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ABSTRACT

Obtaining high-quality outputs from Large Language Models (LLMs) often de-
pends upon the choice of a sampling-based decoding strategy to probabilistically
choose the next token at each generation step. While a variety of such sampling
methods have been proposed, their performance can be sensitive to the selection of
hyperparameters which may require different settings depending upon the genera-
tion task and temperature configuration. In this work, we introduce p-less sampling:
an information-theoretic approach to sampling which dynamically sets a truncation
threshold at each decoding step based on the entire token probability distribution.
Unlike existing methods, p-less sampling has no hyperparameters and consistently
produces high-quality outputs as temperature increases. We provide theoretical
perspectives on p-less sampling to ground our proposed method and conduct ex-
periments to empirically validate its effectiveness across a range of math, logical
reasoning, and creative writing tasks. Our results demonstrate how p-less sampling
consistently outperforms existing sampling approaches while exhibiting much less
degradation in text quality at higher temperature values. We further show how
p-less achieves greater inference-time efficiency than alternative methods through
lower average token sampling times and shorter generation lengths, without sac-
rificing accuracy. Finally, we provide analyses to highlight the benefits of p-less
through qualitative examples, case studies, and diversity assessments. The code is
available at ).

1 INTRODUCTION

The increasingly impressive capabilities exhibited by Large Language Models (LLMs) in recent years
have been aided by advancements in sampling-based decoding strategies which probabilistically
select tokens at each generation step. In contrast to deterministic methods such as greedy decoding
and beam search (Freitag & Al-Onaizan, 2017)), sampling-based strategies can produce more diverse
and human-like language outputs while avoiding issues such as neural text degeneration (Holtzman
et al.). Truncation-based sampling strategies (e.g., top-p (Holtzman et al.), top-k (Fan et al., 2018b)),
e-sampling (Freitag et al.l [2023)), mirostat (Basu et al., |2021), min-p (Nguyen et al., [2024)) have
proven particularly effective by truncating the token probability distribution to only a subset of
higher-likelihood tokens before sampling. However, the truncation thresholds produced by these
existing approaches depend upon the specification of hyperparameters whose optimal values can vary
depending upon the generation task and sampling temperature (Zhou et al.| 2024)).

To address this deficiency, we introduce p-less sampling: a parameter-less sampling strategy grounded
in information theory. p-less sampling uniquely possesses several desirable properties for a sampling-
based decoding method. Specifically, p-less sampling is a distribution-aware approach which dynam-
ically adjusts the truncation threshold at each time step using the entire token probability distribution.
In this way, p-less provides a more principled, information-theoretic approach to determining the
truncation threshold than alternative methods. The truncation threshold produced by p-less also dy-
namically changes with temperature, producing robust results even at high temperature settings where
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Figure 1: Comparison of truncation thresholds produced by p-less, min-p, and top-p for a token probability
distribution with different applied temperatures (7). As temperature increases, p-less avoids admitting a large
number of lower-likelihood tokens by considering the entropy of the distribution in computing the threshold.

other sampling approaches suffer from text degeneration. An illustration of this effect is provided
in Figure [T} which shows how p-less sensibly truncates the long-tail of lower probability tokens
even at higher temperatures which flatten the probability distribution. In contrast, other approaches
which do not consider the entropy of the entire probability distribution admit far more tokens at high
temperature values, thereby leading to greater degeneracy. We include examples of token distributions
in Appendix [B.6]to show the effects of temperature, vocabulary size and distribution profiles on the
truncation threshold, including the ability of p-less to admit tokens from long-tailed distributions.

We provide theoretical perspectives on p-less sampling and ground our approach by interpreting
it in connection to the family of Rényi entropies (Rényi, [1961). Through extensive experiments,
we demonstrate the strong performance of p-less sampling across five math, logical reasoning, and
creative writing datasets using three LLMs spanning multiple model sizes and architectures. Our
results show that p-less sampling excels at math and reasoning tasks, consistently achieving high
accuracy across a wide range of temperature values. In contrast, other evaluated sampling approaches
have significantly greater variability in performance with respect to temperature, often exhibiting
declines in accuracy at high temperature values. Our p-less approach also provides similar benefits
for creative writing, producing the best performance in automated evaluations for the writing prompts
dataset. We further validate these results through a human evaluation study, finding that human
annotators also prefer stories generated by p-less over alternative sampling approaches. Finally,
we demonstrate the superior inference-time efficiency provided by p-less sampling and conduct
additional analyses on text diversity, qualitative examples, and case studies.

