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Abstract

Graph neural networks have shown impressive capabilities in solving various graph1

learning tasks, particularly excelling in node classification. However, their effec-2

tiveness can be hindered by the challenges arising from the widespread existence of3

noisy measurements associated with the topological or nodal information present4

in real-world graphs. These inaccuracies in observations can corrupt the crucial5

patterns within the graph data, ultimately resulting in undesirable performance6

in practical applications. To address these issues, this paper proposes a novel7

uncertainty-aware graph learning framework motivated by distributionally robust8

optimization. The framework aims to alleviate the challenges by considering the9

distributional uncertainty associated with the graph data. Specifically, we use10

a graph neural network-based encoder to embed the node features and find the11

optimal node embeddings by minimizing the worst-case risk through a minimax12

formulation. Such an uncertainty-aware learning process leads to improved node13

representations and a more robust graph predictive model that effectively mitigates14

the impact of uncertainty arising from data noise. The learned Least Favorable15

Distributions (LFDs) also provide a means to quantify the predictive uncertainty,16

which is valuable in some uncertainty-sensitive scenarios where incorrect decisions17

can have severe consequence. In addition, we adopt the idea of differentiable18

optimization and develop an end-to-end learning algorithm that seamlessly inte-19

grates graph learning and distributionally robust optimization. Our experimental20

result shows that the proposed framework achieves superior predictive performance21

compared to the state-of-the-art baselines under various noisy settings.22

1 Introduction23

The field of graph learning has witnessed significant advancements in recent years, fueled by the24

remarkable performance of graph neural networks (GNNs) [1, 2]. In general, GNNs leverage message-25

passing techniques to enable efficient information exchange among nodes in a graph, leading to26

improved graph embeddings. Among the various graph-based learning tasks, node classification,27

especially in a semi-supervised setting, stands out as a prominent and widely applicable problem that28

has greatly benefited from GNNs. The objective of semi-supervised node classification is to learn29

high-quality node embeddings and make predictions on unlabeled nodes on a graph that has only a30

small subset of nodes labeled.31

However, similar to other deep neural networks, GNNs are susceptible to the influence of noisy32

input, including both noisy node features and topological structure [3, 4, 5] of the graph. This issue33

becomes even more critical in the low-data setting, where the performance can be greatly impaired by34

noisy observations when only a limited number of labeled nodes are available [3, 4, 6]. For example,35

in a social network, new users may inconsistently engage with content that aligns with their actual36

interests or express their preferences due to limited options available at that time. Such noises would37

introduce uncertainty and incorrect information about the user’s preferences into the training data.38
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With only a few labeled samples available, the GNN heavily relies on the noisy graph to learn the39

user’s preferences and generalize them to make less accurate recommendations. Hence, the GNN’s40

capacity to capture the underlying patterns of different nodes can be significantly compromised when41

the input graph is noisy. Therefore, it is challenging but imperative to achieve robust learning on42

noisy graphs, especially for the problem of semi-supervised node classification.43

In this paper, we propose a novel uncertainty-aware graph learning framework based on the idea44

of distributionally robust optimization (DRO) [7, 8, 9, 10]. The proposed Distributionally Robust45

Graph Learning (DRGL) framework significantly improves node embedding quality and enhances46

model performance, particularly in the presence of noisy node features and topological structure that47

hinder the direct observation of key patterns. To tackle the challenge, we first allow the underlying48

node feature patterns to vary within a pre-defined family of distributions and seek the least favorable49

distribution (LFD) that minimizes the risk in the worst-case scenario, as illustrated by Figure 1. It50

is important to note that the uncertainty arising from data noise is represented by an uncertainty51

set [9, 11, 12], characterized by a Wasserstein ball [9, 11, 13, 14]. Then, by minimizing the risk52

associated with this worst-case distribution, we can uncover the most robust node embeddings that53

effectively mitigate the impact of uncertainty stemming from the noisy observation. To seamlessly54

integrate this minimax formulation into the graph learning process, we also leverage differentiable55

optimization techniques [15, 16] and develop a tractable end-to-end learning algorithm. Hence, the56

resulting minimax solution also provides a means to estimate the potential uncertainty associated57

with predictions, allowing decision-makers to assess the uncertainty of different outcomes. This58

information is particularly valuable in some high-stakes scenarios where incorrect decisions can have59

severe consequences. In summary, the contributions of this paper are threefold:60

