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ABSTRACT

This work introduces a new approach for quantum algorithm optimization performed directly on the
manifold of quantum Hilbert space. The optimization problem is formulated and solved using group
arithmetic, which provides a coherency between the initial quantum state, unitary transformation, and
measured operator through the concept of finite Galois field. The numerical demonstrations include
(1) synthesized datasets, (2) COVID-19 growth dynamics modeling, (3) tumor burden modeling, and
(4) molecular energy prediction. Finally, we establish the connection of the proposed algorithm to
re-normalization in Quantum Field Theory, Quantum Computing, and Knots.
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1 Introduction

Quantum computing is a type of computation that leverages the principles of quantum mechanics to process information.
It represents a fundamental departure from classical computing and holds the potential to revolutionize a variety of fields.
Quantum computing has potential advantages over classical computing, including data processing acceleration and
problem-solving (machine learning (ML) [30, 31], quantum chemistry [1, 2, 4], simulation and cryptography [8–10]).

Quantum ansatz optimization, also often referred to within the context of the variational quantum eigensolver (VQE)
algorithm or quantum approximate optimization algorithm (QAOA), is an approach in quantum computing that uses a
hybrid quantum-classical scheme to solve problems [16, 25, 27, 28, 33, 40]. The protocol follows:

1. Choosing Ansatz Candidate: The term "ansatz" is borrowed from physics and denotes an educated guess or an
assumed form for a function optimized to fit a particular scenario. In quantum computing, a quantum ansatz is
a guess for the system’s quantum state. The ansatz is typically chosen based on some physical insight into the
problem.

2. Preparing the Quantum State: Once a model architecture candidate is chosen, it is used to prepare a quantum
state on the quantum computer. This is typically done by applying a sequence of quantum gates based on the
parameters defined in the ansatz.

3. Measurement and Feedback: Measurements are taken once the quantum state has been prepared. These
measurements are then fed back into a classical computer.

4. Classical Optimization: The classical computer takes the results of these measurements and uses them to
adjust the parameters in the ansatz. This process is essentially an optimization loop, and classical optimization
algorithms can be used to find the best set of parameters.

Quantum ansatz optimization is an important topic in the early literature of Quantum Computing and Quantum Machine
Intelligence. Finding smaller complex circuits with high performance can significantly reduce the computation cost for
evaluating quantum algorithms.

1.1 Related Works

There are two principal classifications of the ansatz optimization problem. The first category focuses on "circuit
simplification", aimed at minimizing the computational burden on quantum hardware. This is achieved by optimizing
the local or global structure of the ansatz and replacing it with equivalent but more computationally efficient architectures.
This approach has been reported in several studies. The second category of ansatz optimization targets the identification
of the best ansatz that delivers optimal performance for specific tasks. This heuristic search focuses on deriving a
highly-performing ansatz for specific tasks rather than minimizing computational requirements. The primary objective
of our proposed work falls under this category, aiming to identify the optimal ansatz for quantum machine learning
problems.

In recent works, frontiers in quantum layout synthesis [22, 23, 36, 37] introduced the optimization framework based on
the coordinate of quantum ansatz, for which the space coordinate represents the number of prepared qubits (width)
and the time coordinate represents the circuit depth. Although these techniques achieved remarkable effectiveness
and efficiency, they could still be completed. Specifically, the quantum coordinate in reference is Euclidean vector
space, which could meet a high complexity when addressing the permutation of quantum gates. The quantum operator
generally does not commute, meaning AB ̸= BA. Thus, given a search space of (Space = 1, Time = n) with the
sequential of gates A1 ·A2 ·A3 . . . An, there will be n! permutations; i.e., neural candidates from the symmetric group
of n-order.

1.2 Contribution

In this study, we introduce a novel framework that enables quantum algorithm optimization directly on the manifold of
the quantum Hilbert space. We introduce the formalism in Section 2 to establish several important preliminary for the
model construction. Then, Section 3 will introduce the quantum algorithm alignment technique via group arithmetic.
Our proposed model assumes the coherency between three quantum entities: (1) initial quantum states, (2) unitary
transformation, and (3) measured operator via finite Galois field (Prime field). In other words, the configuration of
unitary transformation and measured operator only differ from the configuration of initial state by shifting operators;
however, these architecture embeddings with the proposed shift-operator form a closed, coherent mathematics structure
of the group (Appendix A.1).
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Figure 1: Illustration of ManifoldM, with ϕi(Ui) and ϕj(Uj) are the isomorphism mapping neighborhoods Ui and Uj
onM onto Euclidean Rd. The function ψij is a transformation from ϕi(Ui) 7→ ϕj(Uj), written as the composition of
ψij = ϕj ◦ ϕ−1

i .

In the line of applications, we validate the proposed algorithm on four case-studies: (1) synthesized dataset (Section 4.1)
and three actual applications, which are (2) modeling COVID-19 growth dynamics (Section 4.2.1), (3) modeling of
TMB with data scarcity (Section 4.2.2) and (4) molecular energy prediction (Section 4.2.3).

Finally, we will discuss the theory of this research under a bigger scope in Section 5, for which we refer to a LangLands
bridge connecting the re-normalization of quantum fields and the links from knots to quantum computing.

