
Nearly-Linear Time and Massively Parallel
Algorithms for k-Anonymity

Kevin Aydin ∗

Google Research
kaydin@google.com

Honghao Lin†

Carnegie Mellon University
honghaol@andrew.cmu.edu

David P. Woodruff
CMU & Google Research

dwoodruf@andrew.cmu.edu

Peilin Zhong
Google Research

pz2225@columbia.edu

Abstract

k-anonymity is a widely-used privacy-preserving concept that ensures each record
in a dataset is indistinguishable from at least k − 1 other records. We revisit
k-anonymity by suppression and give an O(k)-approximation algorithm with a
nearly-linear runtime of Õ(nd+ n · (n/k)1/C2+o(1)) for any constant C, where
n is the number of records and d is the number of attributes. Previous algorithms
with provable guarantees either (1) achieve the same O(k) approximation ratio but
require at least O(n2k) runtime, or (2) provide a better O(log k) approximation
ratio at the cost of an impractical O(n2k) worst-case runtime for general d and
k. Our algorithm extends to the Massively Parallel Computation (MPC) model,
where it gives an MPC algorithm requiring Õ(log1+ε n) rounds and total space
O(n1+γ(d+ k)). Empirically, we also demonstrate that our algorithmic ideas can
be adapted to existing heuristic methods, leading to significant speed-ups while
preserving comparable performance. On the hardness side, we study the related
single-point k-anonymity problem, where the goal is to select k − 1 additional
records to make a given record indistinguishable. Assuming the dense vs random
conjecture in complexity theory, we show that for n = kc, no algorithm can achieve
a k1−O(1/c) approximation in poly(n) time, providing evidence for the inherent
hardness of the k-anonymity problem.

1 Introduction

As data becomes increasingly central to decision-making, research, and business intelligence, ensuring
privacy while preserving data utility has become a critical challenge. Many datasets contain sensitive
information, such as health records, financial transactions, or social behavior. However, even after
removing direct identifiers (e.g., names, social security numbers, etc.), inadequate safeguards can
still lead to re-identification. To mitigate these risks, privacy-preserving data publishing techniques
have become essential for balancing data utility and privacy protection, with k-anonymity [Swe02]
standing out as a foundational approach.
k-anonymity, introduced by [Swe02], ensures that each record in a dataset is indistinguishable from
at least k − 1 other records based on a set of quasi-identifiers. These quasi-identifiers, such as age,
ZIP code, and gender, may not be uniquely identifying on their own but can enable re-identification
when combined with external data sources. By applying generalization and suppression techniques,

∗Equal Contribution.
†Part of the work was done while Honghao Lin was a student researcher in Google Research.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

k-anonymity reduces the risk of re-identification while preserving data utility for analysis. An
example can be found in Table 1. In this paper, we will only consider the case of suppression where
each entry of every attribute is either included in the output, or replaced with the ‘⋆’ character.
Most research on k-anonymity has focused on finding the optimal (or near-optimal) k-anonymous
dataset. That is, the one that minimizes the number of hidden attributes and thereby best preserves
the original data. The work of [MW04] demonstrated that finding the optimal solution is NP-hard but
provided an O(k log k)-approximation algorithm with a runtime exponential in k. Later, [AFK+05]
improved this to an O(k)-approximation with a runtime of O(n2k). Subsequently, [PS07, KT12]
further enhanced the approximation to O(log k), though their algorithm has a worst-case runtime of
O(n2k). In addition to algorithms with provable guarantees, other studies have proposed heuristics
for various anonymization approaches. For example [LDR06] introduced a heuristic algorithm for
k-anonymization of quasi-identifiers, utilizing a construction similar to k-d trees, [DXTK15] by
freeform generalization and [BKBL07, ZWL+18] proposed heuristics based on clustering.

Age Marital status Home country Gender
20∼29 Single USA Male
30∼39 Divorce China Female
20∼29 Single USA Female
30∼39 Separation Korea Female

Age Marital status Home country Gender
20∼29 Single USA ⋆

30∼39 ⋆ ⋆ Female
20∼29 Single USA ⋆

30∼39 ⋆ ⋆ Female

Table 1: An example of 2-anonymization [PS07]

Despite the extensive body of research on k-anonymity, many questions and challenges remain
unresolved. First, the fastest algorithm for k-anonymity with a provable guarantee has a runtime
of O(n2k), where n is the number of data points. As the size of data continues to grow in many
scenarios, even an O(n2) runtime may become impractical. This raises the question of whether an
algorithm with linear runtime in n is possible.

Question 1: Is there an algorithm for k-anonymity that runs in linear in n time
while providing a probable approximation guarantee?

Second, to the best of our knowledge, no work has studied k-anonymity in the context of massively
parallel computation. In fact, most existing algorithms for k-anonymity rely on sequential processing.
Therefore, there is strong motivation to develop parallel algorithms that can leverage the power of
distributed computing frameworks to achieve faster and more efficient solutions.

Question 2: Is it possible to design an algorithm for k-anonymity in the mas-
sively parallel computation model while minimizing the number of communication
rounds?

Also, although [PS07] introduced improvements to achieve more practical runtimes for their O(log k)-
approximation algorithm, these improvements may only be effective when the dimension d of each
point is small. Moreover, their worst-case runtime still remains O(n2k). A natural question arises:

Question 3: Is it possible to develop an algorithm with an o(k) approximation ratio
and a worst-case runtime polynomial in n, d, and k?

1.1 Our Contributions

We present the first O(k)-approximation algorithm for k-anonymity with a nearly-linear runtime.

Theorem 1.1. Given a table T with n records ri ∈ Σd (i = 1, 2, . . . , n) , there is an algorithm

that runs in time Õ
(
nd+ n · (n/k)1/C2+o(1)

)
and with high probability outputs an O(C2) · k-

approximation to the k-anonymity problem on T .

For C large, the running time approaches Õ(nd+n1+o(1)), which is nearly the time to read the input.
Our algorithm can also be extended to the Massively Parallel Computation model (Section A.1) with
a number of communication rounds that is logarithmic in n.

Theorem 1.2. Given a table T with n records ri ∈ Σd (i = 1, 2, . . . , n), let γ, ε ∈ (0, 1). There is a

fully scalable MPC algorithm that outputs an O
(

log2(1/ε)
γ · k

)
-approximation to the k-anonymity

2

problem on T with high probability. The algorithm takes O
(

log 1/ε
γ · log1+ε(n) log log(n)

)
parallel

time and Õ
(
nd+ n1+γ+o(1) · k

)
total space.

To obtain a better understanding of our third question, we propose and study the following single-point
k-anonymity problem, where the goal is to select k − 1 additional records to make a given record
indistinguishable while minimizing the number of hidden attributes among these k points. Assuming
the dense vs. random conjecture in complexity theory, we show that for n = kC , no algorithm can
achieve a k1−O(1/c) approximation in poly(k) time.

Theorem 1.3. Assume Conjecture 4.3, and let n = kC and d ≥ k. There is no algorithm which
runs in polynomial n time that with high probability can output a k1−O(1/C)-approximation to the
single-point k-anonymity problem, even if each record is binary.

Theorem 1.3 provides evidence of the inherent hardness of the k-anonymity problem. We remark
that an open question here is whether we can extend this lower bound to the original k-anonymity
problem and obtain a similar hardness.