• We study the problem of robust graph learning under a challenging context, where both61

node attributes and topological structure are noisy.62

• We present a model-agnostic graph learning framework – Distributionally Robust Graph63

Learning (DRGL), which improves the reliability of GNNs against noisy graph inputs, espe-64

cially when labeled data is limited.65

• We conduct extensive experiments that demonstrate the proposed framework significantly66

enhances the quality of node embeddings and improves the predictive performance of GNNs67

on semi-supervised node classification.68

2 Related Work69
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(Wasserstein ball)

Observed noisy graph
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the worst-case risk

Other Possible graphs
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Figure 1: An illustration of the uncertainty set in
our proposed framework. The goal is to search
for the graph distribution that minimizes the worst-
case risk.

Graph neural networks (GNNs) have emerged70

as powerful models aiming to learn expressive71

representations for graph-structure data [1, 2,72

17, 18]. While these approaches proved to be73

successful [1, 2, 19], they are highly sensitive to74

the quality of the given graphs in terms of either75

node feature or graph structure [3, 5].76

To address the robustness limitations of GNNs77

in the presence of noises in node features and78

edges, researchers have explored different meth-79

ods to purify the noisy graph [3, 4, 20]. For ex-80

ample, graph structure learning (GSL) focuses81

on the joint learning of an optimized graph struc-82

ture and its corresponding representations. GSL83

methods typically leverage GNNs as graph en-84

coders and employs specialized graph structure85

learners to refine and recover accurate graph86

structures, thereby enhancing the robustness of87

GNNs. [21, 22, 23, 24]. Another line of research focuses on improving the robustness of GNNs88

against inaccurate or missing node features [25, 26, 27] through developing noise-resistant aggrega-89

tion and propagation techniques.90

However, a significant limitation of the these methods is that they require a task-specific design of91

structure learning or regularization term tailored to address specific types of noise. This inherent92
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task-specific nature limits their applicability in more general application scenarios. For instance,93

[5, 28] propose parametric learners that aim to denoise graph through pruning edges, but such methods94

cannot handle noise due to inaccuracies in node features. In contrast, our method handles both edge95

and feature noise directly in the GNN embedding space, offering a more unified and direct approach96

for robust graph representation learning.97

Another related research area is defense against graph attacks, which often leverages graph properties98

observed in real-world graphs to regularize the learning process. Notable methods in this area include99

GCN-SVD [29], which preprocesses GCN with the low-rank approximation of the perturbed graph.100

This approach is inspired by the observation that only the high-rank (low-valued) singular components101

of the graph are susceptible to perturbation. Additionally, ProGNN [24] is designed to guide the102

propagation process by intrinsic graph properties such as low-rank and sparsity in the graph structure,103

as well as the tendency for adjacent nodes to exhibit similar features. RGCN [30] models node104

representations as Gaussian distributions to mitigate adversarial attacks. However, these methods105

are primarily designed to handle various types of attacks, including random perturbations, in graphs106

with ample samples. To the best of our knowledge, they have not been extensively tested in low-data107

scenarios against random graph noise, which distinguishes our setting from this body of research.108

In contrast to the aforementioned methods, our approach handles noisy graphs based on the DRO109

[7, 8], which aims to enhance the robustness of GNNs by minimizing the worst-case risk in the110

presence of data noise. Only a handful of recent research attempts, such as [11, 31], have embraced111

similar concepts and investigated the potential applications of DRO in the context of graph-structured112

data. For instance, Sadeghi et al. [31] use GNNs to encode the input graph and employ DRO for113

model training. However, their work is mainly focused on the noisy node features, while we consider114

a more general scenario involving both noisy features and edges. Furthermore, their method solves115

for worst-case distribution and updates model parameters separately at each iteration [31], while our116

approach offers an end-to-end approach updating parameters with gradient-based learning techniques.117

Additionally, our approach provides uncertainty quantification under Least Favorable Distributions118

(LFDs). This capability has meaningful applications in uncertainty-sensitive scenarios [32, 33], such119

as molecular classification tasks in graphs [34, 35].120

3 Uncertainty-aware Graph Learning121

3.1 Problem Setup122

Consider an attributed graph (I, E), where I = {i = 1, . . . , n} represents the set of n nodes, and123