2 Formalism

Definition 1 Any Hilbert SpaceH with equipped metric measurement d(x, y) - the norm induced by the inner product
defines a metric on the Hilbert space, is a Hausdorff space. Given a Hausdorff spaceM≡ ⟨H, d⟩, ∀x ∈ M, ∃N (x)
- the neighborhood of H that is homeomorphic to an open set in Rd. ThenM defines a d-dimensional, topological
manifold.

Example 1 Given the Hilbert space H2n of the quantum wavefunction from n-qubit system. An 1-qubit system is
associated with C2, for which the electronic wavefunction is

|ψ⟩ = α |0⟩+ β |1⟩ ;α, β ∈ C.
α = a+ bi

β = c+ di

(1)

Because of the constrain |α|2 + |β|2 = 1, we have a2 + b2 + c2 + d2 = 1, which defines a 4-sphere ∈ R4. Given a
2-qubit system, the quantum state is presented on a standard computational basis as

|ψ⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩
α, β, γ, δ ∈ C4

(2)

2
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Thus, the associating Hausdorff space is R8. We can generalize as:
C2n R2n+1 VArch. Embedding

|ψ⟩ ϕ Λ

Define

In this study, one of the main aims is to find the representation Λ associating with wavefunction through a manifold that
enables optimal quantum ansatz design.

We find the connection between the wavefunction |ψ⟩ on a finite field Fp (p is a prime) and unitary transformation as
Fp → GL2(C) in Appendix 2. In this proposal, we aim to find the representation for quantum circuit architecture using
a sequence of Fp, given as

VArch. Embedding = F2 × F3 × F5 × · · · × Fk := Gp, (3)

where k is the nth prime and × is the Cartesian product.

Definition 2 Given the Hilbert space C2n of the wavefunction from n-qubit system, the vector space of architecture
embedding can be presented as an n-sphere (Sn):

(x− 2 )2 + (x− 3 )2 + · · ·+ (x− k )2 = r2, (4)

where η is the solution of equation 2n+1 ≡ η mod p; i.e., we compute the central of the n-sphere on the associated
Fp or Z/pZ.

Definition 3 A quantum machine learning (QML) algorithm is generalized as the following information flow:

Input Model Output Label

D(X,Y ) (n,Λ(Φ);Gp,Sn) ⟨ψt(X;θ)| Ĥ |ψ0⟩ := Ŷ Y

{|ψ0⟩ ,U(θ), Ĥ} |ψt(X;θ)⟩ = U(θ|X) |ψ0⟩ ,

update update

Figure 2: Information Flow of Quantum Machine Learning Models.

where n is the number of prepared qubits, Λ(Φ) is the architecture weight; |ψ0⟩ and |ψt⟩ are initial and final state;
U(θ|X) |ψ0⟩ is the quantum perturbation under unitary, parameterized transformation by θ with realization of observa-
tions X .

3 Approach

We begin with establishing a criterion for good QML models or optimality in such algorithm design:

C1 Optimization of Learning Objectives: Given the predicted value Ŷ from a QML model, we aim to minimize
the cost function L(Y , Ŷ ). This approach is common in ML; thus, further discussion will be neglected in this
study.

C2 Optimization of Architecture Representation: The outcome of a QML model is defined by the triplet |ψ0⟩
(initial state), U(θ) (unitary transformation) and Ĥ is an operator for measurement. In common designs, there
is no connection among these elements: the unitary transformation is defined by a stack of identical circuit
ansatzes, while operators are arbitrary Hermitian matrices. We assume that good model architecture design
should have a coherency among the quantum states, unitary transformation, and quantum operators. The
optimization protocol is depicted in Diagram 3.

3
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|ψ⟩ ∈ GL(C∗)

Fp ΛArch. Embedding Sn(Comparison Space) Maximize Coherency By Group Arithmetic

U , Ĥ ∈ GL2(C)


ẋ = e ◦ ẋ
ẏ = R ◦ ẋ
ż = F ◦ ẋ

min(ẋ, ẏ, ż)

ẋ
πψ

πU ,πĤ

{e,R,F}≡Z/3Z

Update

ẏ,ż

Optimize

Figure 3: Optimization of Architecture Representation on Λ using discussed n-sphere Sn using embedded coordinate ẋ,
ẏ = R ◦ ẋ and ż = F ◦ ẋ whereR and F are shifting operator to right and left, respective. The use of group operator
{e,R,F} ≡ Z/3Z creates the coherency in the architecture representation.

3.1 Quantum Algorithm Alignment via Group Arithmetic

Here, we use the constructed n-sphere as the comparison space for architecture embeddings, including πψ, πU and πĤ
corresponding to the under-scripted quantities. This approach is novel because we measure the similarity of such model
architecture representations on the same manifold spanned by sequences of prime fields Fp, which has yet to be used to
extend our knowledge. We assume that πψ, πU and πĤ is elements of symmetric group Sn, represented by n-sphere.

