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ABSTRACT

A generalist agent should perform well on novel tasks in unfamiliar environ-
ments. While Foundation Policies (FPs) enable generalization across new tasks,
they lack mechanisms for handling novel dynamics. Conversely, agents equipped
with memory models can adapt to new dynamics, but struggle with unseen tasks.
In this work, we bridge this gap by integrating memory models into the FP
architecture, allowing policies to condition on both task and environment dy-
namics. We evaluate FPs enhanced with attention, state-space, and RNN-based
memory models on POPGym, a memory benchmark, and ExORL, an unsuper-
vised RL benchmark. Our results show that GRUs achieve the best generaliza-
tion to unseen tasks and dynamics for a given recurrent state size, approach-
ing the performance of a supervised baseline that has access to task informa-
tion during training and significantly outperforming memory-free FPs. Addi-
tionally, our approach improves FP performance on entirely new environments
not encountered during training. Our anonymized code is available at https:
//anonymous.4open.science/r/zero-shot-96A1, and our datasets
are open-sourced at REDACTED.

1 INTRODUCTION

Reinforcement Learning (RL) agents [92] exhibit superhuman decision-making skill when tasked
with a single objective in a single environment [89, 67, 90, 91]. A new line of work focuses on
producing generalist agents that replicate such results across many tasks and environments [83, 53,
105]. Foundation policies (FPs) [96, 97, 76, 45] are a promising approach for building generalist
agents, providing a principled mechanism for generalising to any downstream task in an environment
after an offline reward-free pre-training phase. However, as yet, FPs are not equipped to deal with a
change in dynamics between pre-training and deployment.

A concurrent line of work on in-context RL attempts to build generalist agents by using memory
models to condition policies on reward-labelled trajectories [14, 43, 56, 54, 62, 23] or to reach arbi-
trary goal states [31]. In principal, these models can perform dynamics generalisation by inferring
changes between training and testing from the trajectory used to condition the policy. However, they
lack the task generalisation ability of FPs for two reasons. They are either 1) trained with reward
supervision and so cannot reliably generalise to new tasks with different reward functions, or are 2)
trained without reward supervision to reach any goal-state in an environment and so cannot reliably
generalise to new tasks not codified by a goal state.

Here, we reconcile these lines of work and propose foundation policies with memory, an architecture
that, like in-context RL agents, infers the current dynamics context using powerful memory models
and passes it to an FP for solving unseen tasks. We evaluate FPs with attention [98], state-space
[32, 33], and RNN-based [24, 17] memory models across a range of experiments testing their ability
to infer the dynamics context, and generalise to unseen tasks in unseen dynamics. We find that
GRUs achieve the best generalisation to unseen tasks and dynamics for a given recurrent state size,
approaching the performance of a supervised baseline that has access to task information during
training and significantly outperforming memory-free FPs (Figure 1). Finally, we find that FPs with
memory improve FP performance on entirely new environments not seen during training.
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Figure 1: Zero-shot task and dynamics generalisation. FPs with memory models generalise to
test tasks and dynamics not seen during training on the ExORL benchmark. FB-GRU approaches
the performance of a supervised baseline, TD3-GRU, despite being trained without rewards. A full
discussion is provided in Section 4.3.

2 PRELIMINARIES

Contextual markov decision processes. A Contextual Markov Decision Process (CMDP) is
defined by (C, S,O, ϕ,A,R, ρ, γ,M(c)). C is the set of contexts, S is the underlying state space,
O and A are sets of observations and actions, ϕ : S → O is the observation function, R : S → R
is a reward-function specifying a task, γ is a discount factor, and ρ is the initial state distribution
[35]. M is a function that maps a context c ∈ C to a Partially Observable Markov Decision Process
(POMDP) [2] M(c) = (S,O,A,R, ρ, γ, P c) with a context-dependent transition function P c :
S×A×C → ∆(S). A Markov policy π : S → ∆(A) is optimal in context c for reward functionR if
it maximises the expected discounted future reward i.e. π∗

c,R = argmaxπ E[γtR(st+1)|s0, a0, π, c],
where E[·|s0, a0, π, c] is the expectation under state-action sequence (st, at)t≥0 starting at (s0, a0)
with st ∼ P c(·|st−1, at−1) and at ∼ π(·|st). Note that the context c ∈ C cannot be observed
directly.

Problem setting. We split the CMDP into a set of training contexts Ctrain and testing con-
texts Ctest. We assume access to a dataset Dtrain of unlabelled observation-action trajectories
τ = (o0, a0, o1, . . . , oT ) collected from the training contexts by a highly exploratory behaviour
policy. Our goal is to pre-train an adaptive policy π(a|h, z), where h ∈ Rm is a hidden state
summarising both the context c and inferred Markov state s, and z ∈ Rd denotes a compact rep-
resentation of the task. We will pre-train this policy solely from offline data Dtrain, without online
interactions.

We will evaluate the policy on an unseen test task Rtest in an unseen test context ctest ∈ Ctest.
The test task is revealed either via Dtest, a small dataset of labelled observation trajectories
((ot−L, . . . , ot), Rtest(st)) of length L, or as an explicit function o 7→ Rtest(s) (like 1 at a goal
state and 0 elsewhere)1. Unless, the agent can infer ctest from Dtest, it will need to infer it from the
observation-action history it observes during evaluation. This problem setting is directly equivalent
to [97]’s zero-shot RL setting with a change in the environment dynamics between training and
testing. As a result, we call it zero-shot RL under changed dynamics.