1.2 Related Work

In addition to the work mentioned above, several studies have explored special cases of k-
anonymity. For example, [AFK+05] proposed a 1.5-approximation algorithm for 2-anonymity and a
2-approximation algorithm for 3-anonymity. Similarly, [BDVDP13] presented a polynomial-time
algorithm for the case when both d and |Σ| are constant.
On the hardness side, [BDVDP13] showed that finding the optimal solution is w[1]-hard with respect
to the value of the solution (and k). Furthermore, [BDVD11] demonstrated that c-approximation is
hard for a fixed constant c in the following cases: (1) |Σ| = 2 and k = 3, or (2) d ≥ 8 and k = 4.
Several studies have extended the definition of k-anonymity by introducing additional constraints,
such as l-diversity [MKGV07] and t-closeness [LLV06], to enhance privacy protection for non-quasi-
identifiers. Additionally, [CFL10] introduced the concept of k-isomorphism in social network graphs,
which means that the graph can be decomposed into a union of k distinct isomorphic subgraphs.
Recently, the work of [EEMM24] studied the smooth k-anonymity problem on a binary dataset, where
they provide a detailed discussion comparing k-anonymity and differential privacy. In particular,
in [EEMM24] the authors formally prove the following:

Theorem 1.4. Let M be an arbitrary mechanism that satisfies ϵ-edge differential privacy. Then, in
order to achieve E[J(M(G), G)] ≥ α, it must hold that ϵ = Ω(log(α2nm)), where J(·, ·) denotes
the Jaccard similarity.

This result suggests that achieving high utility (i.e., preserving the structure of the original graph)
under differential privacy requires a large value of ϵ. However, when ϵ is large, the algorithm likely
maintains the graph G unmodified thus exposing users to re-identification risks. Recall that the
guarantee provided by ϵ-DP is: Pr[M(G) ∈ A] ≤ eϵ Pr[M(G′) ∈ A], which becomes nearly
vacuous for large ϵ.
In contrast, k-anonymity offers a different privacy-utility tradeoff. Prior work shows that if the optimal
anonymized graph Eopt satisfies J(E,Eopt) ≥ 1−O(1/ log k), then efficient algorithms can find
solutions with comparable utility. Furthermore, in the case of smooth k-anonymity, where edge
additions and deletions are allowed, the required assumption can be relaxed to J(E,Eopt) ≥ O(1).

2 Preliminaries

Notation. In the k-anonymity problem, we are given a table T having n records, each with d
attributes. A record ri ∈ T is drawn from Σd, where Σ is a finite set of possible values for each
attribute. Then ri[j] is the value of the j-th attribute in ri. Let ⋆ be a symbol not in Σ. Given a record
r ∈ Σd, let its binary expansion be x ∈ {0, 1}d|Σ|, where for i ∈ [d], j ∈ [|Σ|], pi,j = 1 if and only
if the i-th attribute corresponds to the j-th value in Σ. Given two records x, y ∈ Σm, let their ℓ0
distance be distℓ0(x, y), which is the number of attributes for which x and y differ.

Given two vectors x, y ∈ Rm, their ℓ2 distance is distℓ2(x, y) =
√∑m

i=1(xi − yi)2. Given a finite
point set P ⊆ Rm, let ρk(r) be the distance between r and its k-th nearest neighbor in P in ℓ2
distance. Specifically, if r ∈ P we let ρ1(r) = 0 (i.e., r’s 1-st nearest neighbor is r itself).

3

2.1 k-Anonymity

Definition 2.1 (k-Suppression Function). A k-suppression function f maps each ri ∈ T to r′i,
by replacing some attributes of ri by ⋆. Moreover, for every r ∈ T , there exist k − 1 other
r1, r2, . . . , rk−1 ∈ T such that f(r) = f(r1) = f(r2) = · · · = f(rk−1). Define c(f) to be the cost
of f on T , i.e., the number of attributes in T replaced by f , where note that if the same attribute is
changed in multiple records, its contribution to the cost is the number of records it is changed in.
Definition 2.2 (k-anonymity via Suppression). In the k-anonymity problem, we are given a table of
r records and an anonymity parameter k. Our goal is to obtain a k-suppression function f so that
c(f) is minimized. Specifically, we say f is a C-approximation if c(f) ≤ C ·minf ′ c(f ′) .

3 Nearly-Linear Time Algorithm for k-Anonymity

In this section, we present our nearly-linear time approximation algorithm for k-anonymity. At a high
level, we will first show that achieving an O(k) approximation for k-anonymity can be reduced to
solving the minimum-size constrained clustering problem with an O(1) pointwise guarantee under the
squared ℓ2 distance metric. Then, we will give an algorithm that solves this problem in nearly-linear
time with high probability.

3.1 Reduction to Minimum Size Constrained Clustering

Recall that we have n records ri (i = 1, 2, . . . , n) in table T . For each record ri ∈ Σd, let
xi ∈ {0, 1}d|Σ| be its binary expansion (i.e., a one-hot encoding of ri, see definition in Section 2)
and let S denote the set of binary expansions of all records. Then for each pair of records (ri, rj), the
number of differing attributes between ri and rj is given by:

distℓ0(ri.rj) =
1

2
distℓ0(xi, xj) =

1

2
distℓ2(xi, xj)

2 .

For each record ri, let rj be its k-th nearest neighbor in T with respect to the ℓ0 distance (i.e., the
number of attributes on which the records differ, and recall that in our definition, the 1-st nearest
neighbor of ri is ri itself). Consider an arbitrary partition of the k-anonymity problem on T . Since
the group containing ri has at least k records, the number of attributes that need to be suppressed for
k-anonymity is at least distℓ0(ri, rj) =

1
2ρk(xi)

2 . In the following lemma, we demonstrate that if
there exists a partition P = {P1, P2, . . . , Pt} with centers c(P1), c(P2), . . . , c(Pt) on S, such that
for every point p ∈ S in group Pj , the squared ℓ2 distance distℓ2(p, c(Pj))

2 is at most O(1) · ρk(p)2,
then this partition gives an O(k)-approximation to the k-anonymity problem on T . Formally, we
have
Lemma 3.1. Suppose that P = {P1, P2, . . . , Pt} is a partition on S with centers
c(P1), c(P2), . . . , c(Pt) such that for every Pi, k ≤ |Pi| ≤ 2k − 1 and for every p ∈ Pi,

distℓ2(p, c(Pi))
2 ≤ C · ρk(p)2 ,

for some constant C. Then, the partition P is an O(k)-approximate solution for the k-anonymity
problem on T .

Proof. Let Q = {Q1.Q2, · · · , Qs} with centers c(Q1), c(Q2), · · · , c(Qs) be the optimal solution to
the k-anonymity problem on T . For each point p ∈ Pi, let N(p, Pi) denote the number of attributes
we need to suppress for p with group Pi.
We first upper bound the total number of suppressed attributes over the partition P . Given a point
p ∈ Pi, recall that p is a one-hot encoding of some record in table T and let r(p) ∈ T be the record
that p corresponds to. We have

N(p, Pi) ≤
∑

q∈Pi,q ̸=p

distℓ0(r(p), r(q)) ≤
∑

q∈Pi,q ̸=p

1

2
· distℓ0(p, q) =

∑
q∈Pi,q ̸=p

1

2
· distℓ2(p, q)2

≤
∑

q∈Pi,q ̸=p

(
distℓ2(p, c(Pi))

2 + distℓ2(q, c(Pi))
2
)

The first inequality is due to the fact that if we need to hide the attribute j, then there must be at least
one r(q) in T such that the j-th attribute of r(p) and r(q) differ. Taking a sum over all Pi and p ∈ Pi,

4

and noting that we have |Pi| ≤ 2k − 1, we get that∑
Pi∈P

∑
p∈Pi

N(p, Pi) ≤ (4k − 4)
∑
Pi∈P

∑
p∈Pi

distℓ2(p, c(Pi))
2 .

