1B,
shows performance metrics vs. τepoch. Critically, the optimal
τepoch is far more stable than the optimal λ. Here, we used a
cosine schedule which decays to 0.1 of the initial learning
rate. In the Appendix, we see similar patterns for a constant
schedule, (Fig. 13) and cosine decay to zero (Fig. 14).

Next, we consider training a 12-layer NanoGPT with 124M
parameters on subsets of OpenWebText (Gokaslan et al.,
2019) of various sizes. We trained the model using the first
1/4, 1/2, and the whole dataset for approximately 4 epochs
under a fixed batch size of 122880 tokens with a cosine
learning rate decay schedule from 6×10−4 to 6×10−5. We
swiped λ between 2−8 to 2, and plotted the final validation
loss against optimal λ and τepoch (Fig. 2), where we again
observe that as dataset size grows, optimal λ decreases but
τepoch is more stable.

Note that in the experiments considered, we used a fixed
initial learning rate under different dataset sizes. Some
recent works (Bjorck et al., 2024; Schaipp et al., 2025)
suggest that, under a fixed weight decay and batch size, the
optimal learning rate decreases as training run gets longer.
We empirically verified this observation in our experiment
setting (top rows in Fig. 12 A, B in appendix). However,
we also notice that if we scale λbase ∝ 1/N , the optimal
η becomes consistent across dataset sizes (bottom rows in

Fig. 12 A, B in appendix), indicating that scaling η may not
be necessary if we keep τepoch constant through adjusting λ
when N scales.

4.2. Transferring weight decay across model sizes

Of course, it is also critical to understand how to modify
the AdamW hyperparameters as we increase the model size.
The most obvious approach is µP (Yang et al., 2022), which
predicts that the optimal learning rate should decrease as
1/fan_in, by considering the behavior of the first few learn-
ing steps relative to the random initial weights. However, the
theory behind µP did not consider how weight decay affects
the learned weights in the later phase of the optimization.

Formally, we take ηbase and λbase as the learning rate and
weight decay tuned on a smaller base model, with fan-in of
fan_inbase. Then, we scale the model width by a factor of s,

s = fan_in/fan_inbase. (12)

The most direct approach using µP scaling with AdamW
(e.g. used by Lingle, 2024) scales the learning rate as rec-
ommended by µP, while keeping the weight decay fixed,

η = ηbase/s λ = λbase, (13)
τiter = 1/(ηλ) = s/(ηbaseλbase) = s τiter;base (14)

However, the implied EMA timescale, now changes with
model size, while we hypothesize that the optimal timescale
should not vary with the model size. Therefore, we conjec-
ture that the scaling in Eq. (14) would break the transferabil-
ity of optimal learning rate across model sizes if we run the
optimization for long enough (see Figure 5AB, top rows).

How do we resolve this issue? We have two desiderata.
First, from µP, we should scale η with 1/fan_in. Second,
we have the timescale τiter = 1/(ηλ) fixed. It might at first
seem difficult to reconcile these two desiderata. Indeed, it is
impossible in the usual setting where λ is fixed. However, it
is possible to reconcile them if we allow the weight decay,
λ, to strengthen for larger models.

η = ηbase/s λ = s λbase, (15)
τiter = 1/(ηλ) = 1/(ηbaseλbase) = τiter;base. (16)

We tested our conjecture that the optimal EMA timescale
is constant across model sizes, while the optimal weight
decay is not, by training a ResNet-18 of varying widths
using µP’s codebase on 320, 000 samples subset of down-
scaled ImageNet, where we randomly drew 320 samples
from each class. We scaled the models’ widths by factors
of 2, giving s ∈ {0.5, 1, 2}. We fixed ηbase = 10−3 and
used η = ηbase/s to change the learning rate with network
size. We swept λbase from 10−2 to 101. We then consid-
ered two ways of modifying the weight decay as we scaled

5

How to set AdamW’s weight decay as you scale model and dataset size

s=0.5 s=1.0 s=2.0

10 2 10 1 100
0.0

0.5

1.0
Train Acc (top-1)

10 2 10 1 100
0

2

4
Train loss

10 2 10 1 100
0.2

0.3

0.4
Test Acc (top-1)

10 2 10 1 100
2.5

4.0

5.5

= 10 3/s,
= base

Test loss

10 2 10 1 100

base

0.0

0.5

1.0

10 2 10 1 100

base

0

2

4

10 2 10 1 100

base

0.2

0.3

0.4

10 2 10 1 100

base

2.5

4.0

5.5

= 10 3/s,
= s base

Figure 3: The optimal λ increases with model size whereas the optimal timescale is more stable. We trained ResNet-18
on a subset of ImageNet 32x32, with varying width factor s (lines of different colors) under a fixed base learning rate
10−3 with varying weight decay (dots on the lines) and plotted the metrics after 50 epochs vs. weight decay strength. The
top row scales the hyperparameters using the direct µP approach (Eq. 13; i.e. fixed λ), while the bottom row scales the
hyperparameters to ensure τiter is fixed (Eq. 15; λ increases with model size). Note that as ηbase = 10−3 is fixed, there is a
direct relationship between the optimal λbase and the optimal τiter;base.

0.10

0.05

0.00

Va
lid

at
io

n
lo

ss
(s

hi
fte

d)

base = 3 × 10 4

256 (3.84)
512 (3.50)
1024 (3.23)

0.1

0.0
(A)

= base/s,
= base

base = 3 × 10 5

256 (3.94)
512 (3.60)
1024 (3.36)

10 2 10 1

base

0.050

0.025

0.000

Va
lid

at
io

n
lo

ss
(s

hi
fte

d)

256 (3.84)
512 (3.50)
1024 (3.23)

10 1 100

base

0.1

0.0
(B)

= base/s,
= s base

256 (3.93)
512 (3.60)
1024 (3.36)

Figure 4: For LLM pre-training, optimal weight decay
increases with model size whereas the optimal timescales
transfer. We trained 8-layer GPTs on OpenWebText, with
various widths (line colors), under two ηbase, with actual
learning rates for each width scaled following µP with s =
1024
width . We plot the final validation loss against various λbase
(dots on lines, varied by powers of 2). We align all lines to
the rightmost point for better visibility, where the numbers in
the brackets denote the actual optimal validation loss at each
width. We considered training under two parameterizations,
if we keep λ decoupled from s then the optimal λbase shows
a clear shift with model size (top rows), if λ increases with
s, optimal λbase becomes much stable across widths.

the network and plotted the metrics after 50 epochs against
weight decay. Fig. 3 (top row) leaves λ fixed as the network
size increases (Eq. 13). We can see the optimal λbase varies

dramatically across network sizes. In contrast, Fig. 3 (bot-
tom row) increases the weight decay as the network size
increases (Eq. 15), as that leaves τiter unchanged (Eq. 16). It
is evident that the optimal λbase and hence τiter is far more
stable in this setting. Notably, while e.g. the optimal λbase
for test loss on the bottom row does appear different from
the others if anything, this would indicate that the relation-
ship between s and λ is even stronger than expected. In
particular, this point indicates that even as we scale λ with
s, the optimal λbase may still be increasing with s. That
would seem to indicate that the relationship between s and
λbase might be superlinear (e.g. λbase ∝ sα, where α > 1),
though we would need more, larger-scale experiments to
definitively establish any such super-linearity, which is out-
of-scope for the present work.

We conducted similar experiments for LLM pre-training,
we considered 8-layer GPTs, with hidden states of widths
in {256, 512, 1024}, achieved by changing the number of
attention heads and fixing each head’s dimension. We con-
sidered two base learning rates, 3 × 10−4 and 3 × 10−5,
trained for 250K iterations, and swiped lambda in the range
2−6 to 1. The results are shown in Fig. 4, broadly, if we fix
λ irrespective of s (top row, Eq. 13), optimal λ increases
with model sizes. However, as we scale λ ∝ s (bottom row,
Eq. 14), the optimal λbase becomes consistent across widths,
i.e. confirming that optimal timescale transfers.