Morevover, these architecture representations πψ, πU and πĤ only differ by shifting operatorR (shifting right) or F
(shifting left). Specifically, given the coordinates of embeddings on Sn

πψ = (x1, x2, . . . , xn) = ẋ ∈ Sn
πU = (y1, y2, . . . , yn) = ẏ ∈ Sn
πĤ = (z1, z2, . . . , zn) = ż ∈ Sn
⟨xi, yi, zi⟩ ∈ Z/3Z ≡ F3 ≡ ∆3

(5)

we have the collection {πψ, πU , πĤ} ≡ Z/3Z, which is isomorphic with the triangle group ∆3. We define the

ẋ

ẏ ż

R◦ F◦

RnFn

FR−1

RF−1

Figure 4: Group Transformation {e,R,F} ≡ Z/3Z ≡ ∆3, with e = Rn = Fn.

shift-right operatorR acting ẋ gives ẏ = R ◦ ẋ (similar to rotation but in n-dimension); shift-left operator F acting
ẋ gives ż = F ◦ ẋ. We use group arithmetic to achieve three goals. First, the group transformation establishes the
coherency or dependencies among architecture representations. Second, group structure ensures the closure of the
mathematical structure (here is the search space) by the group axioms (Appendix A.1), which could lead to better
convergence and optimality of the algorithm. Finally, establishing the dependency means reducing the search space
complexity: we only need to optimize for ẋ and derive the corresponding ẏ and ż based on the established group
transformation. It is easy to imagine that the search space will be triple if we do not consider such a coherency because
we now need to optimize for all coordinate {ẋ, ẏ, ż}.
Using group and representation theory is our lessons learned from a novel description of modern AI models, for which
any AI algorithm can be described by the group of actions on set [11, 26]. The existing work provides a comprehensive
discussion of classical AI architecture but has yet to be specified for quantum AI models. Here, we leverage the theories
to learn (1) the representation πψ for prepared quantum states, (2) the representation πU for unitary transformation, and
(3) the representation πĤ for the measured operator. We highlight that these representations are coherent and being
optimized on Sn, constructed by finite fields {Fp}ni=1.

4
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3.2 Algorithm

We describe the proposed algorithm in Algorithm 1. First, we prepare an n-qubit system with the set of model
variational weight α,β ∈ C and architecture weight ẋ. Second, we define the comparison space for architecture weight
optimization, which is

Sn =

n∑
i=1

(ζ − η )2 (6)

where η is the solution of equation 2n+1 ≡ η mod p. We explain why this comparison space is used in Section 5.1.
The for-loop of model training is discussed with details in Algorithm 1. To optimize the algorithm, we synchronously
minimize the learning objective (C1) and architecture loss (C2) by

(C1) : Lobj(Y , Ŷ )

(C2) : Larch.(Sn) = 1
3

∑(
|Sn(ẋ)− Sn(ẏ)|+ |Sn(ẏ)− Sn(ż)|+ |Sn(ż)− Sn(ẋ)|

)
,

(7)

thus the final loss function is

arg min
α′,β′,ẋ′

(
Lobj + Larch.

)
(8)

4 Numerical Demonstration

4.1 Synthesized Study: Learning Non-Linear Dynamics with Limited Data

Experimental Design 1 We validate the effectiveness of the proposed model using synthesized datasets generated by
mathematical models in Table 1. We inject random noise with standard deviation from 0.1, 0.2 to 0.3. This experimental
setting allows us to evaluate the model ability of noise quantification and highlight. We investigate eight mathematical
models used for modeling non-linear dynamics of physical systems. Of note, such a class of models is well-known
and widely used in biomedical applications [5, 14, 15, 18, 42]. The details for these generated functions are given in
Appendix C.1.

We generate 1000 observations from each model, resulting in 24 evaluated datasets (eight models with three noise
levels). The monitored time is t ∈ [0, 11] (in days), including 12 observations. We aim to demonstrate the effectiveness
of our proposed algorithm in the data scarcity scenario. For each experiment, we use the first 9 data points (t ∈ [0, 8])
for model training and test on the last three observations. This evaluation has applicable meanings in clinical scenarios
where we are interested in predicting the dynamics of physical systems forward in time. The target variable Y is
calibrated using min-max normalization as in common practice.

Result 1 We show the fitted dynamics in Appendix Figure 1, 2, 3 (4 qubits), 4, 5, 6 (8 qubits) and 7, 8, 9 (12 qubits).
In general, the dynamics of the fitted curve following exponential growth were recorded in a major of experimental
runs. However, our model can generate different dynamics, such as modeling the linear growth in Appendix Figure 1,
where the model dynamics decrease from t ∈ [0, 4] and increase during the remaining monitored time.

The proposed algorithms effectively model (with noise) increasing dynamics such as linear, exponential, Gompertz, and
logistic growth. In contrast, the algorithm failed to approximate monotonous decreasing functions such as exposure-
dependent and non-linear dynamics with drug effects. However, we can adjust the predicted outcomes by adopting
some class of function, such as:

Ŷ ← 1

Ŷ
, or

Ŷ ← 1

1 + Ŷ

(9)

to generate decreasing dynamics.

The proposed model can effectively perform regression modeling in the low-limited dataset, with output dynamics
similar to exponential growth but not restricted to such an exponential family.