This implies ∑
Pi∈P

∑
p∈Pi

N(p, Pi) ≤ (4k − 4) · C
∑
p∈S

ρk(p)
2 (1)

from the assumption of the clustering solution. We next turn to lower bound the total number of
hidden attributes over the partition Q. Give a q ∈ Qi, let p denote its k-th nearest neighbor in S.
Then we have

N(q,Qi) ≥ max
p′∈Qi

1

2
· distℓ0(p′, q) .

Since there are at least k points in Qi, we have

N(q,Qi) ≥ max
p′∈Qi

1

2
distℓ0(p

′, q) ≥ 1

2
distℓ0(p, q) =

1

2
ρk(q)

2

The last equation holds because both p and q are one-hot encodings of some records. Taking a sum
over all Qi and q ∈ Qi, we get that

1

2

∑
q∈S

ρk(q)
2 ≤

∑
Qi∈Q

∑
q∈Qi

N(q,Qi) (2)

Combining (1) and (2) we get that∑
Pi∈P

∑
p∈Pi

N(p, Pi) ≤ (8k − 8) · C
∑
Qi∈Q

∑
q∈Qi

N(q,Qi) ,

which is what we need.

We next note that the condition |Pi| ≤ 2k − 1 can effectively be removed. If a group Pi contains
more than 2k − 1 points, it can be divided into multiple smaller groups arbitrarily, each satisfying the
condition.
Corollary 3.2. Suppose that P = {P1, P2, . . . , Pt} is a partition on S with centers
c(P1), c(P2), . . . , c(Pt) such that for every Pi, |Pi| ≥ k and for every p ∈ Pi,

distℓ2(p, c(Pi))
2 ≤ C · ρk(p)2 ,

for some constant C. Then the partition P can be efficiently transferred to another partition P ′,
which is an O(k)-approximate solution to the k-anonymity problem on T .

Finally, since the input to this clustering problem is the binary expansion of each record ri (which is
in d|Σ| dimensions) but not the record itself, naïvely it yields a |Σ| factor in time and space, which
can be large in practice. However, note that in the entire proof of Corollary 3.2, all we care about
are the pair-wise distances. Consequently, we can use the following Johnson-lindenstrauss lemma to
reduce the dimension of each point to O(log n). Recall that since each of the input binary expansions
is d-sparse, we can compute each embedding Φxi in O(d log n) time.
Lemma 3.3 (Johnson-Lindenstrauss lemma, [JLS86]). Let Φ ∈ Rr×d be a matrix whose entries are
i.i.d samples from N (0, 1/r). For every vector u ∈ Rd and ε ∈ (0, 1), we have Pr[(1− ε)∥u∥2 ≤
∥Φu∥2 ≤ (1 + ε)∥u∥2] ≥ 1− exp(Ω(ε2r)) .

3.2 Solving the Minimum Size Constrained Clustering Problem

After establishing Corollary 3.2, our goal shifts to finding a partition P = {P1, P2, . . . , Pt} on an
O(log n)-dimensional pointset S with centers c(P1), . . . , c(Pt) such that |Pi| ≥ k, and for every
p ∈ Pi,

distℓ2(p, c(Pi))
2 ≤ C · ρk(p)2 .

In the remainder of this section, we shall present an algorithm that solves this problem in time
Õ(nd+ n · (n/k)1/C2+o(1)). Our algorithm is inspired by the work of [EMMZ22] that studies this
problem in the MPC setting, and their algorithm is not hard to adapt into an Õ(nd+n1+1/C2+o(1) ·k)-
time algorithm. This is at least nk time, which can be as large as n2 for k = Θ(n). We will
significantly improve upon this runtime by using random sampling to reduce k-th nearest neighbor
computations to 1-st nearest neighbor computations, described below.
We need the definition of locality sensitive hashing (LSH):

5

Lemma 3.4 ([AI08, And09]). Let S = {p1, p2, · · · , pn} ⊂ Rd. Given two parameters R > 0 and
C > 1, there is a hash family H such that ∀p, q ∈ S:

1. If ∥p− q∥2 ≤ R, then Prh∈H[h(p) = h(q)] ≥ P1 where P1 ≥ 1/n1/C2+o(1).

2. If ∥p− q∥2 ≥ cu · C ·R, then Prh∈H[h(p) = h(q)] ≤ P2 where P2 ≤ 1/n4 and cu > 1 is
a universal constant.

Moreover, each hash function can be generated and evaluated in no(1)d time.

We now present our algorithm. At a high level, our algorithm can be divided into the following steps:

1. Sample a random subset J ⊆ S with |J | = O((n log n)/k). For each pi ∈ J , compute an
O(1)-approximation to ρk(pi). Denote this distance by di. Also compute a set Ni, where
|Ni| ≥ k − 1 and for every q ∈ Ni we have distℓ2(pi, q) ≤ O(1) · ρk(pi) (Lemma 3.6).

2. For each point q not in J , find a f(q) in J satisfying distℓ2(q, f(q)) ≤ O(1) ·
minp∈J distℓ2(q, p). For each p ∈ J , define F (p) = {q ∈ S \ J | f(q) = p} (Lemma 3.7).

3. Enumerate the points in J in non-decreasing order of di. For each pi ∈ J , if at least k − 1
points in Ni are still unassigned, create a new cluster centered at pi. Assign the remaining
unassigned points in Ni to this cluster. On the other hand, if fewer than k − 1 points in Ni

are unassigned, and some point q ∈ Ni has already been assigned to a cluster with center s,
then assign pi to the same cluster centered at s (Lemma 3.9).

4. Furthermore, when assigning each p ∈ J to a cluster, also assign all unassigned points in
F (p) to the same cluster (Lemma 3.10).

Each cluster we create during this procedure has size at least k. Moreover, each point S during this
procedure will be assigned to one cluster. To prove the correctness of the algorithm, we next present
the following lemmas.

Lemma 3.5. Given a set J ′ with size |J ′| = O(n/k) and a distance parameter R, we can preprocess
the set J ∪ J ′ in time log n · (n/k)1+1/C2+o(1) and then for every point p ∈ J , with probability
1− 1/n2 we can compute a set I such that (1) I has size at least the number of points in J ′ that are
within distance R from p, and (2) for every point q in I , we have distℓ2(p, q) ≤ O(C) ·R.

Proof. We draw s = Θ
(

logn
P1

)
independent LSH hash functions in Lemma 3.4 with S = J ∪ J ′ and

parameters R and C. Then, for a fixed i ∈ [s] and every q ∈ J ′, we add q into I if hi(p) = hi(q).
We next prove the correctness of the algorithm. Consider p, q ∈ J ∪ J ′ with ∥p− q∥2 ≥ 2cu · C ·R.
Then for a fixed i ∈ [s], Pr[hi(p) = hi(q)] ≤ 1/(n/k)4 by Lemma 3.4. By taking a union bound
over all such pairs of {p, q} and all i ∈ [s], with probability at least 1 − k/n, we have for any
{p, q} ∈ S with ∥p − q∥2 ≥ 2cu · C · R, hi(p) ̸= hi(q) for all i ∈ [s]. Thus, if a point q ∈ I , we
have ∥p− q∥2 ≤ 2cu ·C ·R = O(C) ·R. Now consider two points p, q ∈ S with ∥p− q∥2 ≤ R. By
Lemma 3.4, with probability at least 1− 1/(n/k)3, there exists an i ∈ [s] such that hi(p) = hi(q).
By taking a union bound over all {p, q} with ∥p− q∥2 ≤ R, with probability at least 1− k/n, we
have that q ∈ I for all such pairs {p, q}. Finally, note that the above procedure only has a success
probability of at least 1− k/n, but we can run the same procedure O(log n) independent times to
boost the success probability to 1 − 1/n2 (after obtaining I , we can check whether I satisfies the
condition or not by computing the pairwise distances).

