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ABSTRACT

Advances in neural sensing technology now make it possible to observe presynap-
tic responses in the olfactory bulb with high spatial and temporal resolution. In
this paper, we approach olfaction (the sense of smell) from a Machine Learning
perspective, focusing on how odor identity can be decoded from neural represen-
tations at the first synaptic stage of the olfactory system. Drawing distinctions to
color vision, we argue that smell presents unique measurement challenges, includ-
ing the complexity of stimuli, the high dimensionality of the sensory apparatus,
as well as what constitutes ground truth. In the face of these challenges, we ar-
gue for the centrality of odorant-receptor interactions in developing a theory of
olfaction. Such a theory is likely to find widespread healthcare applications in
disease diagnostics, enhance our understanding of smell, and in the longer-term
can help us understand how it relates to other senses and language. As an initial
use case, we show that machine learning models can learn meaningful represen-
tations from calcium imaging of glomerular activations, enabling accurate odor-
ant classification and revealing that pre-synaptic responses at the first olfactory
synapse encode rich, discriminative information about odor identity. Addition-
ally, we release ’oMNIST’1 — a standardized dataset of glomerular responses for
public use—designed to catalyze research in classification, representation learn-
ing, cross-animal glomeruli alignment and generalization in olfaction.
Keywords: Olfaction, Smell, Odorants, Ligands, Olfactory Bulb, Glomeruli,
Physico-Chemical properties

1 INTRODUCTION

Smell is arguably the most primal and yet least understood of the senses. It has been key to the
survival and fitness of a large number of species, for identifying or locating food, sensing danger,
driving social behaviors, tracking and navigation, and much more. Smell provides vital sensory data
to the brain, but remains poorly understood as a sense for a number of reasons. At the moment, we
are unable to explain the relationship between the physical and perceptual properties of odors.

In contrast, human vision is relatively well understood. Objects have properties such as shape, size,
and color. We tend to agree easily whether we are seeing a banana or a house, although we might
initially mistake a Chihuahua for a muffin. In other words, we largely agree on what we are seeing
based on shape, size, and color.

Color, which is well understood, provides an interesting reference for understanding smell. The
theory of color vision is expressed in terms of trichromacy, linearity, and opponency — the three-
dimensionality of perceptual color space, and the independence and nature of those dimensions,
respectively. These concepts were formulated and experimentally validated in the late nineteenth
century. As early as 1922, with the publication of the Optical Society of America’s colorimetry
report, clear definitions of terms were established, both psychological and physical (Troland, 1922).
The publication of physical standards and experimental methods allowed for the characterization of

1Dataset link omitted for double-blind review. It will be released after review is completed. Processed data
alongwith the code is available at Github Repository
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observers, culminating with the International Commission on Illumination’s formalization of both
colorspace and the ‘standard observer’ in 1931.

We begin by showing why such advances were possible for color vision early on in modern science,
while they remain challenging for olfaction research today. We do this by comparing the two sen-
sory modalities at the levels of their physical stimuli, neural systems, and the nature of perceptual
experiences that observers can report, as summarized in Figure 1. We argue that the complexity of
olfaction, arising from both stimulus structure and neural responses, demands a joint contribution of
neuroscience and machine learning—where biological experiments provide the data and constraints,
and representation learning methods uncover structure and principles of odor coding. Towards this
end, we make available a standard dataset consisting of odors and the neural signatures they gener-
ate across transgenic mice. The dataset will be augmented along both dimensions – the number of
odorants and their associated responses, as additional data is recorded. We hope to catalyze olfaction
research in Neuroscience and Machine Learning, similar to how MNIST led to rapid advances in
machine vision.

Like MNIST, where each digit has multiple renditions that can be used as training data, each odor
in our database has multiple neural responses associated with it, along with metadata about each
animal. Researchers can build on this data platform in many ways, from data handling to predictive
modeling. On the data handling side, for example, we might expect innovation in methods for
compressing or removing noise from the neural time series data. Indeed, we illustrate the use of two
such methods and their downstream impacts on odor prediction based on simple machine learning
based models. On the predictive modeling front, we demonstrate the use of AI models for prediction
that aim to learn the distribution of odor space. In the longer term, we aim to develop generative
models that bridge molecular features, neural representations, and linguistic descriptions of odors,
enabling the synthesis of novel odors.
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Figure 1: A comparison of color vision (top) and olfaction (bottom). a) The elements of the phys-
ical stimulus for color are photons, which can be defined by the single parameter of wavelength. The
elements of odors are volatile organic compounds (VOCs), which have diverse molecular structures.
b) Elements combine into spectra and multi-component odors. c) Just three sensor classes sup-
port trichromatic human color vision, with their well-defined spectral response profiles. In contrast
humans have approximately 400 classes of olfactory receptor, with mostly undiscovered chemical
receptive fields. Olfactory sensory neurons expressing the same receptor type (indicated by color)
project to the same structure in the olfactory bulb, called a glomerulus. d) Human color vision
is three-dimensional due to the way the three receptor type channels are compared with opponent
processing. It is unclear how the information from olfactory receptor channels is compared or trans-
formed, leaving it currently as a ‘black box’. e) Color sensations can be described with semantic
labels, but can also be located in the isoluminant plane, which enables accurate predictions for op-
erations in color space such as mixing. Smells can be described in many ways, including objects
of origin (banana), broader categories (fruity), pleasantness, and other descriptors, and mixing is
poorly understood.
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2 A COMPARATIVE TOUR THROUGH COLOR VISION AND OLFACTION