E = {(i, j), i, j ∈ I} represents the set of edges connecting the nodes. Each node i is associated124

with a d-dimensional feature vector xi ∈ Rd. The collection of all node features is denoted as125

X = [x1, x2, . . . , xn] ∈ Rn×d. To describe the graph more generally, we can represent it as126

G = (X,A), where A = (aij) ∈ {0, 1}n×n is the adjacency matrix, which provides information127

about the connectivity between nodes. If (i, j) ∈ E , then aij = 1; otherwise, aij = 0. Each128

node can be assigned one of the discrete labels y ∈ {m = 1, . . . ,M}. In the context of semi-129

supervised node classification, we have access to labels for only a subset of nodes, which we denote130

as yo = [y1, . . . , yn′ ]>, where n′ represents the number of observed nodes. The remaining nodes131

have no assigned labels and are denoted as yu = [yn′+1, . . . , yn]. In our setting, the assigned labels132

are assumed to be correct, but there might be errors or inaccuracies in the observed edges or node133

features due to noisy measurements. Our objective is to accurately predict the labels yu for these134

unobserved nodes in the graph.135

3.2 Node Embedding136

We use a graph encoder to embed the node features, including both the nodal information and the137

corresponding graph structure. We emphasize that our framework is not tied to any specific graph138

model and offers flexibility in selecting graph encoders. In this study, we use Graph Convolutional139

Networks (GCNs) [1, 36] and Graph Attention Networks (GATs) [2] to encode both the node feature140

and the graph topology. For each node i, the graph encoder functions as a nonlinear transformation,141

denoted as φθ, taking the nodal features and the corresponding graph topology as input and returning142

their node embeddings, denoted by ξ ∈ Ξ. Formally,143

φθ(·,G) : I → Ξ.
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Here θ ∈ Θ denotes the parameters specific to the model used in our framework.144

It’s important to note that the node embeddings obtained through the minimization of standard loss145

functions (e.g., cross-entropy loss) may not accurately capture the key feature patterns of the graph in146

our problem setting [3, 4, 5]. The presence of noise in the observed graph G, compounded by the147

limited number of labeled nodes, can result in the model fitting too closely to the noise, being misled148

by incorrect gradients, and generalizing poorly. Such models can be vulnerable to outliers, which149

might compromise the quality of the learned representations.150

3.3 Distributionally Robust Graph Learning151

In light of these challenges, one of the goals is to enhance the robustness of graph encoders directly152

within their embedding space. This robustification process ensures that the embeddings better align153

with the underlying graph structure, even in the presence of noise and perturbations.154
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Figure 2: The architecture of the proposed frame-
work consists of two cohesive modules: (1) a graph
encoder parameterized by θ, which produces the
node embedding ξ given the graph information G;
(2) a differential optimization layer, which gener-
ates the corresponding least favorable distributions
(LFDs) {P ∗m} for ξ by solving the convex opti-
mization defined in (4).

We develop a novel graph learning framework155

that improves the node embeddings, resulting in156

more robust predictive performance, particularly157

when confronted with noisy data. Figure 2 sum-158

marizes the architecture of the proposed model.159

Our approach assumes that node embeddings160

share the same label m adhere to an underly-161

ing distribution (ξi ∼ Pm ∈ Pm,∀i : yi = m)162

within an uncertainty set Pm encompassing all163

potential distributions Pm. However, obtaining164

a direct observation of this distribution is chal-165

lenging due to inaccuracies in the nodal or topo-166

logical information, and any changes in node167

embeddings will influence their corresponding168

distributions. The key idea of our proposed169

framework is to find the most robust node em-170

beddings, parameterized by θ, that minimize171

the worst-case risk over the uncertainty set Pm172

in the probability simplex ∆M = {π ∈ RM+ :173 ∑M
m=1 πm = 1}. This results in the definition174

of our distributionally robust minimax problem:175

176

min
π∈∆M

max
Pm∈Pm
1≤m≤M

Ψ (π;P1, . . . , PM ) , (1)

where Ψ is the risk function of a classifier π. We define the risk function as the summation of error177

probabilities under each class, i.e., Ψ (π;P1, . . . , PM ) :=
∑M
m=1 Eξ∼Pm [1− πm(ξ)]. We note that178

