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Abstract

Learning from Demonstration (LfD) and Reinforcement Learning (RL) have enabled
robot agents to accomplish complex tasks. Reward Machines (RMs) enhance RL’s ca-
pability to train policies over extended time horizons by structuring high-level task in-
formation. In this work, we introduce a novel LfD approach for learning RMs directly
from visual demonstrations of robotic manipulation tasks. Unlike previous methods,
our approach requires no predefined propositions or prior knowledge of the underly-
ing sparse reward signals. Instead, it jointly learns the RM structure and identifies key
high-level events that drive transitions between RM states. We validate our method on
vision-based manipulation tasks, showing that the inferred RM accurately captures task
structure and enables an RL agent to effectively learn an optimal policy.

1 Introduction

Combining Learning from Demonstration (LfD) with Reinforcement Learning (RL) has empowered
artificial agents to learn complex tasks from human examples in areas such as video games Hester
et al. (2018), board games Silver et al. (2016), and robotics Argall et al. (2009); Abbeel et al. (2010).
LfD enhances RL by improving sample efficiency, which accelerates learning, and by reducing the
effort required from human developers to manually specify precise task objectives. However, many
LfD approaches struggle with long-duration tasks as they focus on directly learning a control policy
from demonstrations Zhang et al. (2018); Mandlekar et al. (2020) or inferring a reward function
Ho & Ermon (2016); Abbeel & Ng (2004); Baert et al. (2023). Integrating abstract task structures,
by decomposing complex tasks into manageable sub-tasks and providing structured guidance to the
agent, has enabled RL to address long-horizon tasks more effectively Baert et al. (2024b); Camacho
etal. (2021).

Reward machines (RMs) Icarte et al. (2022) provide a framework for defining such abstract task
structures by encoding high-level task objectives in a structured, automata-inspired format. Origi-
nally RMs were developed to extend RL for environments with non-Markovian rewards, by enhanc-
ing the agent’s state space with an abstract state layer that allow agents to retain memory of past
actions. However, recent research Camacho et al. (2021) has demonstrated that RMs can also en-
hance performance in fully Markovian tasks by converting sparse task rewards into a denser reward
signal, thereby offering consistent guidance as the policy advances through abstract states. Despite
their advantages, most current approaches require RMs to be manually specified by domain experts.
In this work, we address this gap by focusing on learning reward machines directly from visual
demonstrations in robotic manipulation tasks. The RM framework depends on a set of propositions
that encode high-level properties of the environment and a labeling function L that assigns truth
values to these propositions based on the current environment state. Unlike prior approaches, which
assume these propositions or feature detectors are predefined Toro Icarte et al. (2019); Xu et al.
(2021); Verginis et al. (2024); Camacho et al. (2021), our approach jointly learns the RM structure
and the mapping from environment states to Boolean propositions. Our method begins by capturing
visual demonstrations. We leverage the observation that sub-goals are visited more frequently in
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expert demonstrations compared to other states Ghazanfari et al. (2020); Baert et al. (2024a). To
identify these sub-goals, each frame is mapped to a low-dimensional feature vector. Through clus-
tering, similar states are grouped and prototypical states (representing a certain sub-goal) can be
identified. Finally, an RM is constructed capturing the sequential task structure from the demon-
strations. We evaluate our method on a set of vision-based robotic manipulation tasks. Leveraging
the inherent interpretability of the RM structure and the ability to visualize sub-goals as prototypical
states, we show that our method successfully recovers an RM that accurately captures the demon-
strated task. Furthermore, we demonstrate that the learned RM can be effectively used to train an
optimal RL policy.

2 Related Work

There has been extensive research on integrating formal methods into RL. For example, several
works adopt temporal logics to specify complex, long-horizon tasks Li et al. (2017); Kuo et al.
(2020); Xiong et al. (2022); Voloshin et al. (2022), while others investigate the use of automata,
such as RMs, to formalize task specifications Araki et al. (2019; 2021); Icarte et al. (2022). A
common assumption in these approaches is that high-level knowledge, in the form of automata or
temporal logic specifications, is available a priori. However, in real-world scenarios, this knowledge
is often implicit and must be inferred from data.