Foundation policies. Foundation policies (FPs) approximate the (universal) successor features
[6, 11] of near-optimal policies for any task in an environment. They require access to a feature map
φ : S 7→ Rd that embeds states into a representation space in which the reward is assumed to be
linear i.e. R(s) = φ(s)⊤z with weights z ∈ Rd representing a task. The USFs ψ : S×A×Rd → Rd

1Note that the agent only sees the observation, but the reward is a function of the underlying state.
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are defined as the discounted sum of future features subject to a task-conditioned policy π(s, z):

ψ(s0, a0, z) = E

∑
t≥0

γtφ(st+1)|s0, a0, π(s, z)

 ∀ s0 ∈ S, a0 ∈ A, z ∈ Rd. (1)

where the policy is trained in an actor-critic formulation [51] such that

π(s, z) ≈ argmax
a

ψ(s, a, z)⊤z, ∀ s ∈ S, a ∈ A, z ∈ Rd, (2)

where ψ(s, a, z)⊤z is the Q function (critic) formed by ψ. During training, candidate task weights
are sampled from Z , a prior over the task space2. During evaluation, the test task weights are found
by regressing labelled states onto the features: ztest := argminz Es∼d[(Rtest(s)−φ(s)⊤z)2], before
being passed to the policy. The features can be learned with Hilbert representations [76], laplacian
eigenfunctions [97], contrastive methods [97], or in service of successor measure prediction [10], as
is the case for the forward Backward (FB) foundation policy [96] used in this work.

3 METHOD

Recall that our goal is to pre-train an adaptive policy π(a|h, z) that is conditioned on h, a hidden state
summarising both the context c and inferred Markov state s, and task z. As we outlined in Section 2,
the FP framework provides a principled way of pre-training π(a|s, z) i.e. a policy conditioned solely
on the task and Markov state. In this section, we will discuss amendments to the FP framework that
allow policies to be conditioned on h rather than s.

3.1 MEMORY MODELS

Following past work on RL in CMDPs, we assume that we can produce an estimate of the dynamics
context c and Markov state s from a trajectory of observation-action pairs τ = x0, . . . , xL, where
xn = ϵ(on, an) is some encoding of an observation-action pair and L is the context length [31, 65].
We seek a model of the form

yj , hj = f(xj , hj−1), j ∈ [1, . . . , L], (3)

where xj , yj are the inputs and outputs at time j, and f updates a hidden state h ∈ Rm summarising
the current Markov state and dynamics context prediction. This is the standard setup of a memory
model in RL [4, 68, 69, 70, 82, 66, 73, 40, 86, 100, 8, 109], because the asymptotic inference
time complexity is O(1) which is helpful for fast data collection, or high-frequency motor control
[62]. Until recently, only Recurrent Neural Networks (RNNs) [24, 41, 17] have had this property,
but newly proposed structured state-space models (S4) [32, 33, 34] and fast Transformers [98, 19,
48] have runtime complexity approaching that of RNNs, and model histories with large L more
accurately. We explore all of these memory models in Section 4.

3.2 FOUNDATION POLICIES WITH MEMORY

Equipped with memory model f , we now condition the FP’s actor and critic on the hidden state
it produces. We define contextual USFs as the discounted sum of future features extracted from
the hidden state, subject to a policy conditioned on the inferred Markov state and dynamics context
π(h, z)

ψ(h, z) = E

∑
t≥0

γtφ(ht+1)|h0, π(h, z)

 h0 = 0m,∀ z ∈ Rd, (4)

where ht = f(xt, ht−1) from Equation 3, xt is zero-padded for all t < L, and h0 = 0m is an initial
hidden-state of zeroes. The policy is trained such that

π(h, z) ≈ argmax
a

ψ(h, z)⊤z, ∀ h ∈ Rm, z ∈ Rd, (5)

2See Appendix B.1.1 for more detail on Z .
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Figure 2: Foundation policies with memory. FPs are optimised in a standard actor critic setup
[51]. The policy π selects an action at conditioned on a history of observations and actions
ot−L, at−L−1, . . . , ot, at−1 of length L encoded by the actor’s memory model, and the task vec-
tor z. The Q function formed by the USF ψ evaluates the sequence of observations and actions
ot−L, at−L, . . . , ot, at encoded by the critic’s memory model for task z. The architecture of an FP
without memory is illustrated in Figure 6 in Appendix B for comparison.

where ψ(h, z)⊤z is the Q function (critic) formed by ψ. Training proceeds exactly as with conven-
tional USFs, and the test-time task weights are found by regressing labelled states onto the hidden-
state features: ztest := argminz Est,(ot−L:t,at−L:t)∼d[(Rtest(st)− φ(f((ot−L:t, at−L:t), h0:L)

⊤z)2],
before being passed to the policy. The full architecture and optimisation procedure is summarised
in Figure 2. We found that using a shared memory model for the actor and critic led to model
collapse, so use separate memory models for each. This corroborates the findings of [73]. Full im-
plementation details are provided in Appendix B. In the experiments discussed in Section 4 we use
FB representations as our FP which follow a slightly different training procedure. We discuss these
details in Appendix B.

4 EXPERIMENTS

In this section we perform an empirical study to evaluate our proposed method. We seek answers
to three questions: (Q1) Can our method encode trajectories into a Markov state for use in solving
one task in an environment? (Q2) Can our method generalise to unseen tasks in an environment
with different dynamics to those seen in training? I.e. can our method perform zero-shot RL under
changed dynamics? And (Q3) Can our method generalise to unseen tasks in a completely different
environment to those seen in training? I.e. can our method perform zero-shot environment generali-
sation?