Importantly, scaling the weight decay correctly has im-
portant implications even for the original µP predictions
about how the optimal learning rate transfers across model
sizes. Specifically, we trained a ResNet-18 on CIFAR-10

6

How to set AdamW’s weight decay as you scale model and dataset size

s=0.25 s=1.0 s=4.0

0.6

0.8

1.0

(A
) C

IF
AR

-1
0

Train Acc

10 1

100

Train loss

0.75

0.85

0.95
Test Acc

0.25

0.50

0.75
= base/s,
= 1.0

Test loss

10 6 10 4 10 2

base

0.6

0.8

1.0

10 6 10 4 10 2

base

10 1

100

10 6 10 4 10 2

base

0.75

0.85

0.95

10 6 10 4 10 2

base

0.25

0.50

0.75
= base/s,
= s

s=0.5 s=1.0 s=2.0

0.20

0.45

0.70

(B
) I

m
ag

eN
et

Train Acc (top-1)

1.5

3.0

4.5
Train loss

0.2

0.3

0.4
Test Acc (top-1)

2.5

3.5

4.5
= base/s,
= 1.0

Test loss

10 5 10 4 10 3

base

0.20

0.45

0.70

10 5 10 4 10 3

base

1.5

3.0

4.5

10 5 10 4 10 3

base

0.2

0.3

0.4

10 5 10 4 10 3

base

2.5

3.5

4.5
= base/s,
= s

Figure 5: AdamW breaks the learning rate scaling of µP. Following the experiment setting in (Yang et al., 2022), we
trained a ResNet-18 with varying width factor s (lines of different colors) under various base learning rates ηbase (x-axis) on
CIFAR-10 (A) and a 320, 000 samples subset of ImageNet 32x32 (B). We then plotted the metrics after 200 (for CIFAR-10)
and 50 (for ImageNet) epochs against ηbase. The top row scales the hyperparameters using the direct µP approach (Eq. 13; i.e.
fixed λ), while the bottom row scales the hyperparameters to ensure τiter is fixed (Eq. 15; λ increases with model size). In
both datasets, the direct approach breaks the stability of optimal ηbase in terms of test metrics due to changing the timescale
whereas our scaling allows for consistent ηbase across model sizes.

and on 320K images downscaled from ImageNet, with a
fixed λbase = 1.0 and swept ηbase from 10−5 to 10−2. In the
top row of Fig. 5A and B, we use the standard µP scaling
(Eq. 13), with a fixed weight decay. Remarkably, we found
that the optimal base learning rate varied dramatically across
model sizes. This indicates that µP scaling of the optimal
learning rate breaks down in AdamW. Indeed, the original
µP paper (Yang et al., 2022) did not examine AdamW, and
this finding is confirmed by recent work on hyperparameter
transfer in large-scale transformers (Lingle, 2024; Blake
et al., 2024). We hypothesized that this breakdown was due
to the timescale changing with model size (Eq. 14), and thus
we could restore the usual µP scaling of the learning rate by
increasing the weight decay with model size (Eq. 15) to fix
the timescale when sweeping ηbase. To confirm this finding,
in the bottom row of Fig. 5A and B, we increase the weight
decay with model size (Eq. 15). We found that the optimal
base learning rate was now far more stable when varying
model sizes, confirming our hypothesis. We observed simi-
lar behavior when training ViTs of different widths on the

ImageNet subset, the results are presented in Appendix E,
and follow-up work, citing us, observed similar behavior in
large-scale training of transformers (Blake et al., 2024).

Lastly, we additionally considered constant and cosine decay
to zero learning rate schedule for experiments Fig. 3 and
Fig. 5, the results are shown in Fig. 16, 17 and Fig. 18, 19,
respectively in the appendix.

Finally, the size of the weight decay has implications for
the magnitude of the learned weights, and hence whether
the outputs Wx remain O (1) which was one of the key
desideratum used to derive µP (Yang et al., 2022). In partic-
ular, in AdamW the magnitude of the learned parameters,
Wij scales with 1/λ (or Wij ∼ 1/λ). In our framework,
this scaling arises because the quantity that AdamW takes
the EMA of (i.e. qt in Eq.6) scales with 1/λ (we provide
empirical justifications in Appendix. D), but this also arises
in Kosson et al. (2023). As we propose λ ∼ fan_in, this sug-
gests that the learned weights (not the initial weights) scale
as, Wij ∼ 1/λ ∼ 1/fan_in. Thankfully, this is precisely the

7

How to set AdamW’s weight decay as you scale model and dataset size

scaling we need to ensure that, yi =
∑fan_in

j=1 Wijxj does not
blow up or shrink as the model size increases (specifically,
yi ∼ 1). In particular, the learned weights, Wij are a sum of
many updates, ∆Wij . Thus, following the same reasoning
as that for Eq. (2), we have yi ∼ Wij × fan_in. Thus, to
ensure that yi ∼ 1, we need Wij ∼ 1/fan_in, which is
precisely what we get using our proposed scaling.

5. Related work
5.1. Work after us

There have been a number of follow-up works that follow
up on the concepts presented in this paper. First, Blake
et al. (2024) confirmed that increasing weight decay as we
increase model width fixes learning rate transfer. Second,
Bergsma et al. (2025b) has built on our EMA interpreta-
tion of AdamW to understand and propose better learning
rate schedules. Third, Bjorck et al. (2024) looked at the
scaling of optimal learning rates with dataset size. They
found that the optimal learning rate decreases with dataset
size (N), with a fixed batch size, and a fixed weight decay.
This broadly what you would expect from our findings, that
you need to increase the EMA timescale as the dataset size
increases, and you can do that by reducing the weight decay,
or reducing the learning rate. However, they found that
the dependence of learning rate on dataset size was sublin-
ear. We suspect this is because as you modify the learning
rate with weight decay fixed, you simultaneously change
two things: the EMA timescale (which you probably do
want to change) and the behaviour of the optimizer close
to initialization, which you probably do not want to change
(Appendix A). Additionally, our experiments verified that
τepoch transfers across model widths on small-scale prob-
lems while recent works (Dey et al., 2025; Narayan et al.,
2025) further conclude that τepoch is also transferrable in
billion-parameter LLM pre-training.

Lastly, very recent work by Bergsma et al. (2025a) con-
sidered two critical problems unstudied in our current
manuscript: The effect of batch size as well as the opti-
mal value and transferability of τepoch when you only train
the model for one epoch, as in LLM pre-training settings.
In our experiments, we kept the batch size B fixed when
tuning other hyperparameter, however in real world pre-
training, batch size B is often tuned extensively to ensure
maximum utilization of parallelism, Therefore it is impor-
tant to understand the how to adjust other hyperparameter
as we scale B. Fortunately, the heuristic of keeping τepoch
(Eq. (10)) constant provides a guidance on how to achieve
this: In order to keep τepoch unchanged as B scales, one
can have η ∝ B as suggested by McCandlish et al. (2018),
however the picture is often more complicated in practice
due to e.g. AdamW’s effective learning rate induced by
the gradient normalizer (Malladi et al., 2022), as well as

the potential risk of optimization diverging due to learning
rate set too large. However, there exists an alternative ap-
proach to keep τepoch unchanged as we scale B, that is to
have λ ∝ B. Indeed Bergsma et al. (2025a) demonstrates
the feasibility of such an approach, which shows optimal λ
scales linearly with respect to B, and allows for much more
stability and flexibility compared with adjusting η when scal-
ing B. Additionally, our manuscript only considered high
epoch training where the same dataset is repeated multiple
times, and suggests that optimal τepoch should stay constant
and lies between one and the total number of epochs as
dataset sizes increase. However, this may not be the case,
LLM pre-training’s one epoch setting, where each training
data point is only presented once. Particularly, Bergsma
et al. (2025a) show that optimal τepoch should not stay con-
stant in one epoch setting, but rather follows a power law
τ optimal

epoch ≈ (TPP)−0.527, where the optimal τepoch decreases
as the token-per-parameter (TPP) increases, and is always
smaller than 1 when TPP > 1. Intuitively, this suggests
that when the training run is short, it would be better to av-
erage over all past updates (high τepoch), whereas as training
gets longer, it becomes more optimal to forget noisy updates
seen in the beginning of the training (low τepoch).

5.2. Work before us

Further, our EMA view of AdamW provides an explanation
for several striking observations made in the literature.

First, the original AdamW paper (Loshchilov & Hutter,
2018) proposed a parameterization in terms of the learning
rate, η and γ = ηλ describing the weight decay. They,
as well as a recent blog post (Schaipp, 2024), made an
empirical observation that η and γ were more decoupled
than η and λ (in the sense that the optimal η depended
strongly on λ and less strongly on γ). We are able to provide
a theoretical understanding of their observation, by noting
that γ is related to our timescale, γ = 1/τiter. We are therefore
able to identify two separate processes one associated with η
and another associated with γ = 1/τiter. First, η describes the
size of the initial updates relative to the random initialization,
which is relevant close to initialization (see Appendix A
for details). In contrast, γ = 1/τiter describes the EMA
timescale, which is relevant as the model moves away from
the initialization. Finally, Loshchilov & Hutter (2018), did
not use these insights to propose how to scale the weight
decay with model and dataset size (our key contribution).

Second, our viewpoint (Sec. 3.2) suggests that the effects of
the learning rate, η, on the magnitude of the updates relative
to the random initialization should become less relevant
than the EMA timescale as training proceeds (Appendix A).
While this seems strange (of course the learning rate mat-
ters a lot), there are some suggestions in the literature that
indeed the EMA timescale may be more important in some

8

How to set AdamW’s weight decay as you scale model and dataset size

settings. Specifically, Wortsman et al. (2024) ran proxies for
large-scale LLM pretraining. Fig. 6 in their paper showed
that if γ = ηλ = 1/τiter is fixed, the final validation loss is
relatively insensitive to the learning rate, η. In contrast, if λ
is fixed, the validation loss shows much more pronounced
sensitivity to the learning rate, η. This makes sense if the
key hyperparameter is τiter, as modifying the learning rate,
η, with λ fixed implies τiter = 1/(ηλ) also changes. How-
ever, different from our work, Wortsman et al. (2024) do
not explicitly study how τiter transfers across model sizes
or if keeping λ fixed would break µP. Indeed, the γ = ηλ
parameterization is often used in SGD, where it is identi-
fied as the effective learning rate (Zhang et al., 2019b; Li
& Arora, 2019; Li et al., 2020; Wan et al., 2021; Li et al.,
2022). Recent works extend the effective learning rate per-
spectives to AdamW by viewing AdamW as sign gradient
descent (D’Angelo et al., 2024) or as rotation speed on a
fixed radius sphere (Kosson et al., 2023)3. However, these
literatures do not study how optimal ηλ transfers across
model and dataset sizes.