2.1 ODORS RUN THROUGH A LARGER GAMUT THAN COLORS

We begin by describing olfaction relative to color vision. Such a comparison enables us to high-
light the unique aspects of olfaction and motivate our approach and the development of a standard
benchmark dataset.

The physical stimulus for color vision are spectra of light, the elements of which are photons whose
wavelengths fall in the visible range, namely 380-750 nm (Fig. 1.a). Each stimulus hitting the retina
has a corresponding spectrum, which describes its amplitude as a function of wavelength (Fig. 1.b).
While the spectrum of visible light is continuous, such that photons could have any of an infinite
number of possible wavelengths, in practice wavelengths are sampled with a certain resolution.
For example, if a spectrum is be reported with a wavelength resolution of 10 nm, for the visible
range between 380 and 750 nm, it will be measured along 37 dimensions organized along the single
linear dimension of wavelength (i.e. 380-389 nm, 390-399 nm, ...740-749 nm). A spectrum then
corresponds to a point in 37-dimensional space. Spectra reaching the retina are generally determined
by the emissive properties of light sources, as well as the reflective and transmissive properties of
objects.

In contrast, the elements of physical stimuli for smell are volatile organic compounds, or VOCs
(Fig. 1.a). Unlike photons, VOCs cannot be described by a single continuous dimension such as
wavelength. Instead, the space of VOC molecular structures is discrete and highly highly multidi-
mensional, with no obvious way of relating the myriad functional groups and moieties thaht exist in
practically infinite combinations and permutations. For example, we can organize the esters ethyl
propionate, ethyl butyrate, and ethyl pentanoate by the increasing carbon chain length of their parent
acids, but other dimensions are required to relate branching (e.g. ethyl isovalerate) or other func-
tional groups (e.g. ethyl benzoate). In summary, while photons can be defined by their nanometer
wavelength, VOCs require the full IUPAC nomenclature, with all its prefixes, suffixes, and infixes,
which indicates the complexity in naming and categorizing complex molecular structures.

The multidimensionality of VOC space presents an immediate challenge in how to select stimuli for
research in olfaction. Unless a low-dimensional structure can be found in structure space, paving
the way for a smaller number of ‘olfactory primaries,’ olfaction experiments may require the use
of thousands of monomolecular odorants, which must be synthesized, purified, or purchased at sig-
nificant financial and operational cost. Understanding how this large space of stimuli is sensed
and how to optimize its exploration are questions that are particularly suitable for data science. At
the longer term, we should understand multi-component ”natural” odors that are created from the
dynamic equilibria of multiple metabolic pathways, which can consist of hundreds or even thou-
sands of VOCs (Fig. 1.b). Using more naturalistic smells may be critical for investigating natural
odor abilities, for example the communication of social signals, analogous to higher-order visual
processes such as the perception of faces.

2.2 OLFACTION IS A BLACK BOX, NOT A PRISM

Our understanding of color vision has emerged over centuries, based a progressive understanding of
light and our vision system (Grassmann, 1854; Maxwell & Niven, 2011), which includes channels
tuned for carrying color information as well as the concept of ”opposing” colors. The discovery of
three distinct and independent channels carrying color information corresponding to the three classes
of cone photoreceptors in the retina (Fig. 1.c) and how they combine has been key to understanding
the structure of color space.