4.1 SETUP

Environments. We respond to Q1 using the POPGym benchmark [68], a set of tests that evaluate
an agent’s ability to infer Markov states from trajectories of observations and actions. We only eval-
uate on the “Hard” versions of CartPole, Pendulum, Noisy CartPole, Noisy Pendulum and Repeat
Previous environments following [62]. For these experiments, we allow the agent to recondition
its policy on the previous L observation-action pairs every step so we can disentangle the memory
model’s ability to accurately model the Markov state from its ability to carry forward an accurate
hidden state. For all other experiments we do not allow such re-conditioning and require the policy
to condition on only the previous hidden state, current observation-action pair, and task. Note for
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these experiments Ctrain = Ctest, so we are not yet testing whether our method can generalise across
contexts.

We respond to Q2 using the ExORL benchmark [108], a set of tests that evaluate an agent’s ability
to generalise to unseen tasks on the DeepMind Control Suite [93]. We evaluate on the same envi-
ronments as [97]: Walker, Maze, Cheetah and Quadruped, removing the velocities from each of the
state spaces to ensure the observations are not Markov, and call these variants occluded. To evaluate
dynamics generalisation we train on datasets collected from environment instances where the robot’s
mass and damping coefficient are scaled to {0.5x, 1.5x} of their usual values. We then evaluate on
environment instances where the robot’s mass and damping coefficient are scaled by {1.0x, 2.0x}
of their usual values, where 1.0x requires the agent to generalise via interpolation, and 2.0x requires
the agent to generalise via extrapolation [74]. We evaluate on all tasks provided by the DeepMind
control suite, and increase the number of goals in Maze from 4 to 20 for a total of 32 tasks across 4
environments.

We also respond to Q3 using the ExORL benchmark [108]. This time we train on Walker-Occluded
and Quadruped-Occluded and test on Cheetah-Occluded. The dynamics are unscaled (i.e. 1.0x)
and, as before, we evaluate on all tasks provided by the DeepMind control suite.

Aggregation across tasks or environments is always summarised by the Interquartile Mean (IQM)
and standard deviation following the recommendations of [1]. On POPGym we report the mean-
max epoch reward (MMER) metric used in the original paper. On ExORL, we report scores from
the learning step for which the all-task IQM is maximised across seeds. Full experimental details
are provided Appendix A, and a full description of our evaluation protocol is provided in Appendix
A.3.

Baselines. We use FB [96] and HILP [76] as our FP baselines. FB is the most performant FP
utilising successor measures, and HILP is the most performant FP utilising successor features. Both
methods assume access to the Markov state for training as discussed in Section 2. So, instead of
conditioning their predictions on a single observation, we provide them a stack of the 4 most recent
observations i.e. st = (ot−3, ot−2, ot−1, ot), also known as frame-stacking [67]. Frame-stacking
is a naive method for inferring a Markov state from a short trajectory of observations, and is the
first solution one would use when faced with our problem. We also baseline against a single-task,
memory-based, supervised RL method. For this we use Offline TD3 [28] with a GRU memory
model [17], which we refer to as TD3-GRU. Offline TD3 is the most performant single-task method
on the ExORL benchmark [108]; TD3-GRU is the most performant method in [73], and TD3 with an
LSTM memory model was shown to be particularly performant in [66]. TD3-GRU should indicate
how well an agent optimising for one task performs if provided reward supervision.

Datasets. Though FPs can be deployed online they require an exploration policy for data col-
lection. To disentangle test-time performance from an agent’s data collection ability, we collect
datasets on their behalf in advance using RND [11], an unsupervised RL algorithm. Agents trained
on datasets collected with RND exhibit better performance than comparable methods like APS [60],
APT [61], Proto [107] and DIAYN [25] in [108, 97, 76]. RND is run for 5 million learning steps
in each of our environments and every transition is cached. For the supervised baseline TD3-GRU,
transitions are relabelled with the appropriate rewards for a given task following [108]. All other
methods are trained on these datasets reward-free.

Memory models. We test the performance of FPs equipped with three memory models. We use
the most performant versions from each of the categories discussed in Section 3: attention-based,
state-space based, and RNN-based. For our attention-based memory model we use a Transformer
[98] with FlashAttention [19] for faster inference than a conventional Transformer. For our state-
space-based memory model we use Diagonalized S4 [33], which uses a diagonal update matrix to
perform faster training and inference than the popular S4 model [32]. For our RNN-based memory
model we use a GRU [17] as it is the most performant RNN on the POPGym benchmark. Hereafter
we refer to the FB models we augment with these as FB-TF, FB-S4 and FB-GRU respectively.
To ensure a fair comparison across memory models, we follow [68] and restrict each model to a
fixed hidden state size, rather than a fixed parameter count. Concretely, we allow each model a
hidden state size of 322 = 1024 dimensions. In Section 4.3 we condition the models on trajectories
of length 32, so a hidden state size of 322 allows the attention-based, and state-space models to
perform their tensor products across the full input trajectory, and gives the RNN two 512-dimension
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layers in which to summarise the trajectory. Full implementation details are provided in Appendix
B.

4.2 POPGYM

Figure 3: POPGym results. Aggregate
mean-maximum epoch reward (MMER)
across all POPGym environments, nor-
malised w.r.t. TD3-GRU performance.