Remarks 1 We draw some remarks as follows:

5
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Algorithm 1 Quantum Algorithm Optimization on Manifold
input: D = (X,Y )
initiate: n-qubit; model weights α,β ∈ C; architecture weight ẋ; number of epochs N .
define: Sn =

∑n
i=1(ζ − η )2 where η is the solution of equation 2n+1 ≡ η mod p.

for i in N :
compute:

|ψ0⟩ = ⊗
∏n
j=1(αi |0⟩+ βi |1⟩) (Initial Quantum State)

ẏ = R ◦ ẋ
ż = F ◦ ẋ
Sn(ẋ)|ζ=ẋ; Sn(ẏ)|ζ=ẏ; Sn(ż)|ζ=ż (Arch. Representations)
for p in {Fp}np=1:
|ψp⟩ = αp |0⟩+ βp |1⟩

Up(ζ)(∈ GL2(C)) :=

cos
( 2π(ζ− η )

p

)
− sin

( 2π(ζ− η )

p

)
sin
( 2π(ζ− η )

p

)
cos
( 2π(ζ− η )

p

)
 ∣∣∣∣∣

ζ=ẋ,ẏ,ż

(Unitary Transformation)

compute:
|ψt⟩ = ⊗

∏n
p=1 |ψp⟩

U(ẏ) := ⊗
∏n
p=1

(
Up(ẏ) |ψp⟩

)
Ĥ(ż) := ⊗

∏n
p=1

(
Up(ż)

)
(Measurement Operator)

forward pass: (Feature Dependent)
H0 = X · |ψ0⟩
Ht = X · |ψt⟩
Ŷ = ⟨Ht|Ĥ|H0⟩ (Quantum Perturbation)

compute objectives:
Lobj(Y , Ŷ )

Larch.(Sn) = 1
3

∑(
|Sn(ẋ)− Sn(ẏ)|+ |Sn(ẏ)− Sn(ż)|+ |Sn(ż)− Sn(ẋ)|

)
optimize:

arg min
α′,β′,ẋ′

(
Lobj + Larch.

)
update: (α,β; ẋ)← α′,β′, ẋ′;

1. Increasing the number of used qubits does not guarantee the improvement of the model prediction. In contrast,
the model performance, like modeling data from linear growth dynamics, sometimes degrades.

2. Model trainability significantly depends on the training set, such as learning rate, weight decay, and the number
of epochs. We suggest performing hyper-parameter optimization depending on the problem of interest to select
the best model.

4.2 Applications

4.2.1 COVID-19 Growth Dynamics

Experimental Design 2 We validate our algorithm in modeling the growth of new cases in the COVID-19 pandemic,
with data from two regions, Vietnam (VNM) and North America (NA) [34]. For the first nation, we use the monitored
time in [0, 70] from January to March 2022 to demonstrate the data scarcity case. We use data from January 2021 to
April 2022 for the latter region to demonstrate large-scale experiments. We use the same train-test splitting as the

6
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synthesized study: we use the first 47 days to train the model to learn the growth dynamics of COVID-19 in VNM and
test on the remaining 23 days. Regarding NA, we use the data in the first year, 365 days for training and testing on the
remaining period.

Result 2 The proposed algorithm effectively models the growth dynamics of COVID-19 cases in both quantified
regions. In the VNM model, the fitted curve achieves 0.0367 in test MSE, while that in NA is 0.0027, shown in Figure 5.

Remarks 2 We find several interesting behaviors of the proposed algorithm in this case study:

1. In the VNM study, the predicted curve (red, dashed) does not pass through test observations but rather than
predicting the upper bound for the number of new cases. Of note, this prediction is learned from retrospective
data used for training, depicted in blue. Thus, the algorithm can effectively predict the maximum number of
new cases during the pandemic.

2. In the NA study, we see a contrast observation to VNM, as the predicted curve (red, dashed) is relatively close
to the actual value. Besides, the fitted dynamics follow exponential growth.

4.2.2 Tumor Burden Modeling

Experimental Design 3 We test the proposed model for applying tumor burden modeling (TMB), for which tumor
burden refers to the total amount or extent of cancerous tissue within a person’s body. It measures the overall size and
distribution of tumors in an individual. The measurement of tumor burden is important for several reasons. It helps
determine the stage of cancer, which is a crucial factor in selecting the most appropriate treatment options. Tumor
burden can also indicate the progression or regression of the disease over time, helping healthcare professionals monitor
the effectiveness of treatment interventions.

We use the data collected from [39], including mouse tumors that received four different treatments: (1) Control, (2)
Drug, (3) Radiation, and (4) Drug and Radiation. Of note, this is the real case study associated with the synthesized
study, for which the discussed mathematical models are the common tool to address TMB modeling. We have
demonstrated that the proposed algorithm effectively approximates the generated dynamics and quantifies the noise
from data collection. Thus, we deter the comparison to classical models in further works.

Result 3 We show four random tumors in Figure 6, which indicates that the proposed algorithm can be effectively
used for TMB modeling. The best-fitted curve is recorded in the mouse sample receiving the drug, while the worst
prediction is in the sample receiving both the drug and radiation. Besides, we highlight that exponential dynamics
could be insufficient for this task: TMB could be reduced immediately after the treatment; thus, monotonous increasing
dynamics fail to tackle this phenomenon. Our model prediction surface is beyond the exponential family, which resulted
in a critical point (when the gradient changes from positive to negative) discussed in the previous experiment.

Remarks 3 We provide a novel tool beyond the classical standpoint on the dynamics of a physical system: Classical
mechanism sees a particle as a point in space-time, and the particle’s dynamical quantities are known based on the
particle’s position. In our model, we take the quantum standpoint, in which the tumor is modeled as quantum entities,
in which dynamical quantities are derived from the wave function. This approach has yet to be seen in the clinical
literature to extend our knowledge.