Because of the relatively simple input-layer architecture of the human color vision system com-
prising three independent channels, we can liken it to a kind of coarse prism. Any incoming stim-
ulus, whether monochromatic or made up of multiple wavelengths, gets split into three channels
corresponding to the short-preferring (S), middle-preferring (M), and long-preferring (L) photore-
ceptor types, whose spectral response profiles are generally themselves organized along the single
dimension of wavelength. The three-dimensionality of colorspace is a consequence of these three
input channels, their independence, and the visual system’s subsequent comparing of these channels
through ”opponent” processing (Fig. 1.d).
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In contrast, olfactory receptors (ORs) form the largest family of G-protein coupled receptors in the
mammalian genome (Gaillard et al., 2004), accounting for approximately 3% of the genome, with
hundreds of channel types. Humans have roughly 400 receptor types, while the mouse olfactory
system has roughly 1,100 types of receptors. And rather than a lock-and-key situation where ligands
and receptors are exclusively matched, ORs exhibit broad tuning. A single receptor type will have
affinities for a large number of odorant molecules via its promiscuous binding site, and a single odor-
ant will bind to a large number of receptors to varying degrees. Each OR type therefore gives rise
to an input channel with a broad receptive field spread throughout high-dimensional VOC structure
space.

The olfaction case is further complicated by the potential for interactions between odorants at the
level of receptor-ligand kinetics. While in vision photons linearly sum at the photoreceptor level,
odorants may exhibit inhibitory, antagonistic and synergistic interactions when binding olfactory
receptors (Inagaki et al., 2020). Although it is likely such non-linear effects are more the exception
than the rule, we cannot safely assume the same kind of vector space properties as Maxwell wrote
to describe color, such as linear addition and interpolation to predict mixtures. Instead, the neural
response is a complex time series activation of ORs.

These features, namely the large number of sensor types, the complex receptive fields of individual
sensors, and the potential of interactions during olfactory signal transduction, currently render olfac-
tion as more of a black box than the relatively transparent prism of color vision. They also prevent us
from characterizing the olfactory system’s input layer properties as exhaustively as we have done for
color, in the form of comprehensive receptor sensitivity functions (Fig. 1.c). There are simply too
many receptor types for which we would have to measure affinity for too many (practically infinite!)
odorants at various levels of concentration, let alone their potential interactive combinations.

2.3 THE DIVERSE OBSERVER AND GROUND TRUTH

We complete the comparative tour of color and olfaction by considering the diversity of the popu-
lation of human observers. Color vision is remarkably well-conserved among observers, who gen-
erally are in high agreement when making perceptual judgments. This is because the majority of
the population are ‘normal’ trichromats expressing three photoreceptor types, one each from the
L, M and S opsin genes. Providing participants do not have some form of congenital color vision
deficiency (approx. 8% of males, 1% of females), the results from color matching experiments and
other studies show minimal individual differences. This allows us to define a ‘standard observer’
model of how the majority of people experience color.

On the other hand, olfactory tasks often lead to disagreement among observers, in how they deter-
mine both thresholds (Stevens et al., 1988) and quality (Mainland et al., 2013). There are numerous
factors that contribute to differential sensitivities of the olfactory system, including biological fac-
tors such as age, gender, and genetic ancestry, as well as factors relating to experience, lifestyle and
culture. Recently it has also been shown that the particular subset of OR genes expressed, which
varies wildly across individuals, also contributes to disagreements observers make about the inten-
sity, similarity, or pleasantness of olfactory stimuli (Trimmer et al., 2017). Specific anosmias, the
olfactory equivalent of color vision deficiencies, where observers are insensitive to a particular odor,
are widely prevalent and more of a rule than an exception (Croy et al., 2016). For olfaction, we
should therefore expect a wide distribution of diverse observers properties, with a corresponding
high degree of linguistic variance associated with odor descriptions.

Despite the baked-in variance that comes with linguistic descriptors, meaningful progress is being
made by relating semantic label data to the physico-chemical features of odorants. A number of
models have been developed to predict semantic labels from chemical structure, with the most recent
advance employing a graph neural network that takes only the molecule’s atoms and chemical bonds
as input to predict its linguistic descriptors taken from the Good Scents and Leffingwell & Associates
food and fragrance databases, for over five thousand odorants (Lee et al., 2023). The model was
able to learn an optimized embedding function that transformed the graph of a molecule’s atoms
and bonds to a 256 dimensional embedding, which the authors call a principal odor map (POM).
This POM is then further transformed to a read out semantic descriptors. The final trained model
achieved an area under the receiver operating characteristic curve of 0.89 for a held out test set of
20% of the odors, a slight improvement over a random forest model trained to predict labels the
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Mordred physico-chemical descriptor dataset, which had an AUROC of 0.85 (Sánchez-Lengeling
et al., 2019). It should be noted however that both the precision (whether label predictions were
correct or incorrect) and recall (whether odorant labels were predicted or missed) of this model were
below 0.4, indicating the limits of language as ground truth.

While we would ultimately like to reconnect smell to perception and language, we use biology
for two reasons. Fundamentally, neural responses provide an objective and robust ground truth for
olfaction and may provide the foundation for a causal theory of olfaction. This is the approach we
have taken towards building an olfaction database. Using a standard strain of mice, we record their
neural signatures for odors multiple times and at various concentrations. Using animals from of a
single genetic line limits variability at the level of OR expression. Until such time as we develop a
digital nose that has an equivalent degree of sensory ability as a biological one, we will need to rely
on biological sensors to provide us with the ground truth required to build predictive models.