Regarding the inference of temporal logics from data, many methods focus on learning temporal
logic formulas using both positive and negative examples Kong et al. (2016); Bombara & Belta
(2021). However, in the context of LfD, only positive examples (i.e., demonstrations) are typically
available. Some works address learning linear temporal logic (LTL) from only positive examples
Shah et al. (2018); Roy et al. (2023), but these approaches usually assume that for each time step in
the provided trajectories, the truth valuation of a set of Boolean propositions is known. More recent
efforts aim to learn both a mapping from states to atomic propositions and the formula structure
Baert et al. (2024a), although applying this in continuous state spaces remains challenging.

In the domain of learning reward machines, most approaches focus on jointly learning both the RM
and the policy through environment interaction. For example, discrete optimization can be used to
learn an RM that decomposes the task into subproblems, such that combining their optimal mem-
oryless policies yields an optimal solution for the original task Toro Icarte et al. (2019). Xu et al.
(2020) propose an iterative method that alternates between automaton inference, used to hypothe-
size RMs, and RL to optimize policies based on the current RM candidate. Inconsistencies between
the hypothesis RM and observed trajectories then trigger re-learning. Verginis et al. (2024) ex-
tend this approach to settings with partially known semantics. Additionally, Xu et al. (2021) and
Dohmen et al. (2022) leverage active automata inference algorithms, such as the L* algorithm, to
learn RMs. Although these approaches do not rely on expert demonstrations, they assume access
to the reward function of the underlying MDP as well as the labeling function that maps states to
propositions. Closest to our work is the method proposed by Camacho et al. (2021), which learns
RMs for vision-based robotic manipulation tasks. However, this approach also assumes access to a
predefined mapping between low-level states and high-level propositions, limiting its applicability
in more general settings where such a mapping is not readily available.

3 Background

3.1 Reinforcement Learning

A Markov decision process (MDP) Bellman (1957) models sequential decision-making with the
following components: a state space S, an action space .A, a discount factor v € [0, 1], a transition
distribution p(s’ | s, a) describing the probability of reaching state s’ from state s when taking action
a, an initial state distribution Z(s), and a reward function R : S x A — R, which defines a scalar
reward for each state-action pair. An agent interacts with the environment at discrete timesteps ¢,
generating trajectories 7 = (S, ..., s7—1) of length 7". The RL objective is to find an optimal policy
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7 that maximizes the expected sum of discounted rewards: max, E ZtT;Ol Y R(s¢, ay).

In this work, we use off-policy deep Q-learning (DQN) Mnih et al. (2015) to train a policy 7 that se-
lects actions by maximizing a Q-function: arg max,c 4 Qg (s, a). Here, Qy(s, a), a neural network
with parameters 6, estimates the expected cumulative reward for taking action « in state s. DQN
updates 6 by minimizing the temporal-difference (TD) error between the current Q-value estimate
and a target value y;. For each training step, transitions (s, at, ¢, s¢4+1) are sampled from a replay
buffer. The loss function used is the Huber loss Huber (1992):

L(0) = Huber(Qg(s¢, ar) — y¢) (h

where
Yo =750, ap, sp41) +ymax Qo(ser1, a’). 2

Here, a’ represents the set of all available actions.

3.2 Reward Machines

A Reward Machine (RM) Icarte et al. (2022) is defined as a tuple Rap s,.4 = (U, ug, 6y, 6,), given a
set of atomic propositions AP, a set of environment states S, and a set of actions .4. Each proposition
p € AP has a truth value of either true or false and represents a specific piece of information about the
environment, such as object properties, agent statuses, or environmental conditions. The negation
of a proposition p is denoted as —p. Propositions can be combined into more complex logical
expressions using conjunctions (A) and disjunctions (V). U is a finite set of states, with ug € U
representing the initial state. The state-transition function J,, maps pairs (u,AP) to new states in
U, while the reward-transition function ¢, maps state transitions (u,u) to real-valued rewards in
R. At each time step ¢, the RM receives a truth assignment p;, which includes the propositions in
AP that are true in the current environment state s;. We can replace the standard reward in an MDP
by an RM, creating a MDPRM. This requires a labeling function L : S — 2/4?I that assigns truth
values to the propositions in AP based on the environment state. The state of the RM is updated
every time step of the environment. If the RM is in state u and the agent takes action a to transition
from environment state s to s’, the RM transitions to state v’ = J,,(u, L(s’)) and the agent receives
areward r = d,.(u,u’). A policy m(s,u) for an MDPRM is conditioned both on the environment
state and the RM state. This setup enables the modeling of non-Markovian reward functions within
an MDPRM, as different histories of environment states can be distinguished by elements of a finite
set of regular expressions over AP. Consequently, RMs can yield different rewards for identical
environment transitions (s, a, s’), depending on the agent’s prior state history.