We report the aggregate performance of all FB-based
algorithms on the POPGym environments in Figure 3.
Our supervised baseline, TD3-GRU, performs similarly
to the PPO-GRU approach in the original POPGym pa-
per. FB with frame-stacking performs poorly, reaching
only 30% of TD3-GRU’s aggregate score. Our three
memory-based methods perform comparitively better,
with FB-TF reaching 80% of TD3-GRU’s performance,
and FB-S4 and FB-GRU matching TD3-GRU’s perfor-
mance. We find that all methods fail on the RepeatPrevi-
ousHard environment, where other in-context RL agents
have shown strong performance [62, 31]. This task re-
quires the agent to remember the suit of a card dealt 64
timesteps ago (Appendix A), and our models are trained
with context length L = 64. This suggests that the mem-
ory models are not accurately recalling information from
the start of their context. The implications of our choice
of length L are discussed in Section 5.

4.3 ZERO-SHOT RL UNDER CHANGED DYNAMICS

We report the aggregate performance of all algorithms
on our zero-shot RL under changed dynamics experiments in Figure 4 (left), and the ratios of inter-
polation/extrapolation performance to train performance in Figure 4 (right). As with our POPGym
experiments, FB performs poorly, reaching ∼ 25% of the performance of our supervised baseline
on the training environments. HILP performs slightly better, as we would expect given its results on
ExORL in [76], but still much poorer than TD3-GRU. Of the three FPs with memory, FB-GRU per-
forms best on train, interpolation and extrapolation evaluations, with results relative to the supervised
baseline similar to FB trained on Markov states in [97]. Aggregate test performance approximately
matches TD3-GRU aggregate test performance despite not seeing rewards during training. FB-TF
exhibits the best interpolation-to-train ratio, and FB-GRU the best extrapolation-to-train ratio.

Figure 4: Zero-shot dynamics generalisation on ExORL. (Left) Aggregate performance across all
ExORL tasks and domains normalised w.r.t. TD3-GRU performance, averaged over 5 seeds. We
train on dynamics {0.5x, 1.5x} their typical values and evaluate on 1.0x (interpolation) and 2.0x
(extrapolation). (Right) The ratios of interpolation and extrapolation performance to train perfor-
mance.

6
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Figure 5: Zero-shot environment generalisation on ExORL. Aggregate performance across all
tasks in the train environments (Walker, Quadruped), and the test environment (Cheetah), averaged
across 5 seeds.

4.4 ZERO-SHOT ENVIRONMENT GENERALISATION

We report the aggregate performance of all FB-based algorithms on our zero-shot environment gen-
eralisation experiments in Figure 5. Here, FB-GRU performs best on the training environments, but
poorest on the testing environment, with FB performing similarly poorly on the testing environment.
FB-S4 improves performance on the testing environment by ∼ 4x over FB, but at the cost of reduc-
ing training environment performance by half. FB-TF improves both training performance by 5%
over FB and triples test performance. We emphasise that, although FPs with memory do improve
zero-shot environment generalisation performance in some cases, the absolute returns remain low (a
max of 33 for FB-S4 out of a possible 1000) suggesting their is significant room for improvement.

5 DISCUSSION AND LIMITATIONS

Context length. In Section 4 we train agents with a context length L = 64 timesteps, which is the
maximum context length we could afford with our computational budget3. We see two limitations
with this. First, we have assumed the dynamics context and task for all of our experiments can be
inferred from this context, but it is not clear that this is the case. Indeed, TD3-GRU with reward
supervision and a maximally exploratory dataset does not match its performance with Markov states
from [97]. Second, successful episodes run for a minimum of 200 timesteps (as in PendulumHard)
and a maximum of 1000 timesteps (as in ExORL), meaning we never train the memory model
over full episodes, nor can we reliably maintain an episode’s full trajectory in context at test-time.
This introduces situations where the hidden state will be erroneously initialised mid-episode during
training, creating well-established theoretical issues for memory models in RL [68], though these
are yet to prove critical empirically [73, 66].

The obvious solution to these problems, were it available to us, would be to increase L until it is the
maximum episode length, and train for longer as in [31, 62, 68]. However, even if we were to do this,
any real-world deployment may induce episodes longer than this assumed max length, or indeed we
may wish to operate in the non-episodic, continual setting. The existing literature implicitly assumes
that if L is very large such issues will resolve themselves, but this is not clear to us. Exploring how
to deal with such situations is an important future research direction.

Datasets. As outlined in Section 4.1, we train all methods on datasets pre-collected with RND
[11] which is a highly exploratory algorithm designed for maximising data heterogeneity. However,
deploying such an algorithm in any real setting may be costly, time-consuming or dangerous. As a
result, our proposals are more likely to be trained on real-world datasets that are smaller and more

3Our shared resource limits us to a maximum run length of 24 hours per GPU, and the ExORL runs took
approximately 20 hours on one A100. See Appendix A.4 for more detail.
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homogeneous. It is not clear how our specific proposals will interact with such datasets. If, for
example, the dataset only exhibits parts of the state space from which the dynamics cannot be well-
inferred, like a robot stuck stationary, then we would expect our proposals to struggle. Indeed, with
poor coverage of the state-action space, we would expect to see the OOD pathologies seen in the
single-task Offline RL setting [52, 59]. That said, the proposals of [45] for conducting zero-shot RL
from real-world datasets could be integrated into our proposals easily, and may help.