Third, Lingle (2024) assessed the accuracy of µP in large-
scale LLM pretraining. Remarkably, they found that the
usual µP scaling of the optimal learning rate with model
size broke down for AdamW. We provide an explanation
and fix for this by noting that µP theory considers only the
behaviour of the first few optimization steps, relative to
the random initialization. The issue is that if the weight
decay, λ, is fixed, then τiter changes with model size (as τiter
depends on η, and η changes with model size following the
usual µP recommendations). We propose a fix for the issue
by proposing to strengthen weight decay as the model size
increases, and validate the fix experimentally.

Fourth, many papers have considered scaling with batch
size (which we hold fixed) (Zhang et al., 2019a; Malladi
et al., 2022; Wang & Aitchison, 2024). These papers find
that when the batch size is small, the optimal learning rate
is also small. Then, as the batch size increases, the optimal
learning rate also increases. However, there’s a limit, the
critical batch size, at which point increases in the batch size
no longer allow you to increase the learning rate. Once you
hit the critical batch size, you no longer get any benefit from
increasing the batch size, and you instead must increase the
number of iterations (McCandlish et al., 2018; Shallue et al.,
2019). Note that while very recent work suggests that the
optimal batch size does increase with dataset size, they con-
firm that this increase is sublinear, implying that the number
of training iterations will increase (Zhang et al., 2025). As
soon as you need to increase the number of iterations, our
recommendation to hold τepoch constant comes into play.

3As pointed out by one of the anonymous reviewers, the
timescale parameter in an EMA process can been seen as a mea-
surement of the relative update size studied by Kosson et al. (2023),
see Appendix. C for detailed discussion.

Concurrent work (D’Angelo et al., 2024) suggests that
weight decay does not serve as regularization in deep learn-
ing, but rather controls minibatch noise, which grows with
ηλ. Our work provides a similar viewpoint, in the sense
that, if you are averaging over more data points (higher
τiter = 1/ηλ), then the iteration-to-iteration noise will of
course be smaller. But the EMA framework also provides
you with guidelines for how to set λ or equivalently the
timescale as you scale model and dataset size.

Of course, µP itself is related work (Yang et al., 2022),
and is discussed extensively in the Background section.
Van Laarhoven (2017) argue that in Adam, the weight decay
hyperparameter changes the scale of the learned weights,
and thereby has an influence on the effective learning rate.
This effect pops up in our framework in the 1/λ factor in
qt (Eq. 6), the quantity over which we take the EMA. Addi-
tionally, recent work (Busbridge et al., 2023) studies the sce-
narios where an EMA is used for averaging model weights,
such as in self-supervised learning, and proposes hyperpa-
rameter scaling rules to achieve the same performance under
different batch sizes. Our work differs in that we are inter-
preting AdamW as EMA over past updates rather than using
explicitly using EMA for averaging weights. Finally, hints
that the optimal weight decay decreases with dataset size
have appeared previously in empirical literature when the
authors have conducted thorough hyperparameter sweeps,
though they did not propose a quantitative, theoretically
motivated scaling rule (Zhai et al., 2019).

6. Conclusions
We showed that AdamW’s weight updates can be understood
as an EMA, showed that the optimal EMA timescale is
fixed as we scale model and dataset size, and explored the
implications for hyperparameter scaling of the weight decay.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

How to set AdamW’s weight decay as you scale model and dataset size

References
Arora, S., Li, Z., and Lyu, K. Theoretical analysis of auto

rate-tuning by batch normalization. In ICLR, 2019.

Balles, L. and Hennig, P. Dissecting adam: The sign, mag-
nitude and variance of stochastic gradients. In ICML,
2018.

Bergsma, S., Dey, N., Gosal, G., Gray, G., Soboleva, D.,
and Hestness, J. Power lines: Scaling laws for weight
decay and batch size in llm pre-training. arXiv preprint
arXiv:2505.13738, 2025a.

Bergsma, S., Dey, N. S., Gosal, G., Gray, G., Soboleva, D.,
and Hestness, J. Straight to zero: Why linearly decaying
the learning rate to zero works best for LLMs. In ICLR,
2025b.

Bjorck, J., Benhaim, A., Chaudhary, V., Wei, F., and Song,
X. Scaling optimal lr across token horizons. arXiv
preprint arXiv:2409.19913, 2024.

Blake, C., Eichenberg, C., Dean, J., Balles, L., Prince, L. Y.,
Deiseroth, B., Cruz-Salinas, A. F., Luschi, C., Weinbach,
S., and Orr, D. u-mu p: The unit-scaled maximal update
parametrization. arXiv preprint arXiv:2407.17465, 2024.

Bordelon, B., Noci, L., Li, M. B., Hanin, B., and Pehle-
van, C. Depthwise hyperparameter transfer in residual
networks: Dynamics and scaling limit. In ICLR, 2024.

Busbridge, D., Ramapuram, J., Ablin, P., Likhomanenko, T.,
Dhekane, E. G., Suau Cuadros, X., and Webb, R. How to
scale your ema. In NeurIPS, 2023.

Chrabaszcz, P., Loshchilov, I., and Hutter, F. A downsam-
pled variant of imagenet as an alternative to the cifar
datasets. arXiv preprint arXiv:1707.08819, 2017.

Cubuk, E. D., Zoph, B., Mane, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation strategies
from data. In CVPR, 2019.

D’Angelo, F., Andriushchenko, M., Varre, A., and Flammar-
ion, N. Why do we need weight decay in modern deep
learning? In NeurIPS, 2024.

Dehghani, M., Djolonga, J., Mustafa, B., Padlewski, P.,
Heek, J., Gilmer, J., Steiner, A. P., Caron, M., Geirhos,
R., Alabdulmohsin, I., et al. Scaling vision transformers
to 22 billion parameters. In ICML, 2023.

Dey, N., Zhang, B. C., Noci, L., Li, M., Bordelon, B.,
Bergsma, S., Pehlevan, C., Hanin, B., and Hestness, J.
Don’t be lazy: Completep enables compute-efficient deep
transformers. arXiv preprint arXiv:2505.01618, 2025.

Everett, K. E., Xiao, L., Wortsman, M., Alemi, A. A., Novak,
R., Liu, P. J., Gur, I., Sohl-Dickstein, J., Kaelbling, L. P.,
Lee, J., and Pennington, J. Scaling exponents across
parameterizations and optimizers. In ICML, 2024.

Gokaslan, A., Cohen, V., Pavlick, E., and Tellex, S. Open-
webtext corpus. http://Skylion007.github.
io/OpenWebTextCorpus, 2019.

Jia, X., Song, S., He, W., Wang, Y., Rong, H., Zhou, F.,
Xie, L., Guo, Z., Yang, Y., Yu, L., et al. Highly scal-
able deep learning training system with mixed-precision:
Training imagenet in four minutes. arXiv preprint
arXiv:1807.11205, 2018.

Kosson, A., Messmer, B., and Jaggi, M. Rotational equilib-
rium: How weight decay balances learning across neural
networks. In NeurIPS 2023 Workshop on Mathematics of
Modern Machine Learning, 2023.

Li, Z. and Arora, S. An exponential learning rate schedule
for deep learning. In ICLR, 2019.

Li, Z., Lyu, K., and Arora, S. Reconciling modern deep
learning with traditional optimization analyses: The in-
trinsic learning rate. In NeurIPS, 2020.

Li, Z., Bhojanapalli, S., Zaheer, M., Reddi, S., and Kumar, S.
Robust training of neural networks using scale invariant
architectures. In ICML, 2022.

Lingle, L. A large-scale exploration of µ-transfer. 2024.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. In ICLR, 2018.

Malladi, S., Lyu, K., Panigrahi, A., and Arora, S. On the
sdes and scaling rules for adaptive gradient algorithms.
In NeurIPS, 2022.

McCandlish, S., Kaplan, J., Amodei, D., and Team, O. D.
An empirical model of large-batch training. arXiv
preprint arXiv:1812.06162, 2018.

Müller, R., Kornblith, S., and Hinton, G. E. When does
label smoothing help? In NeurIPS, 2019.

Narayan, S., Gupta, A., Paul, M., and Blalock, D. µnit
scaling: Simple and scalable fp8 llm training. arXiv
preprint arXiv:2502.05967, 2025.

Noci, L., Meterez, A., Hofmann, T., and Orvieto, A. Super
consistency of neural network landscapes and learning
rate transfer. In NeurIPS, 2024.

Schaipp, F. How to jointly tune learning rate and weight
decay for AdamW. https://fabian-sp.github.
io/posts/2024/02/decoupling/, 2024.