To summarize, our main contributions are as follows:

1. We introduce p-less sampling: a robust parameter-less sampling strategy grounded in
information theory

2. Through extensive experiments, we validate the effectiveness of p-less sampling using three
LLMs and five datasets spanning math, logical reasoning, and creative writing tasks.

3. We show that p-less is more efficient than other methods, both in terms of token sampling
speed and overall generation length, without sacrificing task-specific performance.

4. We provide additional analyses to highlight the benefits of p-less through the lens of text
diversity, qualitative examples, and case studies.

2 RELATED WORK

Text decoding in LLMs involves a truncation process where low probability tokens or those expected
to disrupt coherence are excluded from the sampling pool. Top-k (Fan et al.,2018al) restricts sampling
to the & most probable tokens, which could lead to incoherent generations when the distribution is
extremely uniform or peaked. Top-p (Holtzman et al.) improves upon this by sampling from the
smallest set of tokens whose cumulative probability exceeds a threshold p. e-sampling (Freitag et al.|
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2023) proposes to truncate all tokens with probabilities below a cut-off threshold e quantity. Both
top-p and e-sampling remain lacking in adapting to high-entropy conditions, which is typical when
temperature is turned up, such as for use cases where diversity is preferred. Similar to e-sampling,
n-sampling (Hewitt et al.l |2022) proposes an entropy-aware variant which defines the threshold
as the minimum of e and a scaled negative Shannon entropy exponential quantity. This however
introduces additional hyperparameters and relies on the assumption that the entropy follows a uniform
distribution baseline.

A more sophisticated approach in the form of mirostat (Basu et al.,|2021) assumes that the token
distribution follows Zipf’s Law and dynamically adjusts the threshold to maintain a target surprisal.
This dynamic feedback involves task and model dependent tuning of the target surprisal and a learning
rate. The min-p method (Nguyen et al., 2024)) attempts to simplify truncation through a fractional
hyperparameter, which is multiplied by the modal probability to define the truncation threshold.
While being more empirically robust at high temperatures, min-p remains sensitive to the choice
of the fractional hyperparameter, and leverages only a single statistic from the token probability
distribution. Another truncation approach aimed at balancing diversity with coherence (Zhu et al.|
2024) increments the sampling set until the improvement in confidence falls short of an error term;
it is similarly sensitive to the choice of the error hyperparameter and additionally requires iterative
computations for differences and comparisons. In contrast, our proposed p-less sampling method
avoids these pitfalls by operating directly on the empirical token distribution without imposing
parametric assumptions or requiring hyperparameter tuning. This approach offers a model-agnostic
threshold which is robust in high-entropy regimes.

Beyond truncation-based sampling techniques, a variety of decoding approaches have been proposed
to improve the quality of text produced by LLMs. Contrastive decoding (L1 et al.| 2022) aims to
improve text quality by contrasting token predictions from an expert and amateur model, with the
intent of maximizing expert-like generations while minimizing amateur-like text. (Su et al.| 2022)
introduces contrastive search decoding, which augments top-k with an additional degeneration penalty
hyperparameter « that balances the candidate token confidence with greater dissimilarity between
the previous context and the context continuation using the token. (Arias et al.,[2024) advances this
strategy through examining local variations in the entropy to determine the top-k and degeneration
penalty hyperparameters, thereby improving robustness across diverse contexts. While this strategy
adaptively proposes these hyperparameters at each generation step, a temperature factor g is required
and an implicit centering choice of the k quantity is made via the introduction of a pair of bounding
hyperparameters. (Ding et al.,|2025)) further incorporates the global entropy dynamics to stabilize
decoding under sudden local entropy spikes and guarantees an unbiased estimator for the instantaneous
entropy, offering resilience against volatility and eliminating the need for the temperature factor in
(Arias et al.l2024); however it introduces two hyperparameters, A for computing the degeneration
penalty and w to specify the window size for examining variations in local entropy. Other controlled
decoding methods such as Neurologic Decoding (Lu et al.,|2020) constrain text generation to achieve
various objectives such as improved diversity, which is particularly useful for applications like
synthetic data generation (Howard et al.| [2022; 2024} Rosenman et al., 2024)). Arithmetic sampling
(Vilnis et al., [2023)) uses parallel sampling to improve beam sampling based on an arithmetic code
book defined implicitly by the model; Parashar et al.|(2024) demonstrate how arithmetic sampling
produces more diverse generations than ancestral sampling across reasoning and translation tasks.
While these methods have some overlapping aims as our work, they differ substantially in their level
of complexity and can be viewed as complementary approaches that can be used in conjunction with
p-less or other truncation-based sampling methods.