6 RELATED WORK

Generalist policy pre-training FPs build upon successor representations [20], universal value
function approximators [85], successor features [6] and successor measures [10]. The state-
of-the-art methods instantiate these ideas as either universal successor features (USFs) [11] or
forward-backward (FB) representations [96, 97], with recent work showing they can be trained
on low quality datasets [45], or used to perform a range of imitation learning techniques effi-
ciently [80]. A representation learning method is required to learn the features for USFs, with
past works using inverse curiosity modules [79], diversity methods [60, 38], Laplacian eigenfunc-
tions [101], or contrastive learning [16]. No works have yet explored the generalisation capac-
ity of FPs to unseen dynamics. Two concurrent lines of work on goal-conditioned RL and in-
context RL also seek to build generalist policies. Goal-conditioned RL methods train policies to
reach any goal state from any other goal state [75, 63, 104, 26, 99], but lack the ability to gen-
eralise to tasks with “dense” reward functions, like those on the locomotion tasks in ExORL. In-
context RL methods train policies using sequence models conditioned on reward-labelled histories
[14, 43, 58, 83, 110, 13, 30, 88, 103, 102, 31, 62, 94, 23], but, unlike FPs, do not have a robust
mechanism for training without access to rewards.

Dynamics Generalisation Dynamics generalisation in RL is a well-established problem [50, 65,
74]. Common remedies include: data augmentation [81, 5, 106, 37, 36, 55], domain randomisation
[95, 21, 46, 47, 77], learning context-aware policies [87, 57, 9, 44], and meta-learning [15, 83, 27,
71, 72]. Our work is most similar to those that tackle dynamics generalisation by conditioning
policies on dynamics inferred with a memory model [73, 18]. Where these methods are concerned
with generalising to one unseen task in unseen dynamics contexts, our method can generalise to
more than one unseen tasks in unseen dynamics contexts.

7 CONCLUSION

In this paper, we explored augmenting Foundation Policies (FPs) with memory models to allow
them to condition policies on a dynamics context inferred from a history of observations and ac-
tions. We evaluated our proposals with attention, state-space, and RNN-based memory models on
POPGym, a memory benchmark, and ExORL, an unsupervised RL benchmark. Our results show
that GRUs achieve the best generalisation to unseen tasks and dynamics for a given recurrent state
size, approaching the performance of a supervised baseline that has access to task information dur-
ing training and significantly outperforming memory-free FPs. We believe our proposals represent
a further step toward the development of generalist, adaptive agents.
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A EXPERIMENTAL DETAILS

A.1 POPGYM

We consider 5 environments from the POPGym benchmark [68] which is built atop the OpenAI
gym [12]. Each tests the agents ability to summarise a trajectory of observations and actions into
a Markov state for use in solving one downstream task. Following [62] we only consider the hard
variants, because the other variants are considered too straightforward.

Stateless CartPole Hard. The cartpole environment from [7], but with the angular and linear
positions removed from the observation. The agent must integrate to compute positions from ve-
locity and balance the pole atop the cart to receive reward. The hard variant requires the pole to be
balanced for 600 timesteps (the easy and medium variants require the pole to be balanced for fewer
timesteps).

Noisy Stateless CartPole Hard. The same as Stateless CartPole Hard but with Gaussian noise
added to observations. The hard variant sets the standard deviation of the noise σ = 0.3 (the easy
and medium set σ = 0.1 and σ = 0.2 respectively).

Stateless Pendulum Hard. The swing-up pendulum [22] with the angular position information
removed. The agent must integrate to compute positions from velocity and swing the pendulum up
to receive reward. The hard variant requires the pendulum to be balanced for 200 timesteps (the
easy and medium variants require the pole to be balanced for fewer timesteps).

Noisy Stateless Pendulum Hard. The same as Stateless Pendulum Hard but with Gaussian noise
added to observations. The hard variant sets the standard deviation of the noise σ = 0.3 (the easy
and medium set σ = 0.1 and σ = 0.2 respectively).

Repeat Previous Hard. Observations contain one of four values. The agent is rewarded for
outputting the observation from some constant k timesteps ago, i.e. observation ot−k at time t. The
hard variant sets k = 64 (the easy and medium variants set k < 64).

A.2 EXORL

We consider 4 environments (three locomotion and one goal-directed) from the ExORL benchmark
[108] which is built atop the DeepMind Control Suite [93]. We occlude their states by removing
all velocity components, similar to [73, 66]. Environments are visualised here: https://www.
youtube.com/watch?v=rAai4QzcYbs. The domains are summarised in Table 1.

Walker-Occluded. A two-legged robot required to perform locomotion starting from bent-kneed
position. The observation and action spaces are 17 and 6-dimensional respectively (after occlusion),
consisting of joint torques and positions. ExORL provides 4 tasks stand, walk, run and
flip. The reward function for stand motivates straightened legs and an upright torso; walk and
run are supersets of stand including reward for small and large degrees of forward velocity; and
flip motivates angular velocity of the torso after standing. Rewards are dense.

Quadruped-Occluded. A four-legged robot required to perform locomotion inside a 3D maze. The
observation and action spaces are 67 and 12-dimensional respectively (after occlusion), consisting of
joint torques and positions. We evaluate on 4 tasks stand, run, walk and jump. The reward
function for stand motivates a minimum torso height and straightened legs; walk and run are
supersets of stand including reward for small and large degrees of forward velocity; and jump
adds a term motivating vertical displacement to stand. Rewards are dense.

Maze-Occluded. A 2D maze with four rooms where the task is to move a point-mass to one of
the rooms. The observation and action spaces are both 2-dimensional (after occlusion); the obser-
vation space consists of x, y positions of the mass, the action space is the x, y tilt angle. ExORL
provides four reaching tasks top left, top right, bottom left and bottom right
corresponding to each room. We add four other goals in each room following [97] to provide a total
of 20 goal reaching tasks. The mass is always initialised in the top left and the reward is proportional
to the distance from the goal, though is sparse i.e. it only registers once the agent is reasonably close
to the goal.
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Cheetah-Occluded. A running two-legged robot. The observation and action spaces are 10 and
6-dimensional respectively (after occlusion), consisting of positions of robot joints. We evaluate on
4 tasks: walk, walk backward, run and run backward. Rewards are linearly propor-
tional either a forward or backward velocity–2 m/s for walk and 10 m/s for run.