4.2.3 Molecular Energy Modeling based on Bond Length

Experimental Design 4 We validate the proposed model in predicting molecular energy using its bond length in this
case study. We test the algorithm in four molecules: H2, H4, H6, and BeH2. We re-formula the predicted outcomes as

Ŷ ← 1

Ŷ
(10)

since the molecular energy is a decreasing function as the bond length increases. We apply the shift operator of the
feature set, including only bond length, to generate the input matrix:

X =

 b0 b1 b2
b1 b2 b3
. . . . .
bk b0 b1

 (11)

where bi is the bond length associated with energy yi.

7
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Figure 5: Experimental Result of the Proposed Model in COVID-19 Growth Modeling, concerning Two Regions:
Vietnam and North America. The training observations are in blue; the testing data points are in red.

Result 4 Our model architecture can effectively predict molecular energy based on the bond length. The best mode
with the lowest MSE is from modeling H4 and H2, which are also smaller molecules. In contrast, the algorithm has a
larger error rate when modeling the energy of bigger molecules, including H6 and BeH2.

Remarks 4 We provide a robust evaluation of the model by investing in its capacity, reported in Figure 8. Here, we
generate the 3D coordinate of a random molecule with 1000 observation and test on two methods for model outcome
adjustment discussed in Equation 9. We observe that:

1. The first adjustment technique Ŷ ← 1
Ŷ

provides a low-energy surface, in which high energy level only appears
in a small region.

2. The second adjustment technique Ŷ ← 1
1+Ŷ

provides a wider energy spectrum, which is almost uniformly
distributed over the prediction surface.

3. Thus, our model can be used in modeling small molecules (small energy landscape) and larger molecules
(wider energy spectrum) with a small adjustment in the model outcomes.

5 Theoretical Implications

5.1 Approaches to Open Problems in Circuit Placement

We will discuss several implications of our proposed algorithm to address existing challenges in circuit placement. In
the existing approach, quantum circuit optimization is performed discretely, and the referred quantum coordinate is in
Euclidean vector space. Specifically, we observe

1. The common search protocol can be depicted as

8
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Figure 6: Experimental Result of the Proposed Model in Tumor Burden Modeling, concerning Four Mouse’s Tumors
Received Different Treatment.

Search Space Evaluator Result

Select Candidate

Not Best

If Best

. Our proposed algorithm has two distinct features compared

to the existing protocols:
(a) First, the architecture parameter Λ is continuously trained with the model weight, making the algorithm a

gradient-based approach. This is our lesson learned from matured Neural Architecture Search (NAS)
literature of the classical AI (DART [24] and CSNAS [29]). However, adjusting from the classical
to the quantum model is not trivial because quantum machine intelligence has a completely different
mathematical abstraction than classical AI. To compare, we depict the optimization process as a continuous

loop: Search Space Evaluator.

Select Candidate

Synchronized Training

(b) Second, our proposed framework refers to quantum coordinates directly on manifold (Diagram 1), which
could derive a better model candidate compared to the Euclidean coordinate of layout synthesis. In other
words, we aim to optimize the algorithm at the abstract level, embedded in the representation of the
Hilbert space manifold. At the same time, the existing works perform a coarse approximation of the same
quantification through circuit placement. The translation of optimal algorithms from abstract to hardware
(circuit layout) has yet to be discussed within the scope of this study.

2. Why do we use the sphere Sn as referred comparison space for architecture optimization and loss
computation? A main challenge in NAS or ansatz optimization is to find an appropriate and robust metric
space for architecture comparison. Recall that the architecture embedding Λ includes all components πψ, πU
and πĤ formulated on a series of prime field Fp. Besides, the central of the sphere Sn in Definition 2 is fixed
for pre-defined n as is spanned by n# (the number of primes up to n). In other word, the boxed-notation η

9
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Figure 7: The Experimental Results of Molecular Energy Prediction based on Bond Length using our Proposed
Algorithm. We test our model using four small molecules, including H2, H4, H6, and BeH2.

10
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Figure 8: Model Capacity Analysis in the Context of Molecular Energy Prediction. We generate 1000 observations for
predicted function: (Left) Ŷ ← 1

Ŷ
and (right) Ŷ ← 1

1+Ŷ
.

is invariant, regarding πψ, πU and πĤ . Thus, the proposed architecture loss:

Larch.(Sn) =
1

3

∑(
|Sn(ẋ)− Sn(ẏ)|+ |Sn(ẏ)− Sn(ż)|+ |Sn(ż)− Sn(ẋ)|

)
(12)

encourage architecture embeddings πψ, πU and πĤ not being too far from each other (coherency) by minimiz-
ing their distance to the fixed centroid on the Sn-sphere.

5.2 Approaches to Re-normalization of Quantum Field Theory

Re-normalization refers to various methods employed in quantum field theory (QFT) and the study of self-similar
geometric structures. These techniques aim to address the occurrence of infinite values in calculated quantities by
adjusting the values themselves, effectively compensating for the impacts of their self-interactions. Here, we propose
an approach for re-normalization of the electronic wavefunction through minimization of architecture embeddings,
including prepared quantum states πψ , unitary transformation πU and measured operator πĤ .

These three quantities defining the QFT spanned by electronic wavefunction have self-similar geometric structures
compared to the Sn-sphere. Besides, the unitary transformation U(.) and measured operator Ĥ(.) are auto-induced
by the initial state ψ since the geometric-parameters of these two former quantities ẏ and ż is computed by that of
quantum state ẋ. This is the lesson from our previous experiment: applying parameter-shared scheme and SoftMax
function in quantum information aggregation could provide smoother prediction surface [32]. In this research, we
investigate the re-normalization beyond model weight, additionally for architecture embedding weights Λ.