the optimal solution P ∗1 , . . . , P
∗
M to the inner maximization problem is known as the least favorable179

distributions (LFDs) in statistics literature [9, 37]. The risk associated with these distributions is180

considered the worst-case risk [9].181

As shown in Figure 3, we choose the uncertainty set Pm to be a Wasserstein ball of radius ϑm182

centered at the empirical distribution P̂m:183

Pm := {Pm ∈P(Ξ) :W1(Pm, P̂m) ≤ ϑm}, (2)

where P(Ξ) denotes the set of all probability distributions on Ξ. The Wasserstein distance of order184

one,W1, is defined asW1 (P, P ′) := minγ E(ξ,ξ′)∼γ [c (ξ, ξ′)], where c(u, v) is some cost function185

transferring from u to v, c(u, v) ≥ 0. The empirical distribution P̂m is represented by the Dirac point186

mass, denoted as:187

P̂m :=
1

|{i : yi = m}|

n∑
i=1

δξi1 {yi = m} ,m = 1, . . . ,M, (3)

Here, δ refers to the Dirac delta function, | · | represents the cardinality of a set, and 1 denotes the188

indicator function.189
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Algorithm 1 Learning algorithm of DRGL

1: Input: G = (X,A); yo = [y1, . . . , yn′ ]>; θ0;
2: Output: θT
3: for t← [0 ... T] do
4: L(θt) = 0;
5: for each mini-set do
6: Compute the node embeddings {ξ} given θt for all labeled nodes in the mini-set;
7: Calculate P̂1, . . . , P̂M given {ξ} and yo using (3);
8: Obtain LFDs P ∗1 , . . . , P

∗
M by solving (4) with DO given {ξ} and P̂ ;

9: L (θt)← L (θt) + J (θt;P
∗) using (5);

10: end for
11: θt+1 ← θt − α∇L (θt) (α is the learning rate);
12: end for
13: return θT

As the original problem (1) entails an intractable infinite dimensional functional optimization, we190

follow [9, 10] and introduce the proposition below. This proposition reformulates the problem into191

a computationally tractable convex optimization problem due to our careful selection of the risk192

function and uncertainty sets. We note that this selection exploits the structure of the least favorable193

distributions yielding from Wasserstein uncertainty sets [9].194

Proposition 1 For the uncertainty sets defined in (2), the least favorable distribution of problem (1)195

can be obtained by solving the following problem:196

min
p1,...,pM∈Rn

+

n∑
i=1

max
1≤m≤M

pim

subject to
n∑
i=1

n∑
j=1

γi,jm c (ξi, ξj) ≤ ϑm

n∑
i=1

γi,jm = P̂m (ξj) ,

n∑
j=1

γi,jm = pim,

∀1 ≤ i, j ≤ n, 1 ≤ m ≤M.

(4)

The decision variable γm ⊂ Rn×n+ can be viewed as a joint distribution on n empirical points with197

marginal distributions P̂m and Pm, represented by a vector pm ∈ Rn+. The inequality constraint198

controls the Wasserstein distance between Pm and P̂m.199

Remark 1 The maximization in (4) measures the margin between the maximum likelihood of ξi200

among all classes and the likelihood of the m-th class. Thus, the objective can be equivalently201

rewritten as the minimization of the total margin. When M = 2, the total margin reduces to the total202

variation distance.203

3.4 Model Estimation204

The proposed learning method for robust node embeddings can be carried out in an end-to-end205

fashion. To propagate the error backward through the convex optimization problem described in (4)206

to the graph encoder, we adopt the idea of differentiable optimization (DO) [15, 16].207

This approach enables us to differentiate through certain subclasses of convex optimization problems.208

In other words, the convex solver can be seen as a function that maps the data of the problem to its209

corresponding solutions, making it amenable to gradient-based learning techniques. Therefore, the210

learning objective can be jointly written as:211

J (θ;P ∗1 , . . . , P
∗
M ) :=

n′∑
i=1

max
1≤m≤M

P ∗m (φθ(i,G)) , (5)
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where P ∗m(·) can be regarded as the output layer of our model, which takes the node embeddings ξi212

as input and returns their LFDs by solving (4) with DO.213

We apply the mini-batch stochastic gradient descent as summarized in Algorithm 1. It is necessary214

that each mini-batch, which is provided to the convex solver, includes at least one training sample215

from every class to maintain the integrity of the optimization and its ability to generate valid solutions.216

4 Experiments217

4.1 Experimental Setup218
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Figure 3: The minimax problem (1) aims to find
the least favorable distributions (LFDs) by search-
ing the optimal Pm in the uncertainty set Pm that
maximizes the risk Ψ. The uncertainty set is de-
fined by Wasserstein distance.