A.3 EVALUATION PROTOCOL

We evaluate the cumulative reward (hereafter called score) achieved by all methods across three
seeds in POPGym and 5 seeds in ExORL. We report task scores as per the best practice recom-
mendations of [1]. Concretely, we run each algorithm for 500k learning steps (1m for ExORL),
evaluating task scores at checkpoints of 20,000 steps. At each checkpoint, we perform 10 rollouts,
record the score of each, and find the interquartile mean (IQM). We average across seeds at each
checkpoint. We extract task scores from the learning step for which the all-task IQM is maximised
across seeds. Results are reported with their associated standard deviation. Aggregation across
tasks, domains and datasets is always performed by evaluating the IQM.

A.4 COMPUTATIONAL RESOURCES

We train our models on NVIDIA A100 GPUs. Training TD3-GRU to solve one task on one GPU
takes approximately 6 hours for POPGym and 8 hours for ExORL. One run of FB-stack and SF-
stack on one domain (for all tasks) takes approximately 3 hours for POPGym and 5 hours for ExORL
on one GPU. One run of the memory-based FPs on one domain (for all tasks) on one GPU in
approximately 20 hours. Note the POPGym experiments run for 500k learning steps, whereas the
ExORL experiments run for 1m learning steps. As a result, our core experiments on the ExORL
benchmark used approximately 65 GPU days of compute.

B IMPLEMENTATION DETAILS

B.1 FOUNDATION POLICIES

FB and HILP follow the implementations by [76] which follow [97], other than the batch size which
we reduce from 1024 to 512 to reduce the computational expense of each run without limiting
performance as per [45]. Hyperparameters are reported in Table 2. An illustration of a standard FP
architecture is provided in Figure 6, for comparison with the FP with memory architecture in Figure
2.

Forward Representation F (o, a, z) / USF ψ(o, a, z). Inputs (ot−L:t, a) and state-task pairs (o, z)
are preprocessed by feedforward MLPs that embed their inputs into a 512-dimensional space. These
embeddings are concatenated and passed through a third feedforward MLP F / ψ which outputs a
d-dimensional embedding vector. The Transformer memory model with Flash Attention follows the
exact implementation in [31]; the S4d memory model follows the exact implementation in [68], and
the GRU memory model follows the exact implementation provided by Torch.

Table 1: ExORL domain summary. Dimensionality refers to the relative size of state and action
spaces. Type is the task categorisation, either locomotion (satisfy a prescribed behaviour until the
episode ends) or goal-reaching (achieve a specific task to terminate the episode). Reward is the
frequency with which non-zero rewards are provided, where dense refers to non-zero rewards at
every timestep and sparse refers to non-zero rewards only at positions close to the goal. Green and
red colours reflect the relative difficulty of these settings.

Environment Dimensionality Type Reward
Walker-Occluded Low Locomotion Dense
Quadruped-Occluded High Locomotion Dense
Maze-Occluded Low Goal-reaching Sparse
Cheetah-Occluded Low Locomotion Dense

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: FP Hyperparameters.
Hyperparameter Value

Latent dimension d 50
F / ψ dimensions (1024, 1024)
B dimensions (512, 512)
Preprocessor dimensions (512, 512)
Transformer heads 4
Transformer / S4d model dimension 32
GRU dimensions (512, 512)
Context length L 32 (Section 4.3), 64 (Sections 4.2 and 4.4)
Frame stacking (FB & HILP) 4
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3
Learning steps 1,000,000 (ExORL), 500,000 (POPGym)
Batch size 512
Optimiser Adam [49]
Learning rate 0.0001
Discount γ 0.98
Activations (unless otherwise stated) ReLU
Target network Polyak smoothing coefficient 0.01
z-inference labels 10,000
z mixing ratio 0.5
HILP representation discount factor 0.98
HILP representation expectile 0.5
HILP representation target smoothing coefficient 0.005

Backward Representation B(ot−L:t) (for FB). Inputs are preprocessed by feedforward MLPs that
embed their inputs into a 512-dimensional space then passed to the backward representation B
which is a feedforward MLP that outputs a d-dimensional embedding vector.

Actor π(ot−L:t, z). Inputs (ot−L:t, a) and state-task pairs (o, z) are preprocessed by feedforward
MLPs that embed their inputs into a 512-dimensional space. These embeddings are concatenated
and passed through a third feedforward MLP which outputs a a-dimensional vector, where a is the
action-space dimensionality. A Tanh activation is used on the last layer to normalise their scale.
As per [29]’s recommendations, the policy is smoothed by adding Gaussian noise σ to the actions
during training.

Misc. Layer normalisation [3] and Tanh activations are used in the first layer of all MLPs to
standardise the inputs.

B.1.1 z SAMPLING

FPs require a method for sampling the task vector z at each learning step. [97] employ a mix of two
methods, which we replicate:

1. Uniform sampling of z on the hypersphere surface of radius
√
d around the origin of Rd,

2. Biased sampling of z by passing states s ∼ D through the backward representation z =
B(s). This also yields vectors on the hypersphere surface due to the L2 normalisation
described above, but the distribution is non-uniform.