Lemma 3.6. We can preprocess the point set S and J in time k · (n/k)1+1/C2+o(1), and after that
for every point p ∈ J , we can with probability at least 1− 1/n2 compute an O(C)-approximation to
ρk(p) in time k · (n/k)1/C2+o(1) with set Ni such that |Ni| ≥ k − 1 and for every q ∈ Ni, we have
distℓ2(p, q) ≤ O(C) · ρk(p).

Proof. The procedure is defined as follows. We split S/J into m = O(k) disjoint subsets S/J =
J1 ∪ J2 ∪ . . . Jm with each |Ji| = n/k. Let Ri = 2i. For each Ri (i = 0, 1, · · · , O(log d)) and
every j ∈ [m], we run the procedure in Lemma 3.5. For a point p ∈ J , let N j

i be the subset returned
by Lemma 3.5 with distance parameter Ri, and set J ′ = Jj and specifically, let N0

i be the subset
returned by Lemma 3.5 with the set J itself. Let Ri be the smallest i for which |

⋃m
j=0 N

j
i | ≥ k − 1.

We use Ri as an approximation to ρk(p) and return the set Ni =
⋃m

j=0 N
j
i .

6

We next prove the correctness of our algorithm. Let i be the integer for which Ri−1 < ρk(p) ≤ Ri.
This means there are at least k − 1 points within distance Ri from p. From the guarantee of
Lemma 3.5 we have that with probability 1− 1/n2, |

⋃m
j=0 N

j
i | ≥ k − 1. On the other hand, for an

Ri′ ≤ ρk(p)/O(C), from the guarantee of Lemma 3.5 we have with probability 1− 1/n2, we have
|
⋃m

j=0 N
j
i′ | < k − 1. Moreover, similar to Lemma 3.5, we have that after taking a union bound, with

probability at least 1− 1/n2, for every point q ∈ Ni, distℓ2(p, q) ≤ O(C) · ρk(p).
Finally, we consider the time complexity of the algorithm. Note that we do not need to explicitly
compare the hash value of each pair {p, q}. Instead for the point p we care about, we can just look at
the cell it falls in for each of the hash functions. Moreover, we can terminate the procedure and return
Ni after the set Ni we maintain has size k − 1. Hence, the overall runtime for one point p ∈ J is
k · (n/k)1/C2+o(1).

Lemma 3.7. Let Q be a subset of J with size O(n log n/k). We can pre-process Q and the point
set S in time k · (n/k)1+1/C2+o(1), such that afterwards, given a point p ∈ S, with probability
at least 1 − 1/n2 we can find a center sj in time (n/k)1/C

2+o(1) such that distℓ2(p, sj) ≤ O(1) ·
mini distℓ2(p, si).

Proof. Note that we have |Q| ≤ O(n log n/k). Similarly to what we do in Lemma 3.6, we split S
into m = O(k) disjoint subsets S = J1 ∪ J2 ∪ . . . Jm with each |Ji| = O(n/k). Let Ri = 2i. For
every Ri (i = 0, 1, · · · , O(log d)) and every j ∈ [m], we run the procedure in Lemma 3.5 on Q∪ Jj .
For a point p ∈ S. Let Ri be the smallest integer such that there exists an N j

i such that N j
i ∩Q ̸= ∅,

and the algorithm will return one arbitrary center sℓ in N j
i ∩Q. Similar to the proof of Lemma 3.6,

we have that this sℓ satisfies distℓ2(p, sℓ) ≤ O(1) ·mini distℓ2(p, si), which is what we need.

Lemma 3.8. For every point pi ∈ J , if q ∈ Ni, then we have ρk(q) ≤ O(1) · ρk(p). Moreover, for
every point p /∈ J , with probability at least 1− 1/n2, we have that ρk(f(p)) ≤ O(1) · ρk(p).

Proof. Let Ni = {q1, q2, . . . , qk−1}. Note that from the property of Ni, we have that distℓ2(p, qj) ≤
O(1) · ρk(p). Consider an arbitrary qj ∈ Ni we have that for other qj′ ∈ Ni, distℓ2(qj , qj′) ≤
distℓ2(p, qj) + distℓ2(p, qj′) ≤ O(1) · ρk(p). This implies ρk(qj) ≤ O(1) · ρk(p).
Moreover, for each p /∈ J , since J has size O(n log n/k), we have that with probability at least
1 − 1/n2 there exists a qj ̸= p such that qj ∈ J . This implies that minq∈J distℓ2(p, q) ≤ ρk(p).
Then we have distℓ2(p, f(p)) ≤ O(1) ·minq∈J distℓ2(p, q) ≤ O(1) · ρk(p). Then, from a similar
argument we can get ρk(f(p)) ≤ O(1) · ρk(p).

Lemma 3.9. Consider an iteration in which point p is assigned to center s during Step 3 of the
algorithm. Assume that in all previous iterations, every assignment satisfies the pointwise distance
guarantee. Then, with probability at least 1− 1/n2, we have that distℓ2(s, p) ≤ O(1) · ρk(p) .

Proof. We first consider the case where p ∈ J . If a new cluster is created with center p. Then, the
statement follows immediately. On the other hand, since pi is not a center of one of the clusters, we
have that one of the points q ∈ Ni must be assigned to some other center sj where ρk(sj) ≤ O(1) ·
ρk(p), as sj is considered before p. From the definition of Ni we have distℓ2(p, q) ≤ O(1) · ρk(p).
Since we assume the correctness of all previous iterations, we have that distℓ2(sj , q) ≤ O(1) ·
ρk(q) ≤ O(1) · ρk(p) (Lemma 3.8). Then, from the triangle inequality we have that distℓ2(p, sj) ≤
distℓ2(p, q) + distℓ2(sj , q) ≤ O(1) · (ρk(p) + ρk(q)) ≤ O(1) · ρk(p).
We next consider the case where p /∈ J . Then p can only be assigned to s when f(p) is also assigned
to s. This means that we have ρk(s) ≤ O(1) · ρk(f(p)) ≤ O(1) · ρk(p) as s is considered before
f(p). Then we have that distℓ2(f(p), s) ≤ O(1) · ρk(s) ≤ O(1) · ρk(p). From triangle inequality
we have that distℓ2(p, s) ≤ distℓ2(p, f(p)) + distℓ2(f(p), s) ≤ O(1) · ρk(p) (Lemma 3.8).

Lemma 3.10. Consider an iteration in which point p is assigned to center s during Step 4 of the
algorithm. Assume that in all previous iterations, every assignment satisfies the pointwise distance
guarantee. Then, with probability at least 1− 1/n2, we have that distℓ2(s, p) ≤ O(1) · ρk(p) .

Proof. From the algorithm procedure we have that f(p) is also assigned to s. Then from Lemma 3.9
we have that distℓ2(f(p), s) ≤ O(1) · ρk(f(p)). This implies that distℓ2(s, p) ≤ distℓ2(s, f(p)) +
distℓ2(f(p), p) ≤ O(1) · ρk(f(p)) + ρk(p) ≤ O(1) · ρk(p) (Lemma 3.8).