In our experiments, we use three widely-used219

data sets, including Cora [38], Citeseer [39], and220

Pubmed [40]. These data sets consist of citation221

networks among 2, 708, 3, 327, and 19, 717 sci-222

entific publications, respectively [41]. In these223

networks, each node represents a text document,224

and its feature vector corresponds to a bag-of-225

words representation. We primarily focus on226

few-shot learning tasks where each data set con-227

tains M -class and K training samples per class.228

For each class, we randomly select K labeled229

nodes for a K-shot low-data setting.230

To assess the robustness of our method, we in-231

troduce random noise into these data sets in232

the following two ways: (1) We add Gaussian233

noise ε ∼ N (0, σ) to the node feature matrix234

X , where σ is set proportionally to the standard235

deviation of the bag-of-words representation of236

all nodes in each graph; (2) We randomly re-237

move or add a certain percentage r of edges in238

the graph. We also test the performance of DRGL in K-shot low-data setting without adding noise239

to the original graphs. We repeat each test three times with three different seeds and calculate the240

average accuracy.241

As our framework is designed to be GNN-agnostic, we chose to conduct experiments using Graph242

Convolutional Networks (GCNs) [1] and Graph Attention Networks (GATs) [2]. The purpose of243

adopting two basic GNNs is to test the generalizability of our DRGL framework. The performance of244

these basic GNN models aslo serves as a reference point for evaluating the robustness enhancements245

achieved by DRGL in our experiments. Specifically, for GCN, we employed two graph convolutional246

layers with hidden dimensions of 16 to learn 16-dimensional node representations. In the case of247

GAT, we utilized two graph attentional operator layers, with the first layer producing 8 attention248

heads, and ultimately obtaining 16-dimensional node embeddings.249

The implementation of DRGL was carried out in PyTorch. Implementing DRGL for node classification250

tasks involved two stages. In the first stage, DRGL is used to enhance a pre-trained GNN encoder251

for robustness, following the algorithm detailed in Algorithm 1. In the second stage, we train a252

classification model based on either the learned embeddings ξ or the corresponding Least Favorable253

Distributions (LFDs) P ∗ of ξ. Kernel density estimation methods or k-nearest neighbors (k-NN) could254

also be employed to estimate the predicted probability based on the LFDs of the node embeddings.255

In our experiments, we evaluated our framework using two classifiers: a shallow (2-layer) neural256

network with Softmax output based on the learned embedding ξ and a weighted k-NN based on257

LFDs.258

4.2 Robust GNN Baselines259

To assess the effectiveness of DRGL, we conducted a comparative evaluation against baseline GNNs260

and state-of-the-art defence methods. An overview of these defense methods is provided below:261
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Table 1: Model performances with Gaussian noise in node features (K = 5).
Models Cora (M = 7) Citeseer (M = 6) Pubmed (M = 3)
σ 0.112 0.224 0.091 0.182 0.018 0.036

LP 47.70 47.70 21.73 21.73 28.90 28.90
GCN+ Softmax 66.17 52.43 37.83 30.35 63.43 57.83
GAT+ Softmax 66.48 59.03 65.90 60.43 63.73 58.70
ProGNN 63.53 53.60 43.57 43.90 OOM OOM
RGCN 61.43 52.87 45.93 36.13 64.10 59.03
GCN-SVD 55.27 55.27 33.57 31.53 49.80 49.80

GCNDRGL+ Softmax 66.20 54.40 39.80 34.90 63.20 59.70
GATDRGL+ Softmax 67.83 59.40 65.60 61.27 64.57 59.77

Table 2: Model performances with random edge removal (K = 5).
Models Cora (M = 7) Citeseer (M = 6) Pubmed (M = 3)
r 20% 50% 20% 50% 20% 50%