We sample z 50:50 from these methods at each learning step.

B.2 TD3-GRU

We adopt the same implementation and hyperparameters as is used on the ExORL benchmark.
Hyperparameters are reported in Table 3. The memory module follows the implementation from
[73] and uses a seperate encoder for the actor and critic.
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Figure 6: Foundation policies without memory. FPs are optimised in a standard actor critic setup
[51]. The policy π selects an action at conditioned on a the current observation ot, and the task
vector z. The Q function formed by the USF ψ evaluates the action at given the current observation
ot and task z.

Critic(s). TD3 employs double Q networks, where the target network is updated with Polyak aver-
aging via a momentum coefficient. The critics are feedforward MLPs that take a state-action pair
(s, a) as input and output a value ∈ R1.

Actor. The actor is a standard feedforward MLP taking the state s as input and outputting an a-
dimensional vector, where a is the action-space dimensionality. The policy is smoothed by adding
Gaussian noise σ to the actions during training.

Misc. As is usual with TD3, layer normalisation [3] is applied to the inputs of all networks.

Table 3: TD3-GRU hyperparameters.
Hyperparameter Value

Critic dimensions (1024, 1024)
Actor dimensions (1024, 1024)
GRU dimensions (512, 512)
Preprocessor dimensions (512, 512)
Learning steps 1,000,000 (ExORL), 500,000 (POPGym)
Batch size 512
Optimiser Adam
Learning rate 0.0001
Discount γ 0.98
Activations ReLU
Target network Polyak smoothing coefficient 0.01
Std. deviation for policy smoothing σ 0.2
Truncation level for policy smoothing 0.3

B.3 CODE REFERENCES

This work was enabled by: Python [84], NumPy [39], PyTorch [78], Pandas [64] and Matplotlib
[42].
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Figure 7: Per-environment POPGym results. The results are aggregated over 3 seeds, visualised
by environment, and report the normalised MMER as with Table 4.

Figure 8: Per-environment zero-shot dynamics generalisation results. The results are aggregated
over 5 seeds and all tasks in each environment, and show the normalised IQM w.r.t. TD3-GRU.

C EXTENDED RESULTS

We report a full breakdown of our results summarised in Sections 4.2, 4.3, 4.4. Table 4 reports
results on POPGym from Section 4.2, Table 5 reports results on the zero-shot dynamics generali-
sation experiments from Section 4.3, and Table 6. Additionally, Figures 7 and 8 show plots where
the results are aggregated by environment, and Figure 9 show plots where the zero-shot dynamics
generalisation results are aggregated by task.

Table 4: Full results on the POPGym environments (3 seeds). We report the unnormalised mean-
max epoch return (MMER) return ± the standard deviation averaged over 3 seeds.

Environment TD3-gru FB-stack FB-TF (ours) FB-S4 (ours) FB-GRU (ours)
NoisyStatelessCartPoleHard 0.156± 0.011 0.05± 0.0 0.132± 0.012 0.16± 0.022 0.196± 0.021

NoisyStatelessPendulumHard 0.543± 0.004 0.381± 0.033 0.572± 0.005 0.572± 0.007 0.572± 0.009

RepeatPreviousHard −0.418± 0.012 −0.455± 0.002 −0.441± 0.002 −0.436± 0.016 −0.431± 0.005

StatelessCartPoleHard 1.0± 0.0 0.017± 0.0 0.515± 0.259 1.0± 0.0 0.983± 0.025

StatelessPendulumHard 0.8± 0.032 0.436± 0.033 0.601± 0.015 0.77± 0.032 0.742± 0.01
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Figure 9: Per-task zero-shot dynamics generalisation results. The results are aggregated over 5
seeds, and show the normalised IQM w.r.t. TD3-GRU.
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Table 5: Full results on the ExORL dynamics generalisation experiments (5 seeds). For each
dataset-domain pair, we report the score at the step for which the all-task IQM is maximised when
averaging across 5 seeds ± the standard deviation.

Dynamics Environment Task TD3-gru HILP-stack FB-stack FB-TF (ours) FB-S4 (ours) FB-GRU (ours)