3 FROM ODORS TO ODOR SPACE - LEARNING REPRESENTATIONS

The abundance of digital images and language data has spurred rapid progress in AI for vision
and language, while olfaction has lagged behind because of its complexity and the difficulty of
collecting high-quality data. Recent advances in optical methods now make it possible to record
detailed odor-evoked activity from the olfactory bulb of mice, providing a foundation for data-driven
representation learning. By observing odor responses at the first synapse, we capture the earliest
neural codes before they are transformed by higher brain regions.

Why measure responses in mice, and not directly in human observers? It would be ideal to record the
activity of the human olfactory system, which would allow us to correlate perceptual judgments such
as linguistic labels with their neural representations. However, current noninvasive brain recording
modalities, such as fMRI, are severely limited in both temporal and spatial resolution, such that
the fine-grained details of neural representations are mostly unobservable. A recent study using
fMRI found odor-specific neural activity in the aorbitofrontal cortex to be predictive of linguistic
descriptors (Sagar et al., 2023), but the authors did not analyze activity in the olfactory bulb, the first
brain region where odor information is delivered from the nose, likely due to the insufficient spatial
resolution of fMRI.

Another option would be to grow cell lines, genetically modified to express human olfactory recep-
tors, cultured to grow in vitro. Such cell lines can then be evaluated with ligand binding assays to
measure odorant-receptor interactions. While this approach has been achieved experimentally, in
vitro OSNs demonstrate far reduced sensitivity to those in vivo. With mice, a cranial window can
be surgically implanted above the olfactory bulb to gain optical access to glomeruli, the neuropil
structures in the olfactory bulb where axons of olfactory sensory neurons expressing the same class
of receptor conveniently aggregate (as shown in Figure 1.c). Using mouse lines which have been
engineered to express genetically encoded calcium indicators, we can record odor-evoked spatial-
temporal glomerular responses using a camera, seeing glomeruli literally ‘light up’ as a function
of neural activity. Another benefit of imaging the olfactory bulb is that glomeruli for the same re-
ceptor type exhibit stereotyped spatial locations across animals, allowing for a good (but not exact)
alignment of data collected in multiple mice (Soucy et al., 2009). Observing mice also enables us
to build a model that is potentially transferable to humans, due to the highly conserved nature of
the mammalian olfactory system with respect to both receptor subfamilies (Godfrey et al., 2016)
and system architecture (with the exception of the vomeronasal organ and accessory olfactory bulb
(Lane et al., 2020).

A curated database of these odor-evoked responses provides a foundation for representation learn-
ing in olfaction research. For example, some models may explore the relationship between the
physico-chemical features of individual VOCs and their corresponding representations in the olfac-
tory system, while others might uncover principles that govern mixing in multi-component odors,
or how perceptual properties arise from olfactory stimulii. In all these cases, data that inform on
stimulus-receptor relationships in situ within the mammalian olfactory system will provide a lot of
value, as ultimately it is these relationships that determine many aspects of olfaction. We present
results of odor identification from videos of glomerular activation patterns. Our end-to-end pipeline
ingests raw activation frames, denoises them, and learns representations that are predictive of odor
identity. Importantly, we show how odors map onto unique parts of the olfactory bulb.
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4 EXPERIMENTS AND RESULTS

4.1 DATASET

The neural data were collected from mice expressing calcium indicators, GCaMP6f (Chen et al.,
2013) in olfactory sensory neurons (OSNs). This biosensor, GCaMP6f is designed to fluoresce in
response to changes in intracellular calcium concentrations, thus serving as an indicator for neuronal
activity which is recorded using a camera.

Our database structure consists of neural activation patterns of two mice that are exposed to mono-
molecular odorants. For each mice and an odorant, there are eleven trial videos/ number of data
points available for creating the train and test datasets. As an initial proof of concept, we have chosen
35 odorants that elicit strong activation of glomeruli in the dorsal olfactory bulb, and cover several
important classes of odorants that include aldehydes, esters, ketones, and acids. Such diversity is
essential for achieving a comprehensive perspective on glomerular activation, where we can isolate
how the different chemical classes interact distinctively with specific types of olfactory receptors.
We are continually expanding the dataset with additional odors and animals, and make the raw
data publicly available to facilitate fair comparison, benchmarking, and reproducible research in
olfaction.