4 Reward Machine Inference

In this section, we describe the process of inferring an RM from a set of high-dimensional demon-
strations. The method consists of four steps: (1) capturing demonstrations, (2) extracting feature
representations, (3) inferring sub-goals through clustering, and (4) constructing the reward machine.
An overview of this process, applied to the task of building a predefined pyramid, is depicted in Fig.
1.

4.1 Capturing Demonstrations

The first step is to capture a set of demonstrations from an expert performing the task. A camera
with full observability of the workspace records these demonstrations, which results in a set of
captured trajectories, denoted as D = {79, 71, ... }, where each trajectory 7; represents a sequence
of observed states over time. Since an image frame contains all the necessary information for the
agent to make decisions, we define a state s; € S as the image frame at time step ¢. Each state is
represented as a tensor in R256%256%3 where the dimensions refer to the height, width, and RGB
color channels of the image. Additionally, we capture the same demonstrations using a top-down



Reinforcement Learning Journal 2025

Figure 1: Overview of the proposed method applied to the task of building a predefined pyramid. (1)
Visual demonstrations are captured, and feature embeddings are extracted using a pre-trained model
¢. (2) Sub-goals are inferred by clustering the feature vectors obtained from the demonstrations. (3)
An RM is constructed, capturing the valid temporal ordering and transitions between the inferred
sub-goals. The 0-prototype corresponds with the initial RM state.

camera, however, these are only utilized during the policy training phase (as described in the next
section).

4.2 Extracting Feature Representations

To process the demonstrations, each frame s; is cropped to retain only the most relevant portion
of the workspace, such as the tabletop area where task-relevant objects are located (see Fig. 1).
After cropping, we extract a feature representation from each frame. This process transforms the
image frames into a lower-dimensional feature space that retains the essential visual information.
The extracted feature representation of a state s; is denoted by ¢(s;).

4.3 Inferring Sub-Goals through Clustering

To identify sub-goals, we leverage the insight that true sub-goals occur more frequently in expert
demonstrations than other states Ghazanfari et al. (2020); Baert et al. (2024a). Consequently, cluster-
ing can be used to detect high-density regions in the state space. Sub-goals are inferred by clustering
the feature vectors obtained from the previous step, using the DBSCAN algorithm Ester et al. (1996).
DBSCAN is robust to noise and does not require prior knowledge of the number of clusters, which
is crucial as the number of sub-goals in the task is unknown. Let ¢(D) = ¢(s) | s € 7,7 € D rep-
resent the set of all feature vectors extracted from all demonstrations. DBSCAN is applied to ¢(D),

yielding a set of & clusters {Cq, C, ..., Ck_1}. The cluster center for each cluster C; is defined as
i 1
i = W Z o(s). 3)
" lp(s)eC:

For each cluster C;, we identify a prototypical state s}, which is the state whose feature vector is
closest to the cluster center:

s; = arg min Il o(s) — pi ll2 - 4)

Here, || - ||2 represents the Euclidean norm. Although clustering is performed in feature space,
each prototypical state corresponds to an interpretable image, providing a human-understandable
representation of each sub-goal.

4.4 Constructing the Reward Machine

The set of prototypical states forms the basis for defining the reward machine states. Let U =
{up,u1,...,ur_1} represent the set of RM states, where each state u; corresponds to a prototypical
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Algorithm 1 Inferring the state transition function ¢,, from the set of abstract demonstrations D

Require: set of abstract demonstrations D
0u(u,-) < undefined Vu €U
for d € D do
U <— Ug
for p € d do
for p; € pdo
if 0,,(u, p;) = undefined then
5t p) Us; B ifﬂ:?&andﬁ:pi
0. (l,p) otherwise
end if
w4+ Oy (u,p;)
end for
end for
end for
return o,

state s7. We build the set of atomic propositions AP by defining a proposition p; for each prototypi-
cal state s;. The truth evaluation of each proposition p; € AP is determined based on the Euclidean
distance between the feature representation of the current state ¢(s) and the feature representation of
the corresponding prototypical state ¢(s). Formally, for a given proposition p; € AP, correspond-
ing to the sub-goal represented by prototypical state s; and RM state u;, the proposition is true if
the Euclidean distance between ¢(s) and ¢(s}) is less than a predefined threshold . The labeling
function can then be expressed as:

L(s) = {pi [ llo(s) = ¢(s7)ll2 < %, Vpi € AP}. )

An abstract demonstration d associated to a demonstration d can be defined as a sequence of sets
of propositions pg, p1, ..., Pn—1, Where p; is the abstraction of state s; into AP by L, for each
t € {0,...,T — 1}. The set of abstract demonstrations ﬁ thus, defines the directed connections
between RM states. Transitions between abstract states observed in the demonstration should be
reflected into the state-transition function §,,. The inference of the state transition function d,, is for-
malized in Algorithm 1. Given the definition of the labeling function (Eq. 5), multiple propositions
may hold true for a single state. However, this would imply that the RM occupies multiple states
simultaneously, which is not feasible. To avoid this, the hyperparameter ~ should be tuned so that,
for each state s;, at most one proposition is true.

Next, we need to define the reward transition function J,- to guide the agent toward reaching the goal
states. A naive approach would be to assign a reward of 1 when the agent reaches a goal state in the
RM and 0 otherwise. However, this creates a highly sparse reward signal, making it difficult for the
agent to learn efficiently. To address this, we use potential-based reward shaping Ng et al. (1999),
which helps to construct a denser reward function while maintaining the same optimal behavior as
the original sparse reward. The idea is to provide intermediate rewards that encourage progress to-
ward the goal, making training more efficient. Inspired by Camacho et al. (2021), we define the
reward function as follows:

W (u) = yhen®) (6)
or(u,u') = 8, (u,u') + 7 (u') — ¥(u), @)

where U is the potential function, dgoa represents the shortest distance from the current RM state u
to the goal state in terms of edges and ¢/, is the original sparse reward function. This shaped reward
has the property that the reward is negative when the agent moves away from the goal in the RM
graph, is slightly less negative when the agent stays in the same state, is zero when the agent moves
closer to the goal and evaluates to 1 when the agent reaches the goal state.
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Figure 2: Overview of our DQN formulation. Each action consists of a picking operation at pixel
coordinates (upick, vpick) followed by a placing operation at (tpjace, Uplace). The Q-function Qg (s, a)
is modeled using two FCN’s: t)pick and tpjace Which generate pixel-wise Q-value maps for their
respective actions.

5 DON on the Inferred Reward Machine

The action space is defined by a pick-and-place primitive, parameterized by four pixel coordinates:
two for the pick location (upick, Vpick) and two for the place location (upiace; Vplace). Through cam-
era calibration and depth measurements, each pixel coordinate is mapped accurately to the robot’s
coordinate system, ensuring precise execution of these actions. For RM inference, images are cap-
tured from a front-view camera, while control actions use a top-down view of the workspace. The
top-down perspective aligns directly with the workspace plane, reducing distortion and occlusions
and facilitating accurate pixel-to-coordinate mappings. In contrast, front-view images are used for
inferring sub-goals, as they avoid occlusions caused by the robot and provide a fuller view of the
workspace.

Inspired by prior work in robotic manipulation Camacho et al. (2021); Zeng et al. (2022), we define
our deep Q-function Qg (s, a) using two fully convolutional networks (FCNs) Long et al. (2015),
Ypick and Yplace. Each FCN receives a top-down image and outputs a dense, pixel-wise map of Q-
values for all pick-and-place actions. To stabilize training, we only consider the Q-values inside a
rectangular region corresponding to the table area, as picking or placing outside this region is irrel-
evant. Both FCNs share the same architecture based on ResNet50 He et al. (2015) pre-trained on
ImageNet Deng et al. (2009). We use an intermediate feature map from the output of the second
residual block, then pass it through two convolutional layers that reduce the channels to one. Fi-
nally, the output is bilinearly upsampled to match the input resolution. During training, we compute
gradients only for the Q-value of the executed action’s pixel location, backpropagating zero loss for
all other pixels. All parameters, including those in the pre-trained ResNet layers, are updated.
Following the DQRM approach Icarte et al. (2022), we train a discrete Q-function per RM state,
each with a separate experience buffer for storing state-specific interactions and demonstrations. At
the end of each episode, we update all Q-functions by sampling batches from their corresponding
buffers. The input to the pick-action network pick is the current observation, while for piace, We
pass a top-down view prototype for each valid transition from the current RM state. This allows the
network to focus on areas where blocks are expected in the next state, aiding in goal-oriented place-
ment. Fig. 2 depicts an overview of our DQN formulation applied to the pyramid task introduced
earlier. Fig. 2 is captured in the beginning of an episode with each block in its initial position and
the RM in its initial state. There are two valid transitions from the initial RM state, resulting in the
place network )pjace receiving two corresponding top-down prototypes. The Q-value maps in Fig.
2 reveal that the pick network assigns high Q-values to the locations of the red and green blocks,
indicating these are favorable pick locations. Similarly, the place network predicts high Q-values at
the designated goal locations for each block.
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6 Results