0.5x

Cheetah

All tasks 111± 98 21± 6 32± 7 25± 11 28± 3 43± 18

Run 26± 6 7± 3 13± 2 5± 3 10± 2 2± 14

Run Backward 16± 9 5± 9 5± 6 10± 8 5± 4 12± 16

Walk 233± 76 26± 33 77± 13 16± 7 53± 13 14± 67

Walk Backward 196± 122 36± 18 27± 18 64± 48 41± 18 89± 63

Maze Multi goal 413± 346 26± 20 80± 45 18± 25 20± 18 153± 40

Quadruped

All tasks 279± 32 203± 31 123± 25 327± 21 541± 71 330± 179

Jump 290± 115 104± 76 85± 25 315± 86 698± 60 311± 273

Run 268± 88 104± 46 96± 73 210± 74 319± 100 178± 112

Stand 322± 83 311± 90 151± 55 469± 140 824± 108 415± 337

Walk 234± 113 270± 58 123± 69 289± 40 367± 110 362± 84

Walker

All tasks 646± 224 446± 114 89± 13 451± 34 321± 24 533± 46

Flip 570± 16 409± 182 74± 25 425± 46 330± 28 489± 123

Run 249± 11 169± 26 33± 3 167± 10 117± 8 193± 10

Stand 847± 30 827± 98 182± 29 778± 15 594± 49 934± 17

Walk 723± 30 372± 196 43± 26 425± 74 243± 16 504± 66

1x

Cheetah

All tasks 146± 206 36± 36 72± 24 40± 11 47± 14 54± 38

Run 37± 21 4± 11 25± 21 5± 3 16± 7 3± 24

Run Backward 11± 6 0± 17 6± 8 16± 14 11± 6 20± 19

Walk 524± 254 102± 116 163± 66 31± 30 92± 45 49± 152

Walk Backward 255± 192 18± 16 59± 59 92± 42 53± 19 69± 69

Maze Multi goal 354± 354 11± 18 58± 32 35± 33 21± 17 154± 47

Quadruped

All tasks 232± 77 179± 19 133± 29 360± 23 445± 56 403± 160

Jump 218± 95 108± 34 135± 69 359± 58 557± 101 409± 210

Run 246± 87 76± 82 106± 77 277± 44 296± 93 203± 83

Stand 390± 130 313± 48 135± 28 565± 140 677± 125 532± 299

Walk 192± 103 168± 49 88± 59 248± 47 286± 54 362± 135

Walker

All tasks 519± 192 385± 109 74± 5 459± 42 301± 45 565± 54

Flip 432± 55 315± 155 64± 7 409± 36 299± 51 480± 49

Run 267± 29 168± 60 26± 2 181± 21 113± 16 218± 24

Stand 781± 80 671± 113 168± 20 732± 41 554± 66 871± 38

Walk 606± 46 348± 186 47± 9 475± 96 234± 57 654± 127

1.5x

Cheetah

All tasks 240± 286 13± 42 56± 25 23± 4 52± 17 52± 55

Run 52± 29 2± 41 17± 22 5± 3 18± 11 7± 41

Run Backward 24± 36 6± 9 11± 9 8± 5 14± 5 15± 13

Walk 715± 84 14± 134 127± 92 29± 11 100± 31 45± 204

Walk Backward 428± 290 18± 10 25± 37 48± 18 74± 27 84± 82

Maze Multi goal 250± 367 0± 17 67± 41 39± 37 16± 14 141± 50

Quadruped

All tasks 217± 79 177± 27 108± 39 320± 26 264± 70 371± 135

Jump 168± 69 120± 78 74± 75 255± 76 285± 96 297± 165

Run 245± 139 119± 55 81± 94 310± 101 200± 107 204± 94

Stand 371± 175 291± 46 155± 64 489± 128 348± 140 546± 288

Walk 190± 86 147± 103 60± 37 252± 45 265± 61 329± 103

Walker

All tasks 364± 166 222± 27 65± 4 336± 26 232± 50 514± 17

Flip 273± 27 130± 56 49± 7 272± 27 208± 44 384± 19

Run 204± 40 82± 19 23± 3 136± 24 96± 15 232± 24

Stand 630± 88 461± 27 148± 14 547± 17 419± 102 790± 31

Walk 454± 82 198± 63 38± 11 387± 55 191± 53 641± 46

2x

Cheetah

All tasks 312± 320 19± 14 58± 35 23± 7 56± 19 24± 22

Run 71± 55 6± 30 9± 3 5± 1 20± 14 8± 27

Run Backward 19± 37 6± 14 5± 3 9± 5 20± 7 13± 11

Walk 775± 83 21± 31 147± 107 32± 11 91± 30 43± 21

Walk Backward 552± 394 17± 19 35± 64 48± 27 93± 33 20± 79

Maze Multi goal 218± 355 0± 11 65± 50 44± 37 14± 12 131± 47

Quadruped

All tasks 215± 53 132± 22 112± 27 270± 36 166± 85 341± 116

Jump 169± 140 62± 38 74± 88 268± 79 170± 118 275± 159

Run 221± 0 70± 66 86± 100 304± 102 140± 96 179± 117

Stand 315± 193 294± 90 142± 30 353± 68 223± 197 421± 210

Walk 209± 122 70± 61 57± 37 222± 78 111± 97 351± 139

Walker

All tasks 243± 118 157± 28 60± 5 186± 39 151± 32 432± 24

Flip 168± 40 105± 35 44± 6 149± 41 140± 28 268± 32

Run 142± 31 65± 13 22± 4 78± 20 69± 16 229± 27

Stand 434± 66 364± 53 143± 16 341± 62 237± 51 656± 12

Walk 319± 79 79± 43 29± 6 183± 57 139± 49 567± 48
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Table 6: Full results on the ExORL environment generalisation experiments (5 seeds). For each
dataset-domain pair, we report the score at the step for which the all-task IQM is maximised when
averaging across 5 seeds ± the standard deviation. The Baseline FB-GRU represents the scores of
an FB-GRU model trained solely on Cheetah-Occluded.

Environment Task FB-stack FB-TF (ours) FB-S4d (ours) FB-GRU (ours) Baseline FB-GRU

Walker

Walk 25± 7 34± 8 21± 2 22± 9 -
Stand 126± 28 144± 23 95± 32 82± 18 -
Run 17± 7 26± 5 18± 2 15± 12 -
Flip 23± 8 27± 6 21± 2 23± 10 -

Quadruped

Walk 60± 64 99± 39 28± 30 110± 116 -
Stand 150± 79 148± 84 80± 29 257± 128 -
Run 74± 48 71± 26 25± 75 63± 56 -
Jump 71± 35 58± 73 88± 72 190± 92 -

Cheetah

Walk 2± 3 24± 12 89± 24 10± 4 38± 216

Walk Backward 12± 6 38± 21 22± 7 10± 12 3± 7

Run - 3± 2 16± 4 2± 1 8± 46

Run Backward 2± 1 8± 4 4± 1 1± 2 0± 1
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