5.3 A Link from Quantum Computing to Knots

This work’s underlying motivation is to connect concepts in Quantum computing and QFT to knot theory through the
Galois field, which could enable a better understanding of Quantum Machine Intelligence. We show the connection as
follows:

1. The connection between knot theory and quantum theory has emerged as a new tool to understand the
topological structure of quantum entity [43], starting from Jones polynomial [19, 20], which can be computed
by the Chern-Simons function [12] for gauge fields.

2. QC and the braid group are two interconnected areas of research that have gained significant attention in recent
years. The braid group plays a crucial role in the study of quantum computing, particularly in the context of
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Figure 9: Connection of QC/QFT to Knots and Braid through Galois (Prime, Finite) Field.

topological quantum computation. We show the representation of logical quantum gates as braids in Appendix
Figure 10.

3. The connection from Galois fields to knots arises using algebraic invariants, such as the Jones polynomial.
Besides, the connection between Galois fields and braids can be established through the Artin braid group, a
well-defined mathematical structure describing the possible braid operations on a given number of strands.

We illustrate the connections between these theories with this example:

Example 2 The Braid group on n strands, denoted Bn, is indeed generated by n − 1 elements, usually denoted
σ1, σ2, ..., σn−1. Each σi represents the act of crossing the ith strand over the (i+ 1)th strand. However, the operation
of crossing the ith strand under the (i+ 1)th strand is usually denoted by σ−1

i , not σi−1. The inverse operation σ−1
i

undoes the crossing of σi. In the case of B3, the Braid group on three strands, there are two generators: σ1 and σ2 (it is
isomorphic to the knot group of the trefoil knot). The relations are σ1σ2σ1 = σ2σ1σ2, known as the braid relation.
So, to clarify, σ−1

i represents the act of crossing the ith strand under the (i+ 1)th strand, not σi−1. The index of the σ
corresponds to the pair of strands being crossed, not the direction of the crossing.

Definition 4 The trefoil knot can be defined as the curve obtained from the following parametric equations:

x = sin t+ 2 sin 2t,

y = cos t− 2 cos 2t,

z = − sin 3t.

The ⟨2, 3⟩-torus knot is also a trefoil knot. The following parametric equations give a ⟨2, 3⟩-torus knot lying on the
torus (r − 2)2 + z2 = 1:

x = (2 + cos 3t) cos 2t,

y = (2 + cos 3t) sin 2t,

z = sin 3t.

In algebraic geometry, the trefoil knot can be represented as the intersection of the unit 3-sphere S3 in C2 with the
zero sets of the complex polynomial z2 + w3, a cuspidal cubic. Galois theory can be applied to the field extensions
generated by the solutions of polynomial equations to study their properties, including their symmetries. The field
GF(pn) is finite, while the solutions to the equation z2 +w3 = 0 in C2 are infinite. Therefore, there needs to be a more
straightforward connection between the Galois fields and the algebraic geometric representation of the trefoil knot. We
find that both theories could be unified through the concept of geometric group theory [13] and universal algebra [7],
which will be discussed in our future work.

6 Conclusion

To this end, we have introduced a new approach to perform quantum algorithm optimization from an abstract level of
the manifold on the quantum Hilbert space (Section 3). The effectiveness and efficiency of our model are demonstrated
by four case studies with (1) synthesized dataset (Section 4.1) and three real applications, including (2) modeling
COVID-19 growth dynamics (Section 4.2.1), (3) modeling of TMB with data scarcity (Section 4.2.2) and (4) molecular
energy prediction (Section 4.2.3).
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Figure 10: Trefoid Knot presented by Two Classes of Torus ⟨2, 3⟩.

We also discussed the theoretical implications for our study under a bigger picture, which aims to establish the Langlands
bridge [41] between QFT, QC, and QMI (Section 5.2) to knots and braid group via Galois field (Section 5.3). Thus, we
hope to rethink and propose a new approach for challenges in practice, such as layout synthesis and quantum circuit
placement (Section 5.1).

Some limitations of this study including:

1. We have not tested the algorithm on actual quantum hardware such as dynamically field-programmable neutral
atoms array processors [38], quantum optical [21] or discrete-variable quantum device [3, 6]. Thus, it is early
to compare our proposed algorithm with frontier works in the field.

2. The output dynamics are not universal as we show in numerical demonstrations, for which fitted curves incline
to have exponential-alike dynamics (monotonous increasing). Nevertheless, we have tackled this issue by
small adjustments in the outcome’s functional class, resulting in monotonous decreasing dynamics. Studying
additional calibration for model outcomes is problem-dependent and worth studying in further research.