4.2 BUILDING DATA INGESTION PIPELINE

For each odorant–mouse pair, glomerular activity was recorded as a video sequence (Appendix A;
Figure 6). Each recording was converted into a stack of image frames sampled at the frame rate of
the camera. Since raw videos are inherently noisy, we applied preprocessing steps to extract dis-
criminative neural signals while suppressing background structure. In particular, widefield imaging
captures strong anatomical signals such as vasculature, which dominate the images but do not con-
tribute to odor identity. Our objective is to isolate the foreground patterns of glomerular activation,
which carry the relevant stimulus-specific information.

Appendix A; Figure 7 shows a schematic of this process. The left panel shows a raw image frame
containing both background and glomerular activity, while the middle panel shows the background
alone. The similarity of these two frames highlights the difficulty to discern activations directly from
the raw data. Subtracting the background from the raw frame yields the right panel, which reveals
the foreground activation pattern for the odorant.

To further condense the temporal information, each video sequence of 320 frames was projected
into a single image by computing the maximum pixel intensity (MPI) across time for each pixel
(Appendix A; Figure 8). The resulting MPI images were then enhanced using Median Filtering
(Huang et al., 1979) followed by anisotropic (Perona–Malik) diffusion (Weickert, 1996; IEE). This
procedure reduces noise and sharpens region boundaries, improving the signal in regions of interest
(ROIs) (Appendix A; Figure 9). The final MPI images serve as standardized inputs for our machine
learning model. Each image represents a trial-specific neural signature of glomerular activation,
from which models learn spatial representations that enable odor classification.

4.3 RESULTS: LEARNING NEURAL REPRESENTATIONS FOR ODOR CLASSIFICATION

We evaluated our approach by training and testing on aggregated, denoised MPI images. The dataset
was split into train and test sets, with training and testing images corresponding to different mice.
This allowed us to assess whether our model trained on one subject can generalize at the level of the
compressed spatial representations of ROIs across subjects. We expect that model performance will
further improve with larger datasets and by incorporating temporal dynamics of neural responses
across more subjects.

We trained a convolutional neural net model based on the aggregated dataset to learn spatial rep-
resentations of activated glomeruli. This architecture leverages local receptive fields to capture the
spatial organization of regions of interest (ROIs) within the olfactory bulb. A schematic diagram
and details of model is at Appendix F.

The table presenting the Precision, Recall and F1 score results on the test set for each odorant
is placed at Appendix B. Figure 10 at Appendix C shows the confusion matrix, where each cell
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shows the percentage of correct responses. Figure 11 at Appendix D shows per class and the Micro
and Macro - average AUC ≈ 0.99. The results demonstrate that a simple CNN trained on MPI
images from mice can effectively separate neural representations by odor identity within the learned
neural representation space of odors. We expect the accuracy of this simple model to decline as we
increase the number of odorants, and particularly odorants that elicit similarly localized responses
in the dorsal olfactory bulb that we observe. Indeed, we observe a few such cases of error in our
sample.

The error patterns in this rudimentary projection of time-series data reveal multiple sources of po-
tential ”noise” in the data which can lead to the prediction errors shown in the confusion matrix in
Appendix C Figure 10.Likely sources of error include: (a) inter-subject variability, (b) similarity
of the ROIs for odors, and (c) experimental variance or observational error, such as fluctuations in
image luminosity or spurious activity outside the olfactory bulb. Addressing these sources of noise
will be critical for improving generalization as the dataset expands.

(a) Train Image - Pentyl Acetate (b) Test Image - Pentyl Acetate

Figure 2: Comparison of an Instance of Train and Test Image for Pentyl Acetate. The red
outlined areas help appreciate the inter-subject variability in ROIs for Pentyl Acetate.

Figure 2a and Figure 2b shows inter-subject variability in the activation regions for Pentyl Acetate
(outlined in red). Figures 3a and 3b show a case of substantial overlap in MPI activation patterns for
Methyl Benzoate and Benzaldehyde, resulting in 73% of Methyl Benzoate trials being misclassified
as Benzaldehyde.

(a) Test Image - Methyl Benzoate (b) Test Image - Benzaldehyde

Figure 3: Comparison of an Instance of Test Image for Benzaldehyde and Methyl Benzoate.
The red outlined areas help appreciate similarity in ROIs for Methyl Benzoate and Benzaldehyde.

Although the two odorants share structural commonalities, including a benzene ring that contributes
to their aromatic properties and may influence receptor interactions, their functional groups differ:
Methyl Benzoate contains an ester, whereas Benzaldehyde contains an aldehyde. These differences
could yield distinct binding affinities and downstream activation patterns across the olfactory bulb,
but the overlap observed in our data highlights how structural similarity can drive misclassification.