7

Algorithm 1 k-Anonymity via Near Neighbors
1: Input: A table T that contain n records, parameters k ≥ 1.
2: Let Φ ∈ Rr×d|Σ| be the JL matrix in Lemma 3.3. For each record ri ∈ T , compute p′i = Φ · pi

where pi is a binary expansion of ri. Let S = {p′1, p′2, . . . , p′n}.
3: Use Lemma 3.11 obtain a partition P = {P1, P2, . . . , Pt} on S.
4: For each i ∈ [t], if |Pi| ≤ 2k − 1, let Pi = {Pi}. Otherwise split Pi = Qi,1 ∪Qi,2, · · · ∪Qi,ℓ

where k ≤ |Qi| ≤ 2k − 1 and let Pi = {Qi,1, Qi,2, . . . , Qi,ℓ}.
5: Return the partition Q =

⋃t
i=1 Qi.

By Lemma 3.6, Lemma 3.7, Lemma 3.9, and Lemma 3.10, we get the correctness of the following
lemma.
Lemma 3.11. There is an algorithm, which outputs a partition P = {P1, P2, . . . , Pt} on S such that
with high probability, for every Pi, |Pi| ≥ k and for every p ∈ Pi,

distℓ2(p, c(Pi))
2 ≤ C2 · ρk(p)2 ,

for some constant C. Moreover, the entire procedure runs in time Õ
(
n · (n/k)1/C2+o(1)

)
.

Proof of Theorem 1.1. The entire algorithm is presented in Algorithm 1. We first prove the
correctness of our algorithm. From Lemma 3.11 we have with high probability, the partition
P = {P1, P2, . . . , Pt} satisfies for every Pi, |Pi| ≥ k and for every p ∈ Pi. distℓ2(p, c(Pi))

2 ≤
C · ρk(p)2 , Then, after splitting the subsets |Pi| ≥ 2k, from Lemma 3.1 we have the partition Q is
an O(k)-approximation solution to the k-anonymity on the table T . The overall time complexity is
Õ
(
n · (n/k)1/C2+o(1)

)
.

4 Single-Point k-Anonymity

We study the following single-point k-anonymity problem.
Definition 4.1 (single-point k-anonymity). In the single-point k-anonymity problem, we are given
a table T that contains n records and a specific record p ∈ T . Then, we ask to choose k − 1 other
records r1, r2, . . . , rk−1 from T with the goal being to minimize the number of attributes the group
(p, r1, r2, . . . , rk−1) has to be suppressed, i.e., the number of j such that

∃a, b ∈ {p, r1, r2, . . . , rk−1}, a[j] ̸= b[j].

We say a solution is a C-approximation if the number of hidden (suppressed) attributes in this solution
is at most C times the number of hidden attributes in the optimal solution.

Upper Bound. We observe a straightforward method to achieve a (k − 1)-approximation: select
the i-th nearest neighbor of p in T (with respect to ℓ0 distance, and excluding p itself) for i =
1, 2, . . . , k − 1. To see why this works, let ri denote p’s i-th nearest neighbor in T . On the one hand,
we have that the number of hidden attributes in the optimal solution is at least distℓ0(p, rk−1). On
the other hand, we have that the number of hidden attributes in the solution (r1, r2, . . . , rk−1) is at
most

∑k−1
i=1 distℓ0(p, ri) ≤ (k − 1) · distℓ0(p, rk−1).

Lemma 4.2. There is a deterministic algorithm that computes a (k − 1)-approximation of the
single-point k-anonymity problem in time O(nd+ n log n).

Lower Bound. We next consider lower bounds for the single-point k-anonymity problem.
In [CDK12], the authors give the following conjecture about the time complexity of the follow-
ing DENSE VS RANDOM problem: given a graph G, it is hard to distinguish between the following
two cases: (1) G = G(n, p) where p = nα−1 (and thus the graph has log-density concentrated
around α), and (2) G is adversarially chosen so that the densest ℓ-subgraph has log density β where
ℓβ ≫ pℓ (and thus the average degree inside this subgraph is approximately ℓβ).
In [CDM17], the work studies the MkU problem and extends the conjecture to the hypergraph case:
Given an r-uniform hypergraph G on n nodes, distinguish between the following two cases:(1)
G = G(n, p, r) where p = nα−(r−1) (and thus the graph has log-density concentrated around α),
and (2) G is adversarially chosen so that the densest ℓ-subhypergraph on ℓ vertices and has log density
β where ℓβ ≫ pℓ (and thus the average degree inside this subhypergraph is approximately ℓβ).

8

Conjecture 4.3. For all constant r and 0 < β < r − 1, for all sufficiently small ε > 0, and for
all ℓ1+β ≤ n(1+α)/2, we cannot solve HYPERGRAPH DENSE VS RANDOM with log-density α and
planted log-density β in polynomial time (w.h.p.) when β ≤ α− ε.

Assuming the above conjecture, we prove the following hardness result. Our construction is based on
the lower bound for the minimum k-union problem studied in [CDM17].

Theorem 1.3 Assuming Conjecture 4.3, let n = kC and d ≥ k3, there is no algorithm in polynomial
in k time that with high probability can output a k1−O(1/C)-approximation to the single-point k-
anonymity problem, even if each record is binary.

Proof. We shall show that, if we have an algorithm for single-point k-anonymity with approximation
ratio k1−O(1/C), then it can be used to solve the HYPERGRAPH DENSE VS RANDOM with the
specific parameters in Conjecture 4.3.

For sufficiently large constant r, let α =
√
r − 1 and β =

√
r − 1 − ε, n = d, and ℓ = d1/

√
r.

Given an instance of the input hypergraph in Conjecture 4.3, we construct the input instance to the
single-point k-anonymity problem as follows. First, we set the specific record p to be a d-dimensional
zero vector. Next, for the i-th edge in the hypergraph, we set the record ri to be the binary vector
where its j-th coordinate is 1 if and only if the j-vertex is included in this edge. Let the table T be
the set that contains all ri’s and k = Θ(d1−ε/

√
r).

Then, consider the ℓ hypersubgraph in case two. With high probability it will have
Θ(ℓ1+β) = Θ(ℓ

√
r−ε) = Θ(d1−ε/

√
r) edges. Hence, setting k = Θ(d1−ε/

√
r) and choosing the

records that correspond to these edges in the subhypergraph, the number of attributes we need to hide
is at most ℓ = d1/

√
r nodes in G. We next consider G in case one. We claim that with high probability

every k edges in G will cover at least d1−1/
√
r+1/2r−ε/r3/2 nodes in G. This means that every k

records in T will need to have such a number of attributes hidden. To prove this, we only need to
show that when ℓ̃ = d1−1/

√
r+1/2r−ε/r3/2 , with high probability for every ℓ̃ subhypergraph in G, this

subhypergraph can only have at most k− 1 edges. To get this, note that the expectation of the number
of edges in each of the subhypergraphs is on the order of ℓ̃rn

√
r−r = d1/2−ε/

√
r. Then by Chernoff’s

bound we have with failure probability at most 2 exp(−d) that this subhypergraph has fewer than

d1−ε/
√
r edge. Taking a union bound on the

(
d

ℓ̃

)
subhypergraphs, we get the desired result.