10

http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://fabian-sp.github.io/posts/2024/02/decoupling/
https://fabian-sp.github.io/posts/2024/02/decoupling/

How to set AdamW’s weight decay as you scale model and dataset size

Schaipp, F., Hägele, A., Taylor, A., Simsekli, U., and Bach,
F. The surprising agreement between convex optimiza-
tion theory and learning-rate scheduling for large model
training. arXiv preprint arXiv:2501.18965, 2025.

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J.,
Frostig, R., and Dahl, G. E. Measuring the effects of
data parallelism on neural network training. Journal of
Machine Learning Research, 20(112):1–49, 2019.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. LLaMA: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971,
2023a.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. LLaMA 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023b.

Tow, J., Bellagente, M., Mahan, D., and Ruiz, C. R. Techni-
cal report for stablelm-3b-4e1t. Technical Report, 2023.

Van Laarhoven, T. L2 regularization versus batch and weight
normalization. arXiv preprint arXiv:1706.05350, 2017.

Wan, R., Zhu, Z., Zhang, X., and Sun, J. Spherical mo-
tion dynamics: Learning dynamics of normalized neural
network using sgd and weight decay. 2021.

Wang, X. and Aitchison, L. Batch size invariant adam. In
OPT 2024: Optimization for Machine Learning, 2024.

Wortsman, M., Liu, P. J., Xiao, L., Everett, K. E., Alemi,
A. A., Adlam, B., Co-Reyes, J. D., Gur, I., Kumar, A.,
Novak, R., Pennington, J., Sohl-Dickstein, J., Xu, K.,
Lee, J., Gilmer, J., and Kornblith, S. Small-scale proxies
for large-scale transformer training instabilities. In ICLR,
2024.

Yang, G., Hu, E. J., Babuschkin, I., Sidor, S., Liu, X.,
Farhi, D., Ryder, N., Pachocki, J., Chen, W., and Gao,
J. Tensor programs v: Tuning large neural networks
via zero-shot hyperparameter transfer. arXiv preprint
arXiv:2203.03466, 2022.

Zhai, X., Oliver, A., Kolesnikov, A., and Beyer, L. S4l: Self-
supervised semi-supervised learning. In ICCV, 2019.

Zhang, G., Li, L., Nado, Z., Martens, J., Sachdeva, S., Dahl,
G., Shallue, C., and Grosse, R. B. Which algorithmic
choices matter at which batch sizes? insights from a
noisy quadratic model. Advances in neural information
processing systems, 32, 2019a.

Zhang, G., Wang, C., Xu, B., and Grosse, R. Three mecha-
nisms of weight decay regularization. In ICLR, 2019b.

Zhang, H., Morwani, D., Vyas, N., Wu, J., Zou, D., Ghai,
U., Foster, D., and Kakade, S. M. How does critical batch
size scale in pre-training? In ICLR, 2025.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

11

How to set AdamW’s weight decay as you scale model and dataset size

A. Confirming the connection between AdamW and weight decay
A.1. Proof of Theorem 1

Here, we consider two AdamW training trajectories with hyperparameters ηt, λ, ϵ and η′t, λ
′, ϵ′. We prove that for a specific

way of initializing the optimizer state, and if the optimizer hyperparameters are related by,

η′t =
1
cηt (17)

λ′ = cλ (18)
ϵ′ = cϵ. (19)

then the full trajectories are the same. Notice that 1/τiter;t = ηtλ = η′tλ
′ remains unchanged with this choice of hyperparame-

ters.

We consider AdamW updates of the form,

gt = ∇L(wt−1) (20a)
mt = β1mt−1 + (1− β1)gt (20b)

vt = β2vt−1 + (1− β2)g
2
t (20c)

m̂t =
mt

1− βt
1

(20d)

v̂t =
vt

1− βt
2

(20e)

wt = (1− ληt)wt−1 + ηt
m̂t√
v̂t + ϵ

(20f)

(And the analogous equations for the primed optimizer). The optimizer state is the variables that persist across timesteps,
namely m, v, and w. Specifically, the first optimizer has state mt, vt, and wt while the second optimizer has state m′

t, v
′
t,

and w′
t. Our goal is to prove that for a scale-invariant network, as λ or the trajectory of ηt changes while the trajectory of

1/τiter;t = ηtλ is fixed, the states for the different optimizers are related by scale parameters,

m′
t−1 = cmt−1, (21a)

v′t−1 = c2vt−1, (21b)

w′
t−1 = 1

cwt−1. (21c)

where c = λ′/λ = ηt/η
′
t. The argument proceeds inductively, by assuming that the scaling relations in Eq. (21) hold at

timestep t− 1, then proving that as a consequence they hold at timestep t.

We start by considering the updates for m and v, which require the scaling of the gradients. In particular, assuming, that
Eq. (21c) holds at timestep t, Appendix A.2 tells us that the relationship between gradients is,

g′t = ∇L(w′
t−1) = c∇L(wt−1) = cgt. (22)

Thus, the updates for m′ are,

m′
t = β1m

′
t−1 + (1− β1)g

′
t. (23)

substituting Eq. (21a) and Eq. (22)

m′
t = β1cmt−1 + (1− β1)cgt = c(β1mt−1 + (1− β1)gt) = cmt. (24)

So the relationship continues to hold for m at timestep t. For v updates,

v′t = β2v
′
t−1 + (1− β2)(g

′)2t . (25)

substituting Eq. (21b) and Eq. (22),

v′t = β2c
2vt−1 + (1− β2)cg

2
t = c2

(
β2c

2vt−1 + (1− β2)g
2
t

)
= c2vt (26)

12

How to set AdamW’s weight decay as you scale model and dataset size

So the relationship continues to hold for v at timestep t.

Next, we consider m̂ and v̂, which are not in themselves state variables, as they can be computed directly from m or v at
that timestep.

m̂′
t =

1

1− βt
1

m′
t =

1

1− βt
1

cmt = cm̂t (27a)

v̂′t =
1

1− βt
1

v′t =
1

1− βt
1

c2vt = c2v̂t. (27b)

So the scaling relationships for m̂ and v̂ are analogous to those for m and v.

Finally, we consider the weight updates themselves. The weight updates for the two optimizers are,

wt = (1− 1/τiter;t)wt−1 + ηt
m̂t√
v̂t + ϵ

(28a)

w′
t = (1− 1/τiter;t)w

′
t−1 + η′t

m̂′
t√

v̂′t + ϵ′
(28b)

Substituting ηt = 1/τiter;t/λ and η′ = 1/τiter;t/λ′,

wt = (1− 1/τiter;t)wt−1 + 1/τiter;t

1

λ

m̂t√
v̂t + ϵ

(29a)

w′
t = (1− 1/τiter;t)w

′
t−1 + 1/τiter;t

1

λ′
m̂′

t√
v̂′t + ϵ′

(29b)

Now, substituting Eq. (19) and Eq. (18) into the form for w′
t,

w′
t = (1− 1/τiter;t)w

′
t−1 + 1/τiter;t

1

cλ

cm̂′
t√

c2v̂′t + cϵ
(30)

Substituting Eq. (21c) and Eq. (27),

w′
t = (1− 1/τiter;t) 1cwt−1 + 1/τiter;t

1

cλ

cm̂t√
c2v̂t + cϵ

(31)

Cancelling c,

w′
t = (1− 1/τiter;t) 1cwt−1 + 1/τiter;t

1

cλ

m̂t√
v̂t

(32)

And pulling out 1/c,

w′
t =

1
c

(
(1− 1/τiter;t)wt−1 + 1/τiter;t

1

λ

m̂t√
v̂t

)
= 1

cwt. (33)

As required.

Thus, we have shown that if the scaling relations in Eq. (21) hold at timestep t − 1, they also hold at timestep t. It only
remains to complete the inductive proof by showing that the scaling relations hold at initialization. The m and v state
variables are usually initialized at zero, m0 = v0 = 0, and the scaling relations of course hold at zero. However, networks
are usually initialized with a fixed parameter scale which does not depend on λ. To ensure full scale-invariant training, we
therefore need to rescale the parameter initializations, to ensure

w′
0 = 1

cw0 = η′

η w0. (34)

13

How to set AdamW’s weight decay as you scale model and dataset size

w1

w2
Loss

w1

w2

Gradient

w1

w2

Normalized Gradient

0.5

0.5

1.5

2.5

Figure 6: An image of a 2D scale-invariant loss, clearly showing that the gradients get larger closer to the origin.

A.2. Gradients increase as weights decrease in scale-invariant networks

One important component of our proof is the notion that as weights decrease, the gradient of a scale-invariant loss increases
(e.g. see Arora et al., 2019). The geometry is straightforward if you look at an image (Fig. 6). But to spell it out formally,
consider a scale-invariant loss,

L(w) = L(u) (35)

where w = au. Now, take the partial derivative and use ∂ui

∂wi
= 1/a,

∂L(w)
∂wi

=
∂L(u)
∂ui

∂ui

∂wi
=

1

a

∂L(u)
∂ui

(36)

Thus, bigger w (larger a) implies smaller gradients wrt w.