7
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We observe similar effects among short-chain carboxylic acids. Propionic Acid is frequently mis-
classified as Valeric Acid, Isobutyric Acid, and Acetic Acid, while Acetic Acid is commonly mis-
classified as Isobutyric Acid, Propionic Acid, and Valeric Acid. Additionally, we also identify
misclassifications between odorants with divergent molecular structures, such as Geraniol and 2-
Ethylhexanal. These cases emphasize that misclassification is not solely explained by gross struc-
tural similarity. Instead, they highlight the complex and nonlinear nature of odorant–receptor inter-
actions that ultimately determine glomerular activation and neural representations.

We also observe instances of spurious activity outside the olfactory bulb. To examine how the model
differentiates among odorant-specific activation patterns, we employ Gradient-weighted Class Ac-
tivation Mapping (Grad-CAM) (Selvaraju et al., 2016).Grad-CAM highlights the spatial features
most responsible for a given prediction, thereby localizing the regions that drive classification. Ap-
pendix E presents averaged MPI representations from both training and testing sets alongside the
corresponding Grad-CAM heat maps (for each of the 35 odorants). These results reveal the local-
ized activation patterns that the network leverages for classification. The grad cam visualizations
employ a color-coded scheme to signify the model’s prioritization within the bulb’s regions: areas
marked in red are deemed most significant by the model, followed by those in green. Blue zones
are considered unimportant. Even at this aggregate level, we can see that the model can classify
the odorants based on the activation patterns observed across various segments of the bulb for the
odorants.

(a) 2 Ethylhexanal (b) 2 Heptanone (c) Ethyl Butyrate

Figure 4: GradCAM Images Show Features Learnt by Model Outside Olfactory bulb. The Grad
CAM overlay images above show the discriminative regions considered important by the model.

Figure 4a, Figure 4b and Figure 4c show that the model considers features outside the olfactory
bulb (outlined in red), which are clearly noise. This experimental error can be mitigated by pre-
processing algorithms that focus exclusively on data within the bulb. Together with denoising, such
algorithms are essential to attenuate background interference and noise in images to achieve better
discriminative acuity.

5 DISCUSSION & NEXT STEPS

Our approach has clear scope for improvement, and we expect substantial gains with larger datasets
and more expressive models. Neural networks trained on maximum-intensity-projection (MPI) im-
ages of glomerular activity learn spatial representations that support odor classification across mice.
Grad-CAM visualizations indicate that the model leverages localized regions of interest (ROIs) con-
sistent with glomerular patterns, though we also observe spurious attention outside the olfactory
bulb. While Grad-CAM is useful for interpretability, it is model-dependent and sometimes highlights
extra-bulbar regions. Removing vasculature and other background noise could further improve both
predictive power and biological plausibility.

Beyond static MPI representations, incorporating the temporal sequence of glomerular activations
is a critical next step. Prior work has shown that latency and order of activation carry significant
information for odor perception (Chong et al., 2019). In particular, the primacy coding hypothesis
suggests that a small set of the earliest-activated glomeruli can be sufficient to define odor identity
(Wilson et al., 2017). Modeling this principle could yield more compact and interpretable represen-
tations, and help bridge biological coding theories with machine learning approaches to olfaction.
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Figure 5: A Virtual Model of Glomeruli Activation Sequence for different odorants. The virtual
representation shows comparison and labelling the Glomeruli activation for respective frames. The
cube represents the Glomeruli, Odorants and Time on three different axes.

As our next step, we aim to develop models that jointly learn spatial and temporal representations
of glomerular activity across a larger set of odorants. The objective is to localize ROIs consistently
across mice and to construct a database representation as illustrated in Figure 5. In this representa-
tion, the x-axis indexes glomeruli, the y-axis encodes temporal activation sequences, and the z-axis
corresponds to odorants. The resulting Expected Glomerular Activation Cube provides an archetypal
spatiotemporal profile of odor-evoked responses that can serve as both a benchmark representation
and a target for predictive modeling. Looking forward, this can serve as the output label in gen-
erative frameworks, where models predict activation tensors conditioned on molecular or linguistic
descriptors of odorants. Given the high dimensionality and nonlinearity of odor space, achieving
this goal will require substantially larger datasets. To this end, we are expanding Odor-MNIST
(oMNIST) toward a thousand-odor benchmark, with data organized along the lines of Figures 5 and
6.The dataset with trial videos for 35 odorants has been made publicly available.2

6 CONCLUSION

In summary, our position is that there is no simple way to parametrize the space of molecules into an
”odor map” at the moment, and little is known about the geometry of olfaction, such as the relation-
ship between individual molecules and mixtures that contain them. This approach has translational
potential in diagnostics, as many diseases are challenging to detect with conventional clinical meth-
ods and yield VOC profiles that can be subtle even for GC–MS, yet they are often detectable by
trained animals. Models of glomerular activation may offer a path to capture these biologically
relevant signatures and translate them into scalable diagnostic tools.