The ratio of the two cases will be at least ℓ̃/ℓ = d1−2/
√
r+1/(2r)−ε/r3/2 , which rules out algorithms

for single-point k anonymity with ratio k1−O(1/
√
r). The constant r here can be sufficiently large

and in our construction the total number of edges will be Θ(nr · n
√
r−r) = Θ(d

√
r) ≤ k

√
r.

5 Experiments

All of our experiments were conducted on a device with a 3.30GHz CPU and 16GB RAM. We will
use the following dataset which has been widely used in the study of anonymized privacy protection:

• Adult.4 The Adult data contains 48842 tuples from US Census data. The tuples with missing
values are removed. In particular, we choose 8 attributes as quasi-identifier.

We observe that in the dataset we use, most points have several neighbors with a small distance.
Hence, in our implementation we use MinHash as an instance of LSH for simplification.
As a baseline, we consider the clustering-based heuristic algorithms proposed in [ZWL+18], where
the authors demonstrate that their approach outperforms other existing heuristic methods, such as
Mondrian [LDR06]. Although this algorithm shows strong performance on real-world datasets, it also
exhibits relatively high computational complexity. The core idea of the algorithm can be summarized
as follows:

1. Iteratively selecting a new cluster center as the point with the highest average distance from
existing centers, and

3The condition d ≥ k is necessary, as otherwise there is a naïve d-approximation algorithm.
4The Adult from the UCI Machine Learning Repository.

9

https://archive.ics.uci.edu/dataset/2/adult

Figure 1: Test result for k-anonymity.

2. Assigning the k − 1 nearest neighbors of that point to the same cluster. This strategy, while
intuitive, results in at least Ω(n2) time complexity, even when we disregard other parameters
such as d and k.

Motivated by this bottleneck, we investigated whether the core heuristic could be accelerated using
ideas from our own algorithm. We found that substantial speed-ups are indeed possible, with minimal
impact on performance. In particular, we introduce the following modifications:

1. For the center selection step (Step 1), instead of computing the average distance for all
points, we randomly sample a fixed number of candidate points.

2. Once a new center is chosen, we leverage Locality-Sensitive Hashing (LSH) to efficiently
compute its approximate k-nearest neighbors. This process is similar to the procedures in
Lemmas 3.5 and 3.6. 5

In our experiments, these modifications lead to a substantial reduction in runtime while preserving
performance comparable to the original heuristic. We refer to the improved version of our new
algorithm as Ours (Heuristic).
To empirically assess runtime performance, we conducted experiments comparing the two algorithms:

• Ours (Heuristic) : Implemented in C++ for efficiency.
• [ZWL+18]: Since no official implementation was available, we implemented the algorithm

ourselves in C++. We applied the same optimization strategies as in our own implementation.

Results Summary. The experimental results are presented in Figure 1. We vary the value of k from
5 to 30 and report the number of hidden attributes. As shown in the figure, our original approach
performs similarly to [ZWL+18] when k is small but exhibits worse performance as k increases. In
contrast, our second approach, which incorporates the heuristic, closely matches the performance
of [ZWL+18] across the entire range of k.
We next evaluate the runtime of different algorithms on the Adult dataset for k values ranging from
5 to 30. As shown in Table 2, our algorithmic ideas can be adapted to existing heuristic methods,
leading to significant speed-ups while preserving comparable performance.

Table 2: Runtime comparison on Adult dataset (s)

Dataset ZWL+18 Ours (Heuristic)

Adult (k = 10) 894.216 17.431
Adult (k = 15) 394.386 5.914
Adult (k = 20) 222.038 3.368

5In our experiments, we found that because the dataset is relatively small, this step does not significantly
improve the runtime. Therefore, our current results only incorporate the first modification.

10

References
[AFK+05] Gagan Aggarwal, Tomas Feder, Krishnaram Kenthapadi, Rajeev Motwani, Rina Pani-

grahy, Dilys Thomas, and An Zhu. Approximation algorithms for k-anonymity. Journal
of Privacy Technology (JOPT), 2005. 2, 3

[AI08] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Communications of the ACM, 51(1):117–122,
2008. 6

[And09] Alexandr Andoni. Nearest neighbor search: the old, the new, and the impossible. PhD
thesis, Massachusetts Institute of Technology, 2009. 6

[ANOY14] Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev.
Parallel algorithms for geometric graph problems. In Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, pages 574–583, 2014. 20

[ASS+18] Alexandr Andoni, Zhao Song, Clifford Stein, Zhengyu Wang, and Peilin Zhong. Parallel
graph connectivity in log diameter rounds. In 2018 IEEE 59th Annual Symposium on
Foundations of Computer Science (FOCS), pages 674–685. IEEE, 2018. 20, 21

[BDVD11] Paola Bonizzoni, Gianluca Della Vedova, and Riccardo Dondi. Anonymizing binary and
small tables is hard to approximate. Journal of combinatorial optimization, 22:97–119,
2011. 3

[BDVDP13] Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, and Yuri Pirola. Parameter-
ized complexity of k-anonymity: hardness and tractability. Journal of combinatorial
optimization, 26:19–43, 2013. 3

[BKBL07] Ji-Won Byun, Ashish Kamra, Elisa Bertino, and Ninghui Li. Efficient k-anonymization
using clustering techniques. In International conference on database systems for
advanced applications, pages 188–200. Springer, 2007. 2

[BKS17] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel
query processing. Journal of the ACM (JACM), 64(6):1–58, 2017. 20

[CDK12] Eden Chlamtac, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse spanners
via dense subgraphs. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 758–767.
IEEE Computer Society, 2012. 8

[CDM17] Eden Chlamtác, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight
approximations for small set bipartite vertex expansion. In Philip N. Klein, editor, Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 881–899. SIAM,
2017. 8, 9

[CFL10] James Cheng, Ada Wai-chee Fu, and Jia Liu. K-isomorphism: privacy preserving
network publication against structural attacks. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, pages 459–470, 2010. 3

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008. 20

[DXTK15] Katerina Doka, Mingqiang Xue, Dimitrios Tsoumakos, and Panagiotis Karras. k-
anonymization by freeform generalization. In Feng Bao, Steven Miller, Jianying Zhou,
and Gail-Joon Ahn, editors, Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’15, Singapore, April 14-17, 2015,
pages 519–530. ACM, 2015. 2

[EEMM24] Alessandro Epasto, Hossein Esfandiari, Vahab Mirrokni, and Andrés Muñoz Medina.
Smooth anonymity for sparse graphs. In Tat-Seng Chua, Chong-Wah Ngo, Roy Ka-Wei
Lee, Ravi Kumar, and Hady W. Lauw, editors, Companion Proceedings of the ACM
on Web Conference 2024, WWW 2024, Singapore, Singapore, May 13-17, 2024, pages
621–624. ACM, 2024. 3

11

[EMMZ22] Alessandro Epasto, Mohammad Mahdian, Vahab S. Mirrokni, and Peilin Zhong. Mas-
sively parallel and dynamic algorithms for minimum size clustering. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January
9 - 12, 2022, pages 1613–1660. SIAM, 2022. 5, 20, 21, 22

[FMS+10] Jon Feldman, Shanmugavelayutham Muthukrishnan, Anastasios Sidiropoulos, Cliff
Stein, and Zoya Svitkina. On distributing symmetric streaming computations. ACM
Transactions on Algorithms (TALG), 6(4):1–19, 2010. 20

[Goo96] Michael T Goodrich. Communication-efficient parallel sorting (preliminary version).
In Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing,
pages 247–256, 1996. 21

[GSZ11] Michael T Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and
simulation in the mapreduce framework. In International Symposium on Algorithms
and Computation, pages 374–383. Springer, 2011. 20, 21