A.3. Empirical confirmation of Theorem 1

In this section, we empirically confirm Theorem 1 using a ResNet-18 and a ViT (with QK-layernorm) trained on CIFAR-
10. We used AdamW to perform the optimization for 200 epochs with a cosine learning rate schedule to decay the
initial learning rate by a factor of 10. We used a fixed batch size of 100 and tested initial learning rates η in range
{10−6, 10−5, . . . , 10−1}. For each η, we considered λ in range {10−7/η, 10−6/η, . . . , 10−2/η}, giving us τepoch in range
{2× 10−1, 2× 100, . . . 2× 104} for all ηs.

We begin by looking at the performance of ResNet under different values of τepoch and η under the standard configuration.
Fig. 7B and Fig. 8B show performance metrics vs. timescale for different learning rates after 200 epochs. We can see from
Fig. 7B that the behavior for different learning rates, η, is very different. In addition, Fig. 8B shows that, while for most ηs,
the optimal τepoch in terms of test metrics is the same, the exact performance at the optimal τepoch differs.

This suggests that standard network setups require considerable modification before training trajectories actually become
invariant to η for a fixed 1/τiter (or τepoch). In particular, recall that Theorem 1 has two major assumptions about the model: 1.
It needs to be scale-invariant (Eq. 9); 2. The initialization needs to be η-aware (Eq. 34). Therefore, we need to make three
key modifications in order for the assumptions to hold:

1. The output weights are not scale-invariant in standard setups, as they are not usually followed by a normalization layer;
we therefore introduced a normalization layer after these weights (Appendix A.3.1; row C in Fig. 7, 8)

2. Normalization layers such as batchnorm have scale and bias parameters, which are usually not scale-invariant, as such
we adopted a decoupled learning rate for these weights (Appendix A.3.3; row D in Fig. 7, 8).

3. We introduced an initialization that depended on the learning rate, η (Appendix A.3.2; row E in Fig. 7, 8).

Combining all these modifications together, we found that networks with the same τepoch but different values of η demon-
strated exactly the same learning trajectories (Fig. 7F) and performance metrics (Fig. 8F).

14

How to set AdamW’s weight decay as you scale model and dataset size

We additionally considered ViT under a similar setting. Notice that ViT needs more extensive modifications to ensure full
scale-invariance; full details are presented in Appendix. A.3.4. The performance vs. iteration and timescale for various
versions of the model are presented in Fig. 9 and 10. Mirroring the ResNet results, we again found that, under the suggested
modifications, the performance becomes invariant to η under fixed τepoch.

See below for more details of the network modifications required to ensure that experimental results can mirror Theorem 1
in Sec. A.

A.3.1. OUTPUT-BATCHNORM FOR SCALE-INVARIANT OUTPUT WEIGHTS

Most neural network weights/parameters are scale-invariant. This means that we can multiply the weights/ parameters by an
arbitrary constant without changing the network output (Eq. 9). It turns out that most neural network weights/parameters are
scale-invariant because they are followed by normalization such as batchnorm or layernorm, which will get rid of any change
in scale. However, this is not true for the output layer, as the output layer is not usually followed by a normalization layer.

Therefore, we applied a “global batchnorm” layer after the output layer, i.e., upon the logits. In particular, denote the logits
by Z ∈ RB×C , where B is the batchsize and C is the number of classes, we first flatten (and reshape) Z into a matrix of
shape BC × 1 and then feed the vector into a standard 1D batchnorm, which computes the mean and variance across all
BC elements. Finally, we reshape the output of batchnorm back to B × C and send it to the final softmax layer. The effect
of output-batchnorm is shown in row C in Fig. 7 and 8.

A.3.2. LEARNING-RATE-DEPENDENT INITIALIZATION

Note that Theorem 1 requires the ratio between the initial learning rate and the initial parameter scale to be the same in order
for two AdamW optimizers to show the same trajectory. To satisfy the condition in implementation, we fix ρ = η/σ = 10−3,
so the initial variance depends on the learning rate, σ = η/10−3.

Confirming this requirement, initializing the network weights in this way seemed to reduce the dependency on η for larger
values of η under fixed τepoch (Fig. 8E).

However, it is worth emphasizing that, ρ itself is another hyperparameter, and different ρ will change the performance
(indeed, if we fix the initial variance, then ρ changes as we modify η).

A.3.3. DECOUPLING THE LEARNING RATES FOR THE BATCH/LAYERNORM PARAMETERS

In most networks, there are some parameters that are fundamentally non-scale-invariant. These usually include the scale and
bias parameters in normalization layers. All of the reasoning in Theorem 1 rely on network output being invariant to scale.
So how do we optimize these non-scale-invariant parameters?

It turns out that we already do something different with these parameters. In particular, it is common practice4 to optimize
them using the same learning rate, η, as the other parameters, but to drop weight decay. This standard setting is depicted in
Fig. 7E and Fig. 8E, and we can see that η does still change the behavior of the optimizer.

The issue is that modifying η, changes the training trajectory of these non-scale-invariant parameters. The solution is
therefore to “decouple” the learning rate for the non-scale-invariant parameters. In particular, we fix the initial learning rate
for these non-scale-invariant parameters to 10−3 regardless of the learning rate η for other scale-invariant parameters. Doing
so gives Fig. 7F and Fig. 8F, which exhibit almost perfect decoupling, with performance almost entirely independent of η
for fixed τepoch.

A.3.4. SCALE-INVARIANT VIT

In order to make ViT scale-invariant, we need more extensive modifications beyond simply adding output normalization
layer. In particular, we added layernorm after all linear layers in the network, which includes

• The embedding layer.

4We cannot find literature explicitly studying the effect of dropping weight decay for normalization layers’ parameters, however,
its importance has been noticed in vision tasks, e.g. by Jia et al. (2018) and https://github.com/JiahuiYu/slimmable_
networks/issues/15, as well as in language model training: https://github.com/karpathy/minGPT/blob/master/
mingpt/model.py#L227

15

https://github.com/JiahuiYu/slimmable_networks/issues/15
https://github.com/JiahuiYu/slimmable_networks/issues/15
https://github.com/karpathy/minGPT/blob/master/mingpt/model.py#L227
https://github.com/karpathy/minGPT/blob/master/mingpt/model.py#L227

How to set AdamW’s weight decay as you scale model and dataset size

• The query, key and value projection layers.
• The output projection layer after the attention operation.
• The linear layer following each attention block.

B. The weights in an EMA
Using Eq. (5), and assuming ema0 = 0,

ema1 = 1/τiterq1 (37)
ema2 = 1/τiter ((1− 1/τiter)q1 + q2) (38)
ema3 = 1/τiter

(
(1− 1/τiter)

2q1 + (1− 1/τiter)q2 + q3
)

(39)

Thus,

emat = 1/τiter

t∑
t′=1

(1− 1/τiter)
t−t′qt′ . (40)

In deep learning settings, τiter is much larger than one (implying that we average over many iterations). In that setting, the
first-order Taylor expansion is very accurate,

1− 1/τiter ≈ e−
1/τiter . (41)

Thus,

emat ≈ 1/τiter

t∑
t′=1

(e−
1/τiter)t−t′qt′ = 1/τiter

t∑
t′=1

e−(t−t′)/τiterqt′ . (42)

with exact equality as τiter approaches infinity.

C. Connection between EMA timescale and relative update size
Consider an EMA given by at+1 = (1 − γ)at + γbt. Assume that the bts are independently random and identically
distributed over time with mean zero, and focus on the relative updates in the steady state (large t). The relative update size
for the scalar case is defined as

r =

√
E[(at+1 − at)2]

E[a2t]
. (43)

To compute r, we need to determine E[a2t]. We start by expressing at in terms of bt using the EMA formula:

at = γ

t−1∑
k=0

(1− γ)kbt−1−k + (1− γ)ta0. (44)

For simplicity, we assume a0 = 0 in the steady state, leading to:

at = γ

t−1∑
k=0

(1− γ)kbt−1−k. (45)

Squaring both sides gives:

a2t = γ2

(
t−1∑
k=0

(1− γ)kbt−1−k

)2

. (46)

Expanding the square, we have:

a2t = γ2

t−1∑
k=0

(1− γ)2kb2t−1−k + 2
∑

0≤k<j<t

(1− γ)k+jbt−1−kbt−1−j

 . (47)

16

How to set AdamW’s weight decay as you scale model and dataset size

Due to the independence and zero mean assumption of bt, the cross terms bt−1−kbt−1−j for k ̸= j have zero expectation.
Thus, we have:

E[a2t] = γ2
t−1∑
k=0

(1− γ)2kE[b2t−1−k]. (48)

Assuming E[b2t] = σ2 and using the geometric series sum formula for large t, we get:

E[a2t] =
γ2σ2

1− (1− γ)2
. (49)

This simplifies to:

E[a2t] =
γ2σ2

γ(2− γ)
. (50)

Next we will simplify E[(at+1 − at)
2], we begin by expanding the inner term

(at+1 − at)
2 = γ2(b2t − 2btat + a2t). (51)

Taking expectations, we have:
E[(at+1 − at)

2] = γ2(E[b2t]− 2E[btat] + E[a2t]). (52)

Assuming bt and at are independent and bt has mean zero, E[btat] = 0. Thus:

E[(at+1 − at)
2] = γ2(E[b2t] + E[a2t]). (53)

Using E[b2t] = σ2 and substituting E[a2t] from the previous derivation:

E[(at+1 − at)
2] = γ2

(
σ2 +

γ2σ2

γ(2− γ)

)
. (54)

This simplifies to:

E[(at+1 − at)
2] = γ2σ2

(
1 +

γ

2− γ

)
. (55)

Finally, simplifying further gives:

E[(at+1 − at)
2] =

2γ2σ2

2− γ
. (56)

Thus, the expression for r becomes:

r =

√
2γσ2

σ2
=
√

2γ, (57)

which indicates that the timescale parameter in the EMA is directly linked with the relative update size.