3. The model trainability could be worsened as a new set of architecture weight Λ is added to the model variational
weights. However, this is an inevitable trade-off for gradient-based neural optimization: the model parameter
is increasing on one side. On the other side, both model weight sets are synchronized during the training stage,
which could enable better neural solutions.
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A Preliminary

A.1 Representation Theory

Group can be described as a set and an operator acting or (operating) on the set: Let a (finite) set of elements
G = {g0, g1, g2, . . . , gk} = {gi}ki=1 and an operator ◦ that induces the interaction between G’s elements; i.e., gi ◦ gj
means gi interacts with gj . A group is denoted as a duality (G, ◦) (mathematical structure) that satisfies these following
properties:

1. Closure: ∀gi, gj ∈ G; s.t. gi ◦ gj ∈ G.
2. Associative: ∀gi, gj , gk ∈ G; s.t. gi ◦ (gj ◦ gk) = (gi ◦ gj) ◦ gk.
3. Neutral Existence: ∃e ∈ G; s.t. a ◦ e = e ◦ a = a.
4. Inverse Existence: ∃a−1 ∈ G; s.t. a−1 ◦ a = a ◦ a−1 = e.

We can explain basic concepts in quantum computing using geometric group theory.

1. Given the computational basis of qubits is |0⟩ =
[
1
0

]
and |1⟩ =

[
0
1

]
, the electronic-wavefunction is ψ =

α |0⟩ + β |1⟩ ;α, β ∈ C∗. We have a mapping between a cyclic group Fp = Z/pZ into C∗, given as Euler
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function
ψ :Fp −→ C∗

m→ exp

(
2πim

p

)
= cos

(
2πm

p

)
+ i sin

(
2πm

p

)
= ξp;

m ∈ {0, 1, 2, . . . , p− 1}

(13)

A single qubit quantum state can be represented as:

|ψ⟩ = cos(θ/2)|0⟩+ eiϕ sin(θ/2)|1⟩

where |ψ⟩ is the quantum state, |0⟩ and |1⟩ are the basis states, θ and ϕ are real numbers representing the polar
and azimuthal angles on the Bloch sphere, and i is the imaginary unit. The term eiϕ is a root of unity because
for any integer n, (eiϕ)n = einϕ = 1 if nϕ = 2πm for some integer m. Thus, we can re-write

|ψ⟩ = ξp |0⟩+ ξq |1⟩
|ξp|2 + |ξq|2 = 1

(ξp, ξq) ∈ Fp × Fq;
(14)

meaning a quantum state |ψ⟩ is defined by the coordinate (p, q) of two primes via finite fields Fp (Galois
Field).

2. Each rotation θ can be encoded by parameterized quantum gates corresponding to Ox, Oy, Oz, given

by Rσx(θ) =

[
cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]
, Rσy (θ) =

[
cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]
, and Rσz (θ) =[

e−i
θ
2 0

0 ei
θ
2

]
. We have the equivalent class of representations Fp → GL2(C) [35]

Uy(θ̂) =

cos
(

2πm
p

)
− sin

(
2πm
p

)
sin

(
2πm
p

)
cos

(
2πm
p

)


≡ Uz(−θ̂)

[
exp( 2πimp ) 0

0 exp(− 2πim
p )

]
.

(15)

Here, Uy(θ̂); θ̂ = 2πm
p is the discrete approximation of parameterized quantum gates Rσy (θ);θ ∈ R. It is

because we only have finite value of m from {1, . . . , p − 1} for θ̂ instead of infinite number of rotations
θ ∈ R.

3. A time-evolution of the wavefunction from n-qubit |0⟩n is given as

ψ(θ̂) = Uσ(θ̂) ◦ |0⟩n . (16)

B Pseudo-Code

1 class Ansatz(nn.Module):
2 def __init__(self, n_states):
3 super(Ansatz, self).__init__()
4 self.n_states = n_states
5 self.A = nn.Parameter(torch.rand(n_states)+1j*torch.rand(n_states),

requires_grad=True)
6 self.B = nn.Parameter(torch.rand(n_states)+1j*torch.rand(n_states),

requires_grad=True)
7 self.Xdot = nn.Parameter(torch.rand(n_states), requires_grad=True)
8 self.Ydot = self.R(self.Xdot)
9 self.Zdot = self.F(self.Xdot)

10 self.xi = torch.tensor([self.compute_p_root(self.n_states, p) for p in range
(1,self.n_states+1)])

11 # GEOMETRIC TENSORS
12 primes = [sympy.prime(p) for p in range(1,self.n_states+1)]
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13 self.arch_norm = self.compute_Sn()
14 self.GL_Xdot = [self.GL2(self.Xdot, self.xi, p, i) for i, p in enumerate(

primes)]
15 self.GL_Ydot = [self.GL2(self.Ydot, self.xi, p, i) for i, p in enumerate(

primes)]
16 self.GL_Zdot = [self.GL2(self.Zdot, self.xi, p, i) for i, p in enumerate(

primes)]
17

18 def forward(self,x):
19 h = [self.compute_reps(x[i,:]).unsqueeze(0) for i in range(x.size(0))]
20 h = torch.cat(h, dim = 0)
21 h = h.unsqueeze(1)
22 h_abs = h.abs()
23 return h_abs
24

25 def arch_loss(self):
26 l0 = (self.arch_norm[0] - self.arch_norm[1]).abs()
27 l1 = (self.arch_norm[0] - self.arch_norm[2]).abs()
28 l2 = (self.arch_norm[1] - self.arch_norm[2]).abs()
29 aloss = (l0 + l1 + l2).mean()
30 return aloss
31