We evaluated our method on object manipulation tasks using unstructured human demonstrations
within a simulated environment, employing a Franka Emika Panda robot in the robosuite simula-
tion framework Zhu et al. (2020). Five block-based manipulation scenarios were designed: Stack-2,
where two blocks are stacked in a predefined order; Place-2, placing two blocks at specific locations;
Pyramid-3, building a predefined three-block pyramid; Stack-3 and Place-3, similar to Stack-2 and
Place-2, but involving three blocks. The number of demonstrations collected varied with task com-
plexity. For example, Stack-3 required only a single demonstration due to the unique path from the
initial to terminal RM state. In contrast, Place-3 required six demonstrations to cover all possible
variations in sub-goal sequences. Demonstrations were generated by controlling the robot through
an algorithmically defined expert policy, ensuring high-quality demonstrations that fully represent
task variations. For RM inference, the feature extractor ¢ is parameterized by a ResNet-50 model
He et al. (2015) pre-trained on ImageNet Deng et al. (2009). DQN on the inferred RM was con-
ducted with a fixed batch size of 16, using the Adam optimizer Kingma (2014) and a learning rate
of 0.0001. An e-greedy exploration strategy is used, with ¢ initialized at 0.7 and decaying exponen-
tially to 0.1 over training. DBSCAN requires two parameters: €.jyser, Which defines the maximum
distance between two points for one to be considered in the neighborhood of the other, and min
points, the minimum number of points needed to establish a dense region. For each scenario, we
tuned these parameters along with the threshold x for matching states with prototypes.

Our method successfully inferred the correct RMs across all tasks, producing meaningful prototype
states representing the demonstrated task. The inferred RM accommodates variations in sub-goal
sequences observed in the demonstrations by representing each possible ordering as an alternative
route through the RM states. To quantitatively assess our approach, we report both total reward
per episode and placement error, measured as the average distance between each object and its goal
position (Fig. 3). The total reward indicates if an agent effectively learns an optimal policy for the
inferred RM. The placement error assesses the accuracy of the inferred RM, particularly in terms
of its defined sub-goals. We compared our method to an agent using a ground truth RM with pre-
defined propositions. For this ground truth RM, the set of propositions is again defined such that
for each state, one proposition becomes true. Each proposition is defined by the ground truth object
positions corresponding to that sub-goal. A proposition becomes true if the placement error between
the proposition’s object positions and the current object positions is below 0.05m. It is important to
note that the ground truth reward machine can only be utilized if the location of each object can be
determined at every time step. Fortunately, this condition is met in our simulation environment. To
evaluate the impact of the RM, we compare its performance against an agent trained using vanilla
DQN. Specifically, we differentiate between an agent that leverages the shaped reward provided by
the RM (i.e. dense reward) and an agent that only receives a reward upon successful completion of
the entire task (i.e. sparse reward). To track performance during training, we sample a trajectory
from the current greedy policy (e = 0) every five episodes, measuring both the total accumulated
reward and the placement error.