LP 41.67 32.10 17.83 11.60 26.53 23.53
GCN+ Softmax 67.30 50.83 39.25 35.70 66.07 62.07
GAT+ Softmax 67.28 57.08 64.07 60.13 64.80 61.96
ProGNN 63.70 56.60 46.73 46.73 OOM OOM
RGCN 62.76 56.33 47.00 43.77 63.93 58.20
GCN-SVD 32.53 27.80 32.53 27.80 47.40 44.37

GCNDRGL+ Softmax 66.70 52.15 40.15 41.80 66.63 64.30
GATDRGL+ Softmax 69.02 58.88 65.93 61.20 65.93 60.53

GCN-SVD [29]: This approach is a preprocessing method that suggests robustifying GCN with262

the low-rank approximation of the perturbed graph. It was originally proposed to defend against the263

nettack attack [42], which includes perturbations in both node features and edges;264

RGCN [30]: RGCN adopts a strategy of modeling node representations as Gaussian distributions to265

mitigate the impact of adversarial structural attacks. Additionally, it employs an attention mechanism266

to penalize nodes with high variance, enhancing robustness;267

ProGNN [24]: ProGNN jointly learns a structural graph and a robust GNN model guided by268

intrinsic graph properties such as low-rank and sparsity in the graph structure, as well as the tendency269

for adjacent nodes to exhibit similar features. Since ProGNN [30] was originally introduced as a270

defense mechanism against graph structural attacks and noises, it can be readily extended and tested271

under our low-data graph noise scenarios.272

4.3 Main Results273

We evaluated the node classification accuracy of various methods in different noisy scenarios,274

including random noise, random edge removal or addition, and the standard low-data case. The275

best-performing method is highlighted in bold in the result tables, while the second-best is underlined.276

We note that the ProGNN method encountered out-of-memory (OOM) issues when trained with277

Pubmed using the official implementation, despite running on a 24GB RTX 4090 GPU. In such278

cases, its results are marked as OOM in the tables. Based on the experimental results, we make the279

following observations regarding the performance of DRGL in different settings:280

Random Gaussian noise in node features Table 1 presents the average classification accuracy,281

revealing that GCN and GAT models trained with DRGL consistently outperforms the standard models282

using the same classifiers and baseline robust graph methods across almost all scenarios. These find-283

ings underscore the effectiveness of DRGL in improving the embedding’s robustness when confronted284

with noise in node features within low-data settings.285

Random edge perturbations In the edge removal setting, Table 2 illustrates that both GCN and GAT286

exhibit significant improvements when enhanced with DRGL, particularly when a higher percentage of287

edges are removed. Their performance also consistently surpasses that of benchmark robust baselines,288

highlighting the effectiveness of DRGL in strengthening GNNs against missing edges. In the case of289
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Table 3: Model performances with random edge addition (K = 5).
Models Cora (M = 7) Citeseer (M = 6) Pubmed (M = 3)
r 20% 50% 20% 50% 20% 50%

LP 47.70 47.70 21.73 21.73 28.90 28.90
GCN+ Softmax 61.73 55.03 47.67 39.83 59.27 60.07
GAT+ Softmax 68.93 63.00 47.20 44.27 63.70 59.53
ProGNN 66.63 56.60 43.00 38.00 OOM OOM
RGCN 57.23 50.97 42.63 39.20 61.76 56.00
GCN-SVD 47.80 44.37 32.06 31.30 51.90 50.07

GCNDRGL+ Softmax 62.63 55.90 47.67 40.26 60.56 59.80
GATDRGL+ Softmax 67.60 59.13 47.30 43.97 62.30 59.03

Table 4: Model performances without graph noise.

Models Cora (M = 7) Citeseer (M = 6) Pubmed (M = 3)
K = 5 K = 10 K = 5 K = 10 K = 5 K = 10

LP 47.70 52.80 21.73 28.33 28.90 38.63
GCN+ k-NN 36.20 66.50 28.50 52.47 45.57 68.27
GCN+ Softmax 63.47 70.67 45.37 57.83 67.10 71.27
ProGNN 71.20 75.80 45.10 54.53 67.70 OOM
RGCN 66.13 71.23 50.00 53.00 66.43 70.53
GCN-SVD 52.67 60.43 33.57 34.34 52.17 57.43