D. Weight norm
Notice that the EMA perspective of AdamW (Eq. (6)) suggests that AdamW averages over recent qt = − 1

λ
m̂t√
v̂t+ϵ

, and if we

assume m̂t√
v̂t+ϵ

is of scale O(1) (Balles & Hennig, 2018), the weights acquired from AdamW should be of magnitude O(1λ).

To verify this, we trained a ResNet on CIFAR-10 for 1000 epochs under a batch size of 100, with an initial timescale
τiter = 1/(η0λ) = 105. We used a cosine learning rate schedule, starting from η0 = 10−5/λ and decaying to 0. We then
swiped λ between {10−3, 3× 10−3, 10−2, . . . , 0.3, 1.0} and recorded the average absolute value of all dimensions in the
convolutional and linear layer weights (i.e. weights where we adopt weight decay) under different λ.

Fig. 11 left plots the final weight magnitudes against λ, with both X and Y axes log-scaled. By comparing it with the
reference line y = 0.01/x (gray, dashed), we can see the magnitude against λ line shares the same slope, indicating that the
weight magnitude approximately follows E[|Wi|] = c/λ, where c is a constant. Fig. 11 right plots the weight magnitudes
throughout optimization, where we can see that all configurations start with the same magnitude at initialization, but
gradually converge to our predicted magnitudes as optimization proceeds.

17

How to set AdamW’s weight decay as you scale model and dataset size

E. Additional experiment results
E.1. ViT scaling experiments on ImageNet

We additionally considered training a ViT on the 320K subset of ImageNet 32x32. In particular, we used a ViT with
QK-layernorm similar to the one used in the main text, and we varied the width/size of the model by multiplying the number
of hidden dimensions and internal linear layers’ width with a factor s. Similar to the setting in the main text, we tested the
width factor in {0.5, 1.0, 2.0}, used a fixed λbase = 1.0, and swept ηbase in (2.5× 10−6)× 2i with i ∈ {0, 1, . . . , 11}.

The results are presented in Fig. 15, where we plotted the performance after 50 epochs against ηbase. We again considered the
direct µP scaling (Eq. 13; top row) and our proposed scaling (Eq. 15; bottom row), and we can see that the standard scaling
breaks the stability of optimal learning rate in terms of test metrics whereas our proposed scaling is much more stable.

F. Note on muP library
We used the mup library5 from the authors of Yang et al. (2022) for varying-model-size experiments. In particular, for
ResNet experiments in Fig. 3 and 5, we directly use the ResNet codebase under the examples folder together with the
provided MuAdamW optimizer to run our experiments, as this library takes care of details such as the scaling of the learning
rate and initialization for the input/output layers. For ViT experiments in Fig. 15, we manually constructed the required
model shape file using the provided make_base_shapes function and used the provided MuReadout module as the
classification head.

Importantly, this library does come with a decoupled keyword argument. Given the connections between τiter and the pa-
rameterization for AdamW originally proposed in the original “Decoupled Weight Decay Regularization” paper (Loshchilov
& Hutter, 2018), you would have thought that you could implement our proposed scalings using decoupled=True.
However, it turns out that as of writing, to get our proposed scaling for λ (Eq. 15), you need to set decoupled=False6.
This may be fixed in the future, but in any case, if using the mup library, it is critical to check the mup source to see precisely
what scalings you are getting for λ.

G. Extended experiment setups
G.1. Model specification

For ResNet-18 experiments, we utilized the implementation from https://github.com/kuangliu/
pytorch-cifar/. For both CIFAR-10 and ImageNet, we used random cropping and horizontal flip as data aug-
mentation and we used cross-entropy as the loss function. For µP experiments with ResNet, we use the codebase 7 provided
by Yang et al. (2022), which is an adaptation of the codebase provided by the GitHub user kuangliu.

For ViT, we adopted the implementation from https://github.com/omihub777/ViT-CIFAR/tree/main. We
also incorporated QK layernorm suggested by Dehghani et al. (2023) and Wortsman et al. (2024) in order to stabilize the
training when sweeping learning rates. The loss function is again chosen as cross-entropy loss. Additionally, when training
on CIFAR-10, we follow the suggestions in the original codebase to use auto augmentation (Cubuk et al., 2019) and label
smoothing (Müller et al., 2019) with α = 0.1 to alleviate overfitting. We indeed found these techniques crucial for reaching
the level of test accuracy reported by the repo. For ImageNet experiments, we used label smoothing with standard data
augmentation: random cropping and horizontal flip.

For dataset size scaling experiments with NanoGPT in Fig. 2, we used the configuration code provided by (D’Angelo et al.,
2024)8. The model structure is identical to the standard 124M version of NanoGPT, which contains 12 layers, each layer has
12 attention heads with a head dimension of 64, i.e. an embedding size of 768. Identical to the original NanoGPT, (D’Angelo
et al., 2024) uses a micro-batch size of 12 sequences and 40 gradient accumulation steps at each iteration. However, to
reduce memory consumption, it uses a fixed context length of 256 tokens instead of the original 1024-token context length.

5https://github.com/microsoft/mup
6https://github.com/microsoft/mup/blob/19814971934ef91dd546f88e913fc963e096d11c/mup/

optim.py#L79
7https://github.com/microsoft/mup/tree/main/examples/ResNet
8https://github.com/tml-epfl/why-weight-decay/blob/main/large_language_models/config/

train_gpt2_small_block256.py

18

https://github.com/kuangliu/pytorch-cifar/
https://github.com/kuangliu/pytorch-cifar/
https://github.com/omihub777/ViT-CIFAR/tree/main
https://github.com/microsoft/mup
https://github.com/microsoft/mup/blob/19814971934ef91dd546f88e913fc963e096d11c/mup/optim.py#L79
https://github.com/microsoft/mup/blob/19814971934ef91dd546f88e913fc963e096d11c/mup/optim.py#L79
https://github.com/microsoft/mup/tree/main/examples/ResNet
https://github.com/tml-epfl/why-weight-decay/blob/main/large_language_models/config/train_gpt2_small_block256.py
https://github.com/tml-epfl/why-weight-decay/blob/main/large_language_models/config/train_gpt2_small_block256.py

How to set AdamW’s weight decay as you scale model and dataset size

For width transfer experiments in Fig. 4, we used the codebase from the recent project nanoGPT-mup9. In particular, we
trained transformers with 8 layers, with a fixed attention head dimension of 64, and varied the number of attention heads
between {4, 8, 16}. We additional included QK layernorm for better stability when sweeping hyperparameters. The model
is trained with a micro-batch size of 8 sequences, 16 gradient accumulation steps, and a fixed context length of 256 tokens.

G.2. Hyperparameter range

In Sec. 4.1, for the experiments in Fig. 1, we used λ = (2.5× 10−6)× 2i with i ∈ {0, 1, . . . , 15}.

In Sec. 4.2, for the experiments in Fig. 3, we used λbase = 10−3 × 2i with i ∈ {0, 1, . . . , 11}.

For the CIFAR-10 experiments in Fig. 5A we used ηbase = (2.5× 10−4)× 4i with i ∈ {0, 1, . . . , 5}.

For the ImageNet experiments in Fig. 5B we used ηbase = (2.5× 10−6)× 2i with i ∈ {0, 1, . . . , 11}.

For the NanoGPT experiments in Fig. 2, we used λ = 2i with i ∈ {−8,−7, . . . , 1}.

For the NanoGPT experiments in Fig. 4. We used λbase = 2i with i ∈ {−8,−7, . . . ,−1} for ηbase = 3 × 10−4 and
λbase = 2i with i ∈ {−6,−5, . . . , 1} for ηbase = 3× 10−5

H. Licenses
• ResNet-18 from https://github.com/kuangliu/pytorch-cifar/ is MIT licensed.
• ViT from https://github.com/omihub777/ViT-CIFAR/tree/main is MIT licensed.
• CIFAR-10 https://www.cs.toronto.edu/~kriz/cifar.html (No license evident).
• ImageNet license is available at https://www.image-net.org/download.
• The mup library is MIT licensed.
• NanoGPT pre-training code from https://github.com/tml-epfl/why-weight-decay is MIT licensed.
• NanoGPT-mup code from https://github.com/EleutherAI/nanoGPT-mup is MIT licensed.