32 def compute_reps(self, x):
33 psi_0 = self.init_state()
34 psi_t = self.unitary_trans()
35 H = self.operator().type(torch.complex128)
36 H0 = torch.mul(x.type(torch.complex128),
37 psi_0.squeeze(1).type(torch.complex128))
38 H1 = torch.mul(x.type(torch.complex128),
39 psi_t.squeeze(1).type(torch.complex128))
40 z = torch.matmul(torch.matmul(H1, H), H0)
41 return z
42

43 # OPERATOR MEASUREMENT
44 def operator(self):
45 h = self.GL_Zdot[0]
46 for i in range(1, self.n_states):
47 h = torch.kron(h,self.GL_Zdot[i])
48 return h
49

50 # UNITARY TRANSFORMATION
51 def unitary_trans(self):
52 f = [self.psi(self.A[i], self.B[i]) for i, _ in enumerate(range(self.n_states)

)]
53 H = []
54 for i in range(self.n_states):
55 U = torch.matmul(self.GL_Ydot[i].type(torch.complex128),
56 f[i].type(torch.complex128))
57 H.append(U)
58 h = H[0]
59 for i in range(1, self.n_states):
60 h = torch.kron(h,H[i])
61 return h
62

63 # COMPUTING ARCHITECTURE DISTANCE ON S_n[x-[p]]-sphere
64 def compute_Sn(self):
65 x = (self.xi - self.Xdot)**2
66 y = (self.xi - self.Ydot)**2
67 z = (self.xi - self.Zdot)**2
68 return torch.sqrt(x), torch.sqrt(y), torch.sqrt(z)
69

70 # CONSTRUCTING GL2 (Ry)
71 def GL2(self, z, xi, p, i):
72 a00 = torch.cos(2*torch.pi*(z[i]-xi[i])/p)
73 a01 = -torch.sin(2*torch.pi*(z[i]-xi[i])/p)
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74 X = torch.tensor([a00,a01,-a01,a00])
75 X = X.reshape(2,2)
76 return X
77

78 def R(self,x):
79 y = torch.roll(x, shifts=1, dims = 0)
80 return y
81

82 def F(self,x):
83 y = torch.roll(x, shifts=-1, dims = 0)
84 return y
85

86 def init_state(self):
87 f = [self.psi(self.A[i], self.B[i]) for i,_ in enumerate(range(self.n_states))

]
88 h = f[0]
89 for i in range(1, self.n_states):
90 h = torch.kron(h,f[i])
91 return h
92

93 def psi(self, a, b):
94 x = a*torch.tensor([1,0]) + b*torch.tensor([0,1])
95 x = x.reshape(2,1)
96 return x
97

98 def compute_p_root(self, n, prime_index):
99 prime = sympy.prime(prime_index) # Find the nth prime number

100 power = 2**(n+1) # Compute 2^(n+1)
101 remainder = power % prime # Take the remainder (2^(n+1) mod p)
102 return remainder

Listing 1: The Pseudo-code for Algorithm 1

C Supplemental Results

C.1 Synthesized Study

Table 1: Growth Models and Equations Used in Synthesized Study. The exposure of tumors to the drug is assumed
to follow: Exposure = EpMax(t1/2/(Ept501/2+ t1/2)). We used EpMax = 50, Ept50 = 10, decay = 1 and IC50 = 5
for data synthesis.

Model Equation
Linear Growth dV/dt = α
Exponential Growth dV/dt = αV
Logistic Growth dV/dt = αV (1− V/VMax)
Gompertz Growth dV/dt = αV log(VMax/V )
Exposure-Dependent FOTE dV/dt = αV − β · Exposure ∗ V
Exposure-Dependent FOTE Resistance dV/dt = αV − β exp(−decay · t) · Exposure ∗ V
First Order Treatment Effect dV/dt = αV − βV
Non-Linear Drug Exposure Effect dV/dt = αV (1− EpMax) · Exposure/(IC50 + Exposure)
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Figure 1: Numerical Results of the Proposed Models on Synthesized Dataset with Standard Deviation of Noise σ = 0.1
using 4 qubits.

Figure 2: Numerical Results of the Proposed Models on Synthesized Dataset with Standard Deviation of Noise σ = 0.2
using 4 qubits.

19



A PREPRINT - JULY 16, 2023

Figure 3: Numerical Results of the Proposed Models on Synthesized Dataset with Standard Deviation of Noise σ = 0.3
using 4 qubits.

Figure 4: Numerical Results of the Proposed Models on Synthesized Dataset with Standard Deviation of Noise σ = 0.1
using 8 qubits.
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Figure 5: Numerical Results of the Proposed Models on Synthesized Dataset with Standard Deviation of Noise σ = 0.2
using 8 qubits.

Figure 6: Numerical Results of the Proposed Models on Synthesized Dataset with Standard Deviation of Noise σ = 0.3
using 8 qubits.
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Figure 7: Numerical Results of the Proposed Models on Synthesized Dataset with Standard Deviation of Noise σ = 0.1
using 12 qubits.

Figure 8: Numerical Results of the Proposed Models on Synthesized Dataset with Standard Deviation of Noise σ = 0.2
using 12 qubits.
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Figure 9: Numerical Results of the Proposed Models on Synthesized Dataset with Standard Deviation of Noise σ = 0.3
using 12 qubits.

23



A PREPRINT - JULY 16, 2023

Figure 10: The Connection Between Braid Group and Quantum Gates [17]. Figures Courtesy: https://www.quantum-
bits.org/?p=2226

D Connection Between Braid Group and Quantum Logical Gates
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