GCNDRGL+ k-NN 44.60 68.23 34.07 53.30 51.10 68.67
GCNDRGL+ Softmax 66.13 72.60 49.83 59.33 67.83 72.20

edge addition, while Table 3 demonstrates a more moderate impact of DRGL on GATs, it still improves290

performance of GCN in most settings and outperforms robust methods.291

Standard few-shot setting In this setting, each node class is provided with a limited number292

of labeled samples, along with the original features and edges. The results presented in Table 4293

demonstrate DRGL improves GCN in across all settings. This suggests that while DRGL is primarily294

designed to enhance robustness in noisy graph scenarios, it also enhances model performance in295

standard few-shot scenarios. We complemented the Softmax classifier with a k-NN classifier to296

further support this observation, where DRGL demonstrates similar improvement.297

4.4 Learned Embeddings and Uncertainty298

To gain a more intuitive understanding of the learned embedding space produced by DRGL, we299

conducted an additional ablation study. In this study, we set the output of the learned node embeddings300

to be two-dimensional and and visualize them as scatter plots. Figure 4 and Figure 5 give real examples301

using three classes of nodes from Cora data set [38]. In these figures, the training data points are302

represented by large dots, while the testing data points are represented by small dots. The color of the303

dots corresponds to their true categories, providing a visual reference. The color depth of the regions304

suggests the likelihood of a sample being classified into the predicted category.305

Figure 4 presents a comparison between the learned node embeddings and those generated by the306

baseline GCN used for DRGL in various noisy scenarios. We can observe that the between-class distance307

demonstrates a slight increase in contrast to the vanilla GCN. Conversely, the intra-class distance shows308

a minor reduction, as denoted by the denser distribution of dots with matching colors. It is worth309

mentioning that such differences in distribution can become more prominent in higher dimensional310

embedding spaces. Although seemingly subtle, this shift in the distribution of embeddings due to311

DRGL plays a pivotal role in significantly improving the accuracy of the classification outcomes,312

indicated by the accuracy displayed in the lower right corner and results in Section 4.3.313

Figure 5 showcases the visual representation of the LFDs generated by DRGL. The shades of grey314

in the visualization are obtained using kernel density estimation, where darker shades indicate a315

higher level of uncertainty between the different categories. These LFDs serve as a valuable tool for316

uncertainty quantification (UQ), enabling us to pinpoint the data points that are susceptible to the317

greatest impact in worst-case scenarios. Let p̃∗ = [p̃∗1, . . . , p̃
∗
M ] denote the predicted probabilities318

of a classifier built on learned LFDs of a graph. The predictive uncertainty can be expressed using319
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Accuracy: 76.67%

(a) Raw (DRGL)

Accuracy: 53.67%

(b) 2σ noise (DRGL)

Accuracy: 67.00%

(c) 20% edge (DRGL)

Accuracy: 70.33%

(d) Raw (GCN)

Accuracy: 52.33%

(e) 2σ noise (GCN)

Accuracy: 66.00%

(f) 20% edge (GCN)

Figure 4: The impact of noise on the learned feature spaces. (a) and (b) show the embeddings from
graphs without noise; (b) and (e) show the embeddings when the graphs have nodal features with 2σ
noise; and (c) and (f) present the representations from graphs where 20% of the edges are removed.

Accuracy: 66.00%

(a) DRGL + GCN

1.
0

1.0

1.
2

1.
4

H(p * ) = 1

H(p * ) = 1.2

H(p * ) = 1.4

(b) UQ of DRGL + GCN

Figure 5: The learned embeddings and the uncertainty.

entropy [43, 44, 45]:320

H(p̃∗) = −
M∑
m=1

p̃∗m log p̃∗m (6)

The result highlights the improved capability of our approach in capturing and quantifying uncertainty321

compared with the vanilla GCN method.322

5 Conclusion323

To address the challenges posed by noisy graphs, we proposed a novel GNN-agnostic framework,324

DRGL, that enhances the robustness of node embeddings and predictive performance. Our proposed325

framework improves model robustness by accounting for the uncertainties arising from data noise326

within the graph, leading to substantial improvements over state-of-the-art baselines on different327

benchmark datasets in various few-shot noisy graph settings. Extending this framework to other328

graph representation models beyond GCN and GATs and citation network data sets will be left to our329

future work.330
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