Artificial intelligence has advanced rapidly in language and vision through abundant datasets and
algorithms that learn representation from data. Olfaction is now becoming accessible to similar ap-
proaches thanks to improved imaging of pre-synaptic activity at the first olfactory synapse. Our re-
sults show that neural networks trained on maximum-intensity-projection (MPI) images of glomeru-
lar activity can learn spatial representations that support accurate, cross-animal odor classification.
These learned embeddings offer a data-driven coordinate system for studying odor identity at the
level of neural signals. Machine learning methods will therefore be invaluable for solving open
questions in olfaction, especially if this approach considers the latent biological variables involved,
that shed light on the central role of odorant-receptor interactions in smell(Barwich & Lloyd, 2022).
Accordingly, our primary goal is to advance the science of olfaction through a Machine Learning
approach which is embedded in biology.

2Dataset link omitted for double-blind review. It will be released after review is completed. Processed data
alongwith the code is available at Github Repository
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Ethics Statement. All animal procedures were approved and conducted as per IACUC Protocol
#IA16-00197 and complied with relevant guidelines.

Reproducibility Statement. The pre-processed data along with the code is available at Github
Repository. The raw video data has been publicly released. The link for raw data is omitted only for
double blind review to avoid disclosing author identities. The link will be released upon completion
of review.
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A BUILDING THE DATA INGESTION PIPELINE

Figure 6: Curating the Videos into Image Frames. The diagram above is a schematic representa-
tion of the curation of image frames from the glomeruli activation sequence video. The image stack
is converted into a 3d tensor representation. The x, y and z axis represent the x, y coordinates of
ROIs and image frames over the time period of the video respectively.

Figure 7: Background Subtraction during Noise Removal from Raw Image Frames.
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Figure 8: Image Frames of Glomeruli Activation Video converted to a single MPI projected image.

Figure 9: Denoising of MPIs using Anisotropic Diffusion.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B PRECISION, RECALL AND F1 RESULTS ON TEST DATA

Table 1: Results on Test Data

S No. Odorant Precision Recall F1
1. 2 3 Pentanedione 0.80 0.80 0.80
2. 2 Ethylbutyric Acid 0.50 0.45 0.48
3. 2 Methyl Butyraldehyde 1.00 1.00 1.00
4. 2 Methyl Valeraldehyde 0.85 1.00 0.92
5. 2 Methylhexanoic Acid 0.48 1.00 0.65
6. 2 Ethylhexanal 0.57 0.40 0.47
7. 2 Heptanone 1.00 0.64 0.78
8. 33 Dimethylbutyric Acid 1.00 1.00 1.00
9. 3 Methylvaleric Acid 0.90 0.82 0.86

10. 3 Heptanone 0.56 0.91 0.69
11. 4 Methylvaleric Acid 0.53 0.80 0.64
12. 5 Methyl 2 Hexanone 0.45 0.90 0.60
13. Acetic Acid 0.17 0.08 0.11
14. Butyl Acetate 0.38 0.55 0.44
15. Cyclopentane Carboxylic Acid 1.00 0.77 0.87
16. Ethyl Tiglate(ET) 1.00 1.00 1.00
17. Ethyl Butyrate 0.40 0.73 0.52
18. Heptanoic Acid 1.00 0.18 0.31
19. Methyl Valerate (MVT) 0.57 0.73 0.64
20. Methyl Benzoate 0.33 0.09 0.14
21. Pentyl Acetate 0.80 0.36 0.50
22. Salicyl Aldehyde 0.83 1.00 0.91
23. Benzaldehyde 0.78 0.64 0.70
24. Butyraldehyde 1.00 0.45 0.62
25. Butyric Acid 0.75 0.67 0.71
26. Cinnamaldehyde 1.00 1.00 1.00
27. Ethyl Valerate 1.00 0.55 0.71
28. Geraniol 0.86 0.55 0.67
29. Heptyl Acetate 0.60 0.27 0.37
30. Isobutyric Acid 0.53 0.73 0.62
31. M Anisaldehyde 1.00 1.00 1.00
32. N Methylpiperidine 1.00 0.94 0.97
33. P Anisaldehyde 0.79 1.00 0.88
34. Propionic Acid 0.27 0.27 0.27
35. Valeric Acid 0.14 0.20 0.17
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C CONFUSION MATRIX FOR ODOR CLASSIFICATION

Figure 10: Confusion Matrix for classification of Thirty Five Odors based on Neural Representation
of Activated Glomeruli in Olfactory bulb of Test Mice
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D ROC CURVE ACROSS 35 ODORS

Figure 11: One-vs-rest ROC curves across 35 odorants. Thin lines show per-class ROCs, while
the dotted magenta and dashed blue curves denote micro- and macro-averages, respectively (AUC =
0.99 for both). The diagonal line indicates chance level.