In achieving the maximum total reward of 1 per episode, agents must consistently transition towards
and reach the final goal state in the RM graph (see Eq. 7). For tasks with two blocks higher to-
tal reward levels were reached compared to three-block tasks. Both DQRM agents exhibit similar
learning curves across most environments. Placement error comparisons also show parity between
our inferred RM and the ground truth RM agent, suggesting that any remaining placement error is
primarily due to the control algorithm handling the pick-and-place actions. All methods show no-
table fluctuations in reward and placement error, attributed to noise in executing robot primitives. In
our approach, additional variance is introduced by prototype matching, where variations in feature
embeddings occasionally prevent RM transitions despite correct block placements. This explains
the lower rewards in the Stack-3 task, despite low placement errors, certain RM transitions fail to
trigger, preventing the final reward from being obtained even though the task is completed correctly.
In the Place-3 task, the inferred RM agent outperformed the ground truth RM agent in both place-
ment error and reward. This is due to the latter failing to recover the optimal policy in two runs. The
DQN (dense) agent typically converges to a suboptimal policy, resulting in lower rewards and higher
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Figure 3: Total reward obtained during one episode (top) and average distance between each object
and its ground goal location, i.e. placement error (bottom) during training. Results are averaged
over 10 runs, the shaded region represents the standard deviation.

placement errors. Unlike DQRM, which learns a policy for each RM state, vanilla DQN must learn
a single policy for the entire task, making the problem significantly more complex. This difficulty
is reflected in both the obtained reward and distance error. Since the DQN (dense) agent adopts the
same shaped reward as the DQRM agent, this experiment can be seen as an ablation study on the
role of abstract state information in DQRM. Finally, in all cases, the DQN (sparse) agent fails to
learn anything due to the large policy search space and the lack of guiding rewards. This supports
the claim made by Camacho et al. (2021) that RMs can significantly improve sample efficiency even
in Markovian tasks.

7 Conclusion

We presented a novel method for inferring RMs from unstructured demonstrations, using video
recordings as input. Unlike existing approaches, our method does not rely on predefined proposi-
tions. Instead, it uses clustering to derive meaningful sub-goals represented by prototypical states.
By measuring the distance in feature space between the current observation and each prototype, our
method detects sub-goal completion and enables state transitions within the RM. Experimental re-
sults show that our approach accurately infers the ground-truth RM with interpretable prototypes.
Furthermore, the inferred RM enables an RL agent to learn an optimal policy, achieving similar
placement accuracy to agents with access to ground-truth object positions and RMs.

Currently, our method converges on a single policy path between the initial and goal states, even
when multiple valid paths exist in the RM. A promising direction for future work is to develop
agents that can adaptively select alternative paths, which would improve robustness in environments
where certain paths become infeasible due to perturbations (e.g., a block becomes unavailable). An
interesting body of work in this direction is maximum entropy RL Haarnoja et al. (2018). Addition-
ally, enhancing prototype quality and detection accuracy could be achieved by exploring alternative
embedding types, such as object-centric representations Locatello et al. (2020) that are likely more
suited to robotic manipulation tasks. This could also facilitate the use of more complex types of
objects. Integrating multi-camera views, or projecting views (e.g., from front to top), could further
enrich feature representations, especially for real-world scenarios where camera placement may be
limited. Finally, exploring the application of this technique in other domains, such as navigation,
could extend its impact beyond manipulation tasks.
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8 Additional Hyperparameter Values

DBSCAN requires two parameters: €jyseer, Which defines the maximum distance between two points
for one to be considered in the neighborhood of the other, and min points, the minimum number of
points needed to establish a dense region. For each scenario, we tuned these parameters along with
the threshold « for matching states with prototypes. Table 1 provides an overview of the tuned
parameters.

K €cluster Min points # demonstrations
Stack-2 | 3.0 0.8 15 1
Place-2 1.9 1.0 20 2
Pyramid-3 | 2.3 1.2 30 2
Stack-3 | 3.0 1.8 40 1
Place-3 1.9 1.7 110 6

Table 1: Tuned parameters and the number of demonstrations used for the different scenarios.

9 Additional Qualitative Results

As presented in the main text, each RM state corresponds to a unique high-level proposition that
triggers a transition. The (0)-prototype represents the initial RM state, with each subsequent pro-
totype corresponding to a specific task sub-goal. Fig. 4 and Fig. 5 depict the inferred RM and
prototypes for the Place-3 and the Stack-3 scenarios respectively.

Figure 4: Inferred RM for the Place-3 task (left) Figure 5: Inferred RM for the Stack-3 task (left)
and the corresponding state prototypes (right). and the corresponding state prototypes (right).
We omitted the self-loop transitions for clarity. ~ We omitted the self-loop transitions for clarity.