9https://github.com/EleutherAI/nanoGPT-mup

19

https://github.com/kuangliu/pytorch-cifar/
https://github.com/omihub777/ViT-CIFAR/tree/main
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.image-net.org/download
https://github.com/tml-epfl/why-weight-decay
https://github.com/EleutherAI/nanoGPT-mup
https://github.com/EleutherAI/nanoGPT-mup

How to set AdamW’s weight decay as you scale model and dataset size

= 10 6 = 10 5 = 10 4 = 10 3 = 10 2 = 10 1

0 100 200
Epoch

10 5

10 2

101

Tr
ai

n
lo

ss

= 10 2

0 100 200
Epoch

= 10 1

0 100 200
Epoch

= 1.0

0 100 200
Epoch

(A)
Standard output
Standard init.
Standard BN LR

= 10

10 5

10 2

101

Tr
ai

n
lo

ss

epoch = 200 epoch = 20 epoch = 2
(B)
Standard output
Standard init.
Standard BN LR

epoch = 0.2

10 5

10 2

101

Tr
ai

n
lo

ss (C)
Normed output.
Standard init.
Standard BN LR

10 5

10 2

101

Tr
ai

n
lo

ss (D)
Normed output.
Standard init.
Decoupled BN LR.

10 5

10 2

101

Tr
ai

n
lo

ss (E)
Normed output.
Rescaled init.
Standard BN LR

0 100 200
Epoch

0 100 200
Epoch

0 100 200
Epoch

(F)
Normed output
Rescaled init.
Decoupled BN LR.

0 100 200
Epoch

10 5

10 2

101

Tr
ai

n
lo

ss

Figure 7: Proposed modifications decouple the training trajectory from η under fixed τepoch. We trained a ResNet under
various learning rate η (lines) and timescale τepoch (columns) and plotted the training loss against epochs. We considered
standard vs. normalized output layer (row B vs. row C, Sec. A.3.1); using η for batchnorm parameters vs. a separate
decoupled learning rate (row C vs. row D, Sec. A.3.3); using standard initialization scale vs. η-dependent initialization (row
C vs. row D, Sec. A.3.2; and lastly, combining all modifications (row F), which allows the trajectory to be independent of η
under a fixed timescale.

20

How to set AdamW’s weight decay as you scale model and dataset size

= 10 6 = 10 5 = 10 4 = 10 3 = 10 2 = 10 1

10 5 10 2 101

0.9

1.0
Train Acc

10 5 10 2 101
10 5

10 2

Train loss

10 5 10 2 101
0.85

0.90

0.95
Test acc

10 5 10 2 101
0.25

0.50

0.75 (A)
Standard output
Standard init.
Standard BN LR

Test loss

0.9

1.0

10 5

10 2

0.85

0.90

0.95

0.25

0.50

0.75 (B)
Standard output
Standard init.
Standard BN LR

0.9

1.0

10 5

10 2

0.85

0.90

0.95

0.25

0.50

0.75 (C)
Normed output.
Standard init.
Standard BN LR

0.9

1.0

10 5

10 2

0.85

0.90

0.95

0.25

0.50

0.75 (D)
Normed output.
Standard init.
Decoupled BN LR.

0.9

1.0

10 5

10 2

0.85

0.90

0.95

0.25

0.50

0.75 (E)
Normed output.
Rescaled init.
Standard BN LR

10 2 100 102 104

epoch = 1/ M

0.9

1.0

10 2 100 102 104

epoch = 1/ M

0.85

0.90

0.95

10 2 100 102 104

epoch = 1/ M

0.25

0.50

0.75 (F)
Normed output
Rescaled init.
Decoupled BN LR.

10 2 100 102 104

epoch = 1/ M

10 5

10 2

Figure 8: Under proposed modifications, the performance is only controlled by the timescale. We trained a ResNet-18
on CIFAR-10 and plot the metrics at the end of the optimization under different initial learning rates (lines) against the
timescale (x-axis). Similar to Fig. 7, from row B to F, we considered different levels of modification to the network. From
row B to E, while the optimal τepoch (marked by red crosses) lies in close range across different η, the exact performance still
varies by η. Whereas in row F, after adopting all three modifications, the performance metrics become invariant to η under
the same τepoch.

21

How to set AdamW’s weight decay as you scale model and dataset size

= 10 6 = 10 5 = 10 4 = 10 3 = 10 2 = 10 1

0 100 200
Epoch

0.5

1.5

2.5

Tr
ai

n
lo

ss

= 10 2

0 100 200
Epoch

= 10 1

0 100 200
Epoch

= 1.0

0 100 200
Epoch

(A)
Standard output.
Standard init.
Standard LN LR.
Standard structure.

= 10

0.5

1.5

2.5

Tr
ai

n
lo

ss

epoch = 0.2 epoch = 2 epoch = 20
(B)
Standard output.
Standard init.
Standard LN LR.
Standard structure.

epoch = 200

0.5

1.5

2.5

Tr
ai

n
lo

ss

(C)
Normed output.
Rescaled init.
Decoupled LN LR.
Standard structure.

0 100 200
Epoch

0 100 200
Epoch

0 100 200
Epoch

(D)
Normed output.
Rescaled init.
Decoupled LN LR.
SI structure.

0 100 200
Epoch

0.5

1.5

2.5

Tr
ai

n
lo

ss

Figure 9: Proposed scale-invariant structure decouples the training trajectory from η under fixed τepoch for ViT. We
trained a ViT under various learning rates η (lines) and timescale τepoch (columns) and plotted the training loss against
epochs. We first considered standard model vs. model with the three modifications used in ResNet experiments (row B vs.
row C, Sec. A.3.1, A.3.3, A.3.2), where the training loss traces still show discrepancy for different η. We then considered
further modification (Sec. A.3.4, row D) to ensure scale-invariance (SI), which successfully decoupled the loss trajectory
from η under the same τepoch.

22

How to set AdamW’s weight decay as you scale model and dataset size

= 10 6 = 10 5 = 10 4 = 10 3 = 10 2 = 10 1

10 2 103

0.50

0.75

1.00
Train Acc

10 2 103
0.5

1.0

1.5

2.0
Train loss

10 2 103
0.7

0.8

0.9
Test acc

10 2 103
0.75

1.00

1.25
(A)
Standard output.
Standard init.
Standard LN LR.
Standard structure.

Test loss

0.50

0.75

1.00

0.5

1.0

1.5

2.0

0.7

0.8

0.9

0.75

1.00

1.25 (B)
Standard output.
Standard init.
Standard LN LR.
Standard structure.

0.50

0.75

1.00

0.5

1.0

1.5

2.0

0.7

0.8

0.9

0.75

1.00

1.25
(C)
Normed output.
Rescaled init.
Decoupled LN LR.
Standard structure.

10 2 100 102 104

epoch = 1/ M

0.50

0.75

1.00

10 2 100 102 104

epoch = 1/ M

0.7

0.8

0.9

10 2 100 102 104

epoch = 1/ M

0.75

1.00

1.25
(D)
Normed output.
Rescaled init.
Decoupled LN LR.
SI structure.

10 2 100 102 104

epoch = 1/ M

0.5

1.0

1.5

2.0

Figure 10: Under proposed modifications, ViT shows performance controlled only by the timescale and irrelevant to
the learning rate. Similar to Fig. 9 but now we plotted the final performance metrics against τepoch (x-axis) under different
η (lines). In rows B, and C, the model is not fully scale-invariant and the initialization is not η-dependent, as such the
performance varies between ηs under a fixed τepoch. In row D, when all modifications are incorporated, i.e. assumptions in
Theorem. 1 are satisfied, the performance becomes only dependent on τepoch.

23

How to set AdamW’s weight decay as you scale model and dataset size

10 3 10 2 10 1 100
10 3

10 2

10 1

100

101

Av
er

ag
ed

 a
bs

ol
ut

e
va

lu
e

of
 w

ei
gh

ts

End of optimization value

y = 0.01/x

0 200 400 600 800 1000
Epoch

Trace throughout optimization

10 3

10 2
10 1

100

Figure 11: Weight magnitudes scale inversely with λ AdamW optimization. We trained a ResNet-18 on CIFAR-10
using AdamW with cosine learning rate decay over 1,000 epochs. The weight decay parameter λ varies from 10−3 to 1,
with initial learning rate η = 10−5/λ. Left: Final average absolute weight values E[|Wi|] in convolutional and linear layers
versus λ, showing approximate 1/λ scaling (same slope as the reference dashed gray line). Right: Evolution of weight
magnitudes throughout training for different λ values, different runs start with the same magnitude and gradually converge
to O(1/λ).