The above Figure shows ROC curves under a one-vs-rest evaluation. The micro-average (dotted
magenta) aggregates predictions across all classes and therefore reflects class imbalance, while the
macro-average (dashed blue) gives equal weight to each odorant by averaging per-class ROCs.
Both scores are high (AUC 0.99), showing that the model generally ranks the true class above
alternatives. However, AUROC is threshold-independent and dominated by many easy negatives, so
it may remain high even when top-1 classification accuracy is modest for confusable odorants. To
address this, we also report per-class precision, recall, and F1 scores as complementary measures.
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E GRAD CAM OVERLAY ON TEST IMAGES

Figure No. Odorant Name Avg Training
Mouse Image

Avg Test
Mouse Image

Grad CAM
Overlay
Image

1. 2 3 Pentanedione

2. 2 Ethylbutyric Acid

3. 2 Methyl Butyraldehyde

4. 2 Methyl Valeraldehyde

5. 2 Methylhexanoic Acid

6 2 Ethylhexanal

7. 2 Heptanone

8. 33 Dimethylbutyric Acid

9. 3 Methylvaleric Acid

The Grad CAM overlay images above show the discriminative regions considered important by the
model. Areas marked in red are deemed most significant by the model, followed by those in green.
Blue zones are considered unimportant. The above mapping shows the correctly classified images.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure No. Odorant Name Avg
Training
Mouse
Image

Avg Test
Mouse
Image

Grad CAM
Overlay
Image

10. 3 Heptanone

11. 4 Methylvaleric Acid

12. 5 Methyl 2 Hexanone

13. Acetic Acid

14. Butyl Acetate

15. Cyclopentane Carboxylic Acid

16. Ethyl Tiglate(ET)

17. Ethyl Butyrate

18. Heptanoic Acid

The Grad CAM overlay images above show the discriminative regions considered important by the
model. Areas marked in red are deemed most significant by the model, followed by those in green.
Blue zones are considered unimportant. The above mapping shows the correctly classified images
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Figure No. Odorant Name Avg Training
Mouse Image

Avg Test
Mouse Image

Grad CAM
Overlay Image

19. Methyl Valerate (MVT)

20. Methyl Benzoate

21. Pentyl Acetate

22. Salicyl Aldehyde

23. Benzaldehyde

24. Butyraldehyde

25. Butyric Acid

26. Cinnamaldehyde

27. Ethyl Valerate

The Grad CAM overlay images above show the discriminative regions considered important by the
model. Areas marked in red are deemed most significant by the model, followed by those in green.
Blue zones are considered unimportant. The above mapping shows the correctly classified images.
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Figure No. Odorant Name Avg Training
Mouse Image

Avg Test Mouse
Image

Grad CAM
Overlay Image

28. Geraniol

29. Heptyl Acetate

30. Isobutyric Acid

31. M Anisaldehyde

32. N Methylpiperidine

33. P Anisaldehyde

34. Propionic Acid

35. Valeric Acid

The Grad CAM overlay images above show the discriminative regions considered important by the
model. Areas marked in red are deemed most significant by the model, followed by those in green.
Blue zones are considered unimportant. The above mapping shows the correctly classified images.
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F DETAILS OF CNN MODEL ARCHITECTURE

Figure 12: Schematic Diagram of CNN Architecture. The diagram above is a schematic rep-
resentation of the CNN used for classification of MPI images. The Layers in brown indicate the
convolutional and the pooling layers. The layers in magenta are fully connected layers with a soft-
max layer at the end.

The convolutional neural net used for the classification comprises five convolutional layers that
take a single-channel input and applies 64 filters with a kernel size of 3x3, using a stride of 1 and
padding of 1 to preserve the spatial dimensions of the input. We increase the number of filters,
doubling from one layer to the next: conv2 has 128 filters, conv3 has 256 filters, conv4 has 512
filters, and conv5 has 1024 filters. Each of these layers also uses 3x3 kernels with a stride of 1 and
padding of 1, enabling the network to learn increasingly complex and abstract features at each layer.
Following each convolutional layer, a batch normalization layer is applied to normalize the output
of the convolutional layers, reducing internal covariate shift and stabilizing the learning process. We
use max pooling layer to downsample the feature maps. These high level features learned by the
CNN are flattened and passed through three fully connected layers. The final fully connected layer
maps the 1024-dimensional features to 35 output classes. For this multi-class classification problem,
we minimize a standard cross entropy loss function and choose the class with the highest predicted
probability. We used a dropout rate of 0.3 to prevent overfitting.
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