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
distributed data-parallel programs from sequential building blocks. In Proceedings of
the 2nd ACM SIGOPS/EuroSys European conference on computer systems 2007, pages
59–72, 2007. 20

[JLS86] William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of
lipschitz maps into banach spaces. Israel Journal of Mathematics, 54(2):129–138,
1986. 5

[KSV10] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation
for mapreduce. In Proceedings of the twenty-first annual ACM-SIAM symposium on
Discrete Algorithms, pages 938–948. SIAM, 2010. 20

[KT12] Batya Kenig and Tamir Tassa. A practical approximation algorithm for optimal k-
anonymity. Data Mining and Knowledge Discovery, 25:134–168, 2012. 2

[LDR06] Kristen LeFevre, David J DeWitt, and Raghu Ramakrishnan. Mondrian multidimen-
sional k-anonymity. In 22nd International conference on data engineering (ICDE’06),
pages 25–25. IEEE, 2006. 2, 9

[LLV06] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy
beyond k-anonymity and l-diversity. In 2007 IEEE 23rd international conference on
data engineering, pages 106–115. IEEE, 2006. 3

[MKGV07] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan
Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. Acm transactions on
knowledge discovery from data (tkdd), 1(1):3–es, 2007. 3

[MW04] Adam Meyerson and Ryan Williams. On the complexity of optimal k-anonymity.
In Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 223–228, 2004. 2

[PS07] Hyoungmin Park and Kyuseok Shim. Approximate algorithms for k-anonymity. In
Chee Yong Chan, Beng Chin Ooi, and Aoying Zhou, editors, Proceedings of the ACM
SIGMOD International Conference on Management of Data, Beijing, China, June
12-14, 2007, pages 67–78. ACM, 2007. 2

[Swe02] Latanya Sweeney. k-anonymity: A model for protecting privacy. International journal
of uncertainty, fuzziness and knowledge-based systems, 10(05):557–570, 2002. 1

[Whi12] Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012. 20

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.
Spark: Cluster computing with working sets. In 2nd USENIX workshop on hot topics
in cloud computing (HotCloud 10), 2010. 20

12

[ZWL+18] Wantong Zheng, Zhongyue Wang, Tongtong Lv, Yong Ma, and Chunfu Jia. K-
anonymity algorithm based on improved clustering. In Algorithms and Architectures
for Parallel Processing: 18th International Conference, ICA3PP 2018, Guangzhou,
China, November 15-17, 2018, Proceedings, Part II 18, pages 462–476. Springer, 2018.
2, 9, 10

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes, we list our main contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we clearly state all theoretical assumption
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

13

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Yes, we clearly state all theoretical assumption.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we discuss the details about our implementation.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Yes, we include the code in the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, we discuss the experiment details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We report the errors by average but not report the standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we discuss the information about this.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we have confirmed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Yes, we discuss that our algorithm will be beneficial for the privacy preserving.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use public dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

17

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

18

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We only use LLMs to improve the writing.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Preliminaries

Given a graph G(V,E), for any v ∈ V , let ΓG(v) be the set of the neighbors of v in G. A
maximal independent set of G is a subset I ⊆ V such that every vertex in the graph is at
distance at most 1 from some vertex in I . A β-ruling set of a graph is an independent set
I such that every vertex in the graph is at a distance of at most β from some vertex in I .
In particular, a maximal independent is a 1-ruling set, which can be seen as a special case.
Let G2 to be the square graph of G that has the same set of vertices as G, but in which two
vertices are connected when their distance in G is at most 2.

A.1 Massivaly Parallel Computing

The MPC model [FMS+10, KSV10, GSZ11, BKS17, ANOY14] is an abstract of modern
massively parallel computing systems such as Map Reduce [DG08], Hadoop [Whi12],
Dryad [IBY+07], Spark [ZCF+10] and others.
We follow the introduction in [EMMZ22]. In the MPC model, the input data has size N .
The system consists of p machines, each with a local memory size of s. Hence, the total
space available in the entire system is p · s. The space here is measured by words, each of
O(log(p · s)) bits. Specifically, if the total space p · s = O(N1+γ) for some γ ≥ 0 and the
local space s = O(Nδ) for some δ ∈ (0, 1), then the model is referred to as the (γ, δ)-MPC
model [ASS+18]. The computation proceeds in synchronized rounds. In each round, every
machine processes the data stored in its local memory and sends messages to other machines
at the end of the round. Although each machine can send messages to any other machine,
the total size of the messages sent or received by a machine in a single round should be at
most s.
Note that the space of each machine is sublinear in the input size. This means that we cannot
collect all input data into one machine. An MPC algorithm is called fully-scalable, if it can
work when the space per-machine is O(Nδ) for any constant δ ∈ (0, 1). The goal in this
work is to design fully-scalable MPC algorithms minimizing the number of rounds while
using a small total space.

B Extending to MPC Model

In this section, we demonstrate that our algorithm can be adapted into a fully scalable MPC
algorithm. At a high level, [EMMZ22] studied the minimum size constraint clustering
problem in the MPC model and give an algorithm that can be efficiently implemented in the
MPC model. However, since the input of this clustering problem is the binary expansion
of each record ri (which is in dimension d|Σ|) but not the record itself, naively using the
algorithm in [EMMZ22] yields a |Σ| factor in time and space, which can be large in practice.
Instead, we open the procedure of this algorithm and show that since each input point is
d-sparse, it is still achievable in the same order of time and space.
We will need the following concept of the C-approximate (R, r)-near neighbor graph.
Definition B.1 (C-approximate (R, k)-near neighbor graph, [EMMZ22]). Consider a point
set P from a metric space X . Let C,R, k ≥ 1. If an undirected graph G = (V,E) satisfies
(a) V = P ,
(b) ∀(p, p′) ∈ E,distX (p, p′) ≤ C ·R,
(c) For every p ∈ P , either |ΓG(p)| ≥ k or {p′ ∈ P | distX (p, p′) ≤ R} ⊆ ΓG(p),

then we say G is a C-approximate (R, k)-near neighbor graph of P .

We will show that given parameters C,R and a set S where each p ∈ S represents a binary
expansion of one record ri in table T . We can efficiently build a C-approximate (R, k)-near
neighbor graph G of S under ℓ2 distance in Õ(nd+n1+1/C2+o(1)k) time in the static setting
and in O(1) rounds in the MPC model.
Lemma B.2. Given parameters C,R, and a set S where each p ∈ S is a binary expansion
of a record ri in T . Then, there is an algorithm that with high probability constructs a
O(C)-approximate (R, k)-near neighbor graph of S in time Õ(nd+ n1+1/C2+o(1)k). The

size of G is at most Õ
(
n1+1/C2+o(1) · k

)
.