24

How to set AdamW’s weight decay as you scale model and dataset size

Dataset size
N=160,000 N=320,000 N=640,000 N=1,280,000

0.5

1.0
Train Acc

10 1

100

Train loss

0.2

0.4

Test acc

2

4

6

= 0.1

Test loss

10 5 10 3 10 1

0.5

1.0(A
) R

es
Ne

t

10 5 10 3 10 1

10 1

100

10 5 10 3 10 1

0.2

0.4

10 5 10 3 10 1

2

4

6
= 0.1 × 128, 000

dataset size

0.5

1.0

2 × 100
3 × 1004 × 100
6 × 100

0.0

0.2

0.4

4

6
= 0.1

10 5 10 3 10 1

0.5

1.0(B
) V

iT

10 5 10 3 10 1

2 × 100
3 × 1004 × 100
6 × 100

10 5 10 3 10 1
0.0

0.2

0.4

10 5 10 3 10 1

4

6 = 0.1 × 128, 000
dataset size

Figure 12: Under the suggested weight decay scaling, the optimal learning rate is stable across training length.
Mirroring Fig. 1 in the main text, we trained the model for 100 epochs with different dataset sizes under a fixed batch size.
Using a fixed weight decay (top rows in subfig. A, B), the optimal learning rate decreases with the dataset size. Under our
suggested weight decay scaling (bottom rows in subfig. A, B), where λ ∝ 1

dataset size , the optimal learning rate becomes more
stable across dataset sizes. Note that we select the values for λ as 0.1 as they were close-to-optimal for the experiments in
Fig. 1.

25

How to set AdamW’s weight decay as you scale model and dataset size

Dataset size
80,000 160,000 320,000 640,000 1,280,000

10 3 10 1 101 103
0.0

0.5

1.0
Train Acc (top-1)

10 3 10 1 101 103

2.5

5.0

Train loss

10 3 10 1 101 103
0.0

0.2

0.4

Test Acc (top-1)

10 3 10 1 101 103
2

4

6

Tune

Test loss

10 3 10 1 101 103

Initial epoch = 1/ M

0.0

0.5

1.0(A
) R

es
Ne

t

10 3 10 1 101 103

Initial epoch = 1/ M

2.5

5.0

10 3 10 1 101 103

Initial epoch = 1/ M

0.0

0.2

0.4

10 3 10 1 101 103

Initial epoch = 1/ M

2

4

6

Tune
epoch

10 3 10 1 101 103
0.0

0.5

1.0
Train Acc (top-1)

10 3 10 1 101 103
1

4

7

Train loss

10 3 10 1 101 103
0.0

0.2

0.4

Test Acc (top-1)

10 3 10 1 101 103
3

5

7

Tune

Test loss

10 4 10 2 100 102

Initial epoch = 1/ M

0.0

0.5

1.0(B
) V

iT

10 4 10 2 100 102

Initial epoch = 1/ M

1

4

7

10 4 10 2 100 102

Initial epoch = 1/ M

0.0

0.2

0.4

10 4 10 2 100 102

Initial epoch = 1/ M

3

5

7
Tune

epoch

Figure 13: Optimal λ and τepoch v.s. dataset sizes under a constant learning rate. Similar to Fig. 1 but use a constant
learning rate of 10−3 rather than cosine decay to 0.1 of the initial learning rate.

26

How to set AdamW’s weight decay as you scale model and dataset size

Dataset size
80,000 160,000 320,000 640,000 1,280,000

10 3 10 1 101 103
0.0

0.5

1.0
Train Acc (top-1)

10 3 10 1 101 103
0.0

2.5

5.0

Train loss

10 3 10 1 101 103
0.0

0.2

0.4

0.6
Test Acc (top-1)

10 3 10 1 101 103

2

4

6

Tune

Test loss

10 3 10 1 101 103

Initial epoch = 1/ M

0.0

0.5

1.0(A
) R

es
Ne

t

10 3 10 1 101 103

Initial epoch = 1/ M

0.0

2.5

5.0

10 3 10 1 101 103

Initial epoch = 1/ M

0.0

0.2

0.4

0.6

10 3 10 1 101 103

Initial epoch = 1/ M

2

4

6

Tune
epoch

10 3 10 1 101 103
0.0

0.5

1.0
Train Acc (top-1)

10 3 10 1 101 103
1

4

7

Train loss

10 3 10 1 101 103
0.0

0.2

0.4

Test Acc (top-1)

10 3 10 1 101 103
2.5

5.0

7.5

Tune

Test loss

10 4 10 2 100 102

Initial epoch = 1/ M

0.0

0.5

1.0(B
) V

iT

10 4 10 2 100 102

Initial epoch = 1/ M

1

4

7

10 4 10 2 100 102

Initial epoch = 1/ M

0.0

0.2

0.4

10 4 10 2 100 102

Initial epoch = 1/ M

2.5

5.0

7.5

Tune
epoch

Figure 14: Optimal λ and τepoch v.s. dataset sizes under a cosine decay schedule to 0. Similar to Fig. 1 but use a cosine
learning rate decay schedule from 10−3 to o rather than to 10−4.

s=0.5 s=1.0 s=2.0

0.0

0.5

1.0

Vi
T

Im
ag

eN
et

Train Acc (top-1)

1

4

7
Train loss

0.0

0.1

0.2
Test Acc (top-1)

4

5

6

= base/s,
= 1.0

Test loss

10 5 10 4 10 3 10 2

base

0.0

0.5

1.0

10 5 10 4 10 3 10 2

base

1

4

7

10 5 10 4 10 3 10 2

base

0.0

0.1

0.2

10 5 10 4 10 3 10 2

base

4

5

6

= base/s,
= s

Figure 15: AdamW breaks the learning rate scaling of µP on ViT. Similar to the setting in Fig. 5, here we trained a ViT
with different width factors on the 320K subset of ImageNet 32x32 under the direct µP scaling (Eq. 13; top row) and our
proposed scaling (Eq. 15; bottom row). The direct scaling breaks the transferability of optimal ηbase due to changing the
timescale, whereas our scaling allows stable optimal ηbase across model sizes.

27

How to set AdamW’s weight decay as you scale model and dataset size

s=0.5 s=1.0 s=2.0 s=4.0

10 2 10 1 100
0.0

0.5

1.0
Train Acc (top-1)

10 2 10 1 100
10 1

100

Train loss

10 2 10 1 100
0.2

0.3

0.4
Test Acc (top-1)

10 2 10 1 100
2.5

4.0

5.5

= 10 3/s,
= base

Test loss

10 2 10 1 100

base

0.0

0.5

1.0

10 2 10 1 100

base

0

2

4

10 2 10 1 100

base

0.2

0.3

0.4

10 2 10 1 100

base

2.5

4.0

5.5

= 10 3/s,
= s base

Figure 16: Similar setting to Fig. 3, but use constant learning rate.

s=0.5 s=1.0 s=2.0 s=4.0

10 2 10 1 100
0.0

0.5

1.0
Train Acc (top-1)

10 2 10 1 100
10 2

10 1

100

Train loss

10 2 10 1 100
0.3

0.4

0.5
Test Acc (top-1)

10 2 10 1 100
2.0

3.5

5.0

= 10 3/s,
= base

Test loss

10 2 10 1 100

base

0.0

0.5

1.0

10 2 10 1 100

base

10 2

10 1

100

10 2 10 1 100

base

0.3

0.4

0.5

10 2 10 1 100

base

2.0

3.5

5.0

= 10 3/s,
= s base

Figure 17: Similar setting to Fig. 3, but use cosine decay to zero.

s=0.5 s=1.0 s=2.0 s=4.0

0.25

0.50

0.75

(B
) I

m
ag

eN
et

Train Acc (top-1)

2

4

Train loss

0.2

0.3

0.4

Test Acc (top-1)

2.5

3.5

4.5
= base/s,
= 1.0

Test loss

10 5 10 4 10 3

base

0.25

0.50

0.75

10 5 10 4 10 3

base

2

4

10 5 10 4 10 3

base

0.2

0.3

0.4

10 5 10 4 10 3

base

2.5

3.5

4.5
= base/s,
= s

Figure 18: Similar setting to Fig. 5, but use constant learning rate.

28

How to set AdamW’s weight decay as you scale model and dataset size

s=0.5 s=1.0 s=2.0 s=4.0

0.25

0.50

0.75

(B
) I

m
ag

eN
et

Train Acc (top-1)

2

4

Train loss

0.2

0.3

0.4

Test Acc (top-1)

2.5

3.5

4.5
= base/s,
= 1.0

Test loss

10 5 10 4 10 3

base

0.25

0.50

0.75

10 5 10 4 10 3

base

2

4

10 5 10 4 10 3

base

0.2

0.3

0.4

10 5 10 4 10 3

base

2.5

3.5

4.5
= base/s,
= s

Figure 19: Similar setting to Fig. 5, but use cosine decay to zero.

29

	Introduction
	Background
	Methods
	AdamW as an EMA
	Formalizing intuition from the EMA

	Scaling weight decay across model and dataset sizes
	Transferring weight decay across dataset sizes
	Transferring weight decay across model sizes

	Related work
	Work after us
	Work before us

	Conclusions
	Confirming the connection between AdamW and weight decay
	Proof of Theorem 1
	Gradients increase as weights decrease in scale-invariant networks
	Empirical confirmation of Theorem 1
	Output-batchnorm for scale-invariant output weights
	Learning-rate-dependent initialization
	Decoupling the learning rates for the batch/layernorm parameters
	Scale-invariant ViT

	The weights in an EMA
	Connection between EMA timescale and relative update size
	Weight norm
	Additional experiment results
	ViT scaling experiments on ImageNet

	Note on muP library
	Extended experiment setups
	Model specification
	Hyperparameter range

	Licenses