20

Proof. Let Φ ∈ Rr×d|Σ| be a JL matrix in Lemma 3.3 with r = O(log n) and for each
p ∈ S, we compute p′ = Φp. Let S′ = {p′1, p′2, . . . , p′n}. The construction of the graph G

is as follows. We draw s = Θ
(

logn
P1

)
independent LSH in Lemma 3.4 with parameters R

and C. Then, for every i ∈ [s] and every p′ ∈ S′, we connect p′ to k arbitrary points q′ ∈ S′

in G with hi(p
′) = hi(q

′). If there are less than k points with hi(q
′) = hi(p

′), connect p′
to all such q′ in G.
We first prove the correctness of the algorithm. From Lemma 3.3 we have with probability
at least 1 − 1/n, we have for every pair of p′ and q′ in S′, 0.9∥p − q∥2 ≤ ∥p′ − q′∥2 ≤
1.1∥p−q∥2 . Condition on this event occurs and consider p, q ∈ S with ∥p−q∥2 ≥ 2cu·C ·R.
Then from the assumption we have ∥p′ − q′∥2 ≥ 1.8cu · C ·R, this means that for a fixed
i ∈ [s], Pr[hi(p

′) = hi(q
′)] ≤ 1/n4 by Lemma 3.4. By taking union bound over all

such pairs of (p, q) and all i ∈ [s], with probability at least 1 − 1/n, we have for any
(p, q) ∈ S with ∥p − q∥2 ≥ 2cu · C · R, hi(p

′) ̸= hi(q
′) for all i ∈ [s]. Thus, if an edge

(p, q) ∈ E, we have ∥p− q∥2 ≤ 2cu ·C ·R = O(C) ·R. Now consider two points p, q ∈ S
with ∥p − q∥2 ≤ R. From the assumption we have ∥p′ − q′∥ ≤ 1.1 · R, By Lemma 3.4
and Chernoff bound, with probability at least 1 − 1/n3, there exists an i ∈ [s] such that
hi(p

′) = hi(q
′). By taking union bound over all (p, q) with ∥p− q∥2 ≤ R, with probability

at least 1− 1/n, we have there is an edge (p, q) ∈ E for all such pairs (p, q). Combining
these two aspects, we have that for every p ∈ P , either {q ∈ P | ∥p− q∥2 ≤ R} ⊆ ΓG(p)
or |ΓG(p)| ≥ k.
We next consider the runtime complexity. First, for each p ∈ S, since p is d-sparse, we can
compute Φ · p is O(d log n) time, which implies we can form the set S′ in O(nd log n) time
(note that the algorithm does not need to write down p explicitly). Then from Lemma 3.4 we
get that algorithm can evaluate hi(p

′) for every i ∈ [s] and p ∈ S′ in time O(n1+1/C2+o(1))
as the dimension of each p′ ∈ S is d′ = O(log n). Finally, to connect edges in graph G, we
sort points in S′ via their hash values and only consider to connect the points with the same
hash values. Since for each hash function, we connect at most r edges from a point, we
have this procedure can be done in time Õ

(
n1+1/C2+o(1) · k

)
and the size of G is at most

Õ
(
n1+1/C2+o(1) · k

)
.

Lemma B.3. Given parameters R,C, k and point set S. There is an MPC algorithm that
builds an O(C)-approximate (R, r)-near neighbor graph of S with high probability in O(1)

rounds and Õ
(
nd+ n1+1/C2+o(1)k

)
total space.

Proof. We first note that, the Johnson-Lindenstrauss lemma can be implemented in O(1)
MPC round and O(ndr) space where r = O(log n) in our case (See, e.g., Appendix A
in [EMMZ22]). Next, we can handle LSH functions in parallel. According to Lemma 4.1,
we use O(1) rounds to compute LSH values for all points in S. To connect edges, we can
sort points via their LSH values, make copies of some vertices and query indices in parallel.
These operations can be done simultaneously in O(1) rounds [Goo96, GSZ11, ASS+18].
Since we run s independent LSH functions and for each i ∈ [s], every each connects to at
most r vertices, we have the total space needed is Õ(nd+ n1+1/C2+o(1)k).

Given access to O(C)-approximate (R, k)-near neighbor graphs with different distance
parameters Ri = 2i for i = 0, 1, · · · , O(log d), the MPC algorithm presented in [EMMZ22]
produces a partition P on S′ that satisfies the condition outlined in Corollary 3.2.

Lemma B.4 (Essentially Theorem 4.31 in [EMMZ22]). Let γ, ε ∈ (0, 1). Given the
C-approximate (Ri, k)-near neighbor graph Gi’s, there is a fully scalable MPC algo-
rithm that with high probability outputs a partition P = {P1, P2, . . . , Pt} on S such that
with high probability, for every Pi, |Pi| ≥ k and for every p ∈ Pi, distℓ2(p, c(Pi))

2 ≤
O
(

log2(1/ε)
γ

)
· ρk(p)2 . The algorithm takes O

(
log 1/ε

γ · log1+ε(n) log log(n)
)

parallel

time and Õ
(
n1+γ+o(1) · k

)
total space.

The full algorithm of Lemma B.4 is presented in Algorithm 2 for completeness.

21

Algorithm 2 Clustering with Pointwise Guarantee
1: Input: A point set P , a parameter k ≥ 1.
2: Let C ≥ 1.
3: Let t← 0. Initialize the family of clusters P ← ∅.
4: Let ∆ (δ) be an upper bound (a lower bound) of distℓ2(p, q) for p ̸= q ∈ P .
5: Let L = ⌈log(∆/δ)⌉. For i ∈ {0, 1, 2, · · · , L}, let Ri ← 2i · δ.
6: for i = 0→ L do
7: Compute a C-approximate (Ri, r)-near neighbor graph Gi = (P,Ei) of P .
8: Let P ′

i ⊆ P be the vertices with at least k neighbors in Gi, i.e., P ′
i = {p ∈ P | |ΓGi(p)| ≥ k}.

9: Let P ′′
i =

{
p ∈ P ′

i | distGi

(
p,
⋃

Q∈P Q
)
> 1

}
.

10: Compute a β-ruling set Si = {si,1, si,2, · · · , si,t′i} of (G2
i)[P

′′
i].

11: Compute P ′′′
i =

{
p ∈ P \

⋃
Q∈P Q | distGi(p, Si) ≤ 2 · β

}
.

12: Partition P ′′′
i into t′i clusters Qi,1, Qi,2, · · · , Qi,t′i

where the center c(Qi,j) is si,j . For each point
p ∈ P ′′′

i \ Si, add p into an arbitrary cluster Qi,j such that distGi(p, si,j) is minimized.
13: For each p ∈ P ′

i \P ′′′
i , if p ̸∈

⋃
Q∈P Q, find an arbitrary cluster Q ∈ P such that distGi(p,Q) ≤ 1 and

update Q by adding p into Q.
14: Add Qi,1, Qi,2, · · · , Qi,t′i

into P . Let t← t+ t′i.
15: end for
16: Output the partition P = {P1, P2, · · · , Pt} and the centers c : P → P .

At a high level, the algorithm iteratively processes R = 1, 2, 4, . . . ,∆ (recall that in the case
of our input, the distance of each pair of points is between 1 and O(

√
d)). For each value

of R, the algorithm needs to access a C-approximate (R, k)-near neighbor graph G, and
then compute a β-ruling set of a subgraph of G2. The algorithm maintains the following
invariants at the end of the iteration with respect to the value of R:

(a) Every point p satisfies ρk(p) ≤ R must be assigned to some cluster.
(b) The radius of each cluster is at most O(C ·R)

(c) The size of each cluster is at least k.

For the correctness of Algorithm 2 and more details, we refer the readers to Section 3.3
in [EMMZ22].
Combining with Lemma B.3 and Lemma B.4, we can prove the correctness of our Theo-
rem 1.2.

22

	Introduction
	Our Contributions
	Related Work

	Preliminaries
	k-Anonymity

	Nearly-Linear Time Algorithm for k-Anonymity
	Reduction to Minimum Size Constrained Clustering
	Solving the Minimum Size Constrained Clustering Problem

	Single-Point k-Anonymity
	Experiments
	Preliminaries
	Massivaly Parallel Computing

	Extending to MPC Model