3 METHODOLOGY

3.1 THE p-LESS SAMPLING METHOD

At every time step ¢, an autoregressive language model infers a distribution of the vocabulary tokens
conditioned on the token sequence already generated from step 1 to step ¢ — 1. Essentially, p-less
considers information from the entire probability distribution after the application of temperature;
it computes the likelihood of a correct random guess given the distribution, which serves as our
principled probability threshold adapted to the token distribution at every decoding step. We admit
tokens into the sampling distribution whose likelihoods are at least that of the correct random guess
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likelihood. Furthermore, to determine which and how many tokens to sample from, the p-less
threshold varies in a meaningfully opposite direction with entropy; as entropy increases, more tokens
with lower probability are admitted for sampling.

Formally, let v € V denote the set of tokens from a vocabulary V. At each time step ¢, let P(S = v)
denote the probability that token v is sampled and P(7 = v) denote the probability that token v is
the correct (or most desirable) token in the "ground-truth" sense. Furthermore, let Py(v | 21.4—1)
denote the language model’s predicted token distribution conditioned on the given token sequence
T1.t—1, Where @ are the language model parameters. Denoting the probability that the sampled token
matches the ground-truth as L[P], we have:

L[P] := ZP(S =vNT=v|21.4-1)
veY

= Z P(S =v|x14-1) P(T =v | T1:4-1) (1

veVY

since the sampling S and correctness 7 are independent events (no feedback involved). Notably,
since we only have access to the predicted token distribution of the language model and no other
external augmentation resources, we will take this as our best empirical estimate of the true token
distribution, i.e. P(T = v) = Py(v | #1.4—1). Therefore, we have:

LIPI =Y P(S=v|z14-1) P(T =v|2141)

veY

=Pg(v | z1:4-1) =Py(v | 1:4—1)

=Y Py(v|z14-1)° ©)

veY

‘We formalize the method as follows:

1. Determine the threshold probability L[P,] with Eq.equation

2. Construct the sampling set V), ., with tokens whose probabilities are at least L[FPy]:

Vpdess ={v €V : Py(v | x1.4-1) > L[Py] }. 3)
3. Sample from V), .. the next token x; according to the normalized token probabilities Pé:

Pe(v | ﬂflzt—l)
D ovrev, . Pov" [ 21:6-1)

Pé(xf | zl:t—1)|x,,::1) = for ve Vp-less~ (4)

3.2 THE p-LESSxorm SAMPLING METHOD

We further explore a variant of p-less which effectively relaxes the threshold by subtracting the
likelihood of an incorrect random guess normalized to the number of correct outcomes. The resultant
p-lessnorm, denoted L[Py], is preferable in use cases where diversity is favored over coherence.
Formally, we have:

= 1
L[Fy) := L[Py] — V=1 X Z Po(u| z1:0-1)Py(v | z1:6-1) )
—— u,vEV, uFv
Normalization .
constant Probability of a randomly sampled
and incorrect token
4 1

where \Vl%l gives the ratio of the possible number of correct to incorrect outcomes. The derivation
of Eq. equation[6|from equation [5]and additional details of p-lessnom are provided in Appendix
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3.3 CONNECTION TO RENYI ENTROPIES

Our p-less threshold can be re-interpreted in connection to established results in information theory,
namely the family of Rényi entropies (Rényi, |1961). The Rényi entropy of order o [1_-] is defined by:

1
Ha(p) = 7——1log ) ! %

In particular, the Rényi entropy of order 2 (aka the collision entropy) is given by

Hy(p) = —log » _p; = —log L[P] ®)

Since log is a monotonically increasing function, our p-less quantity L[P] increases with decreasing
collision entropy. Furthermore, we have

Hy(p) = —log LIP] < —log Zpi log p; = Hi(p)
— L[P] > exp(— Hy (). ©)

which shows that L[P] is also negatively correlated with the Shannon entropy.

The Rényi entropies of different orders quantify uncertainty with different sensitivities. In particular,
the Rényi entropy of order 2 is sensitive to the concentration in the probability mass function and
provides a suitable gauge of the global confidence in the model predictions.

Our p-less threshold corresponds to the exponential of the negative Rényi entropy of order 2. Intu-
itively, as Rényi entropy of order 2 increases, p-less decreases. By extension of the family of Rényi
entropies, we also showed p-less to vary in the opposite direction as Shannon entropy (Shannonl
1948). Finally, p-less can be extended to a generalized k-order threshold within the formalism of
Rényi entropy; see Appendix for details.

3.4 INTUITION OF p-LESS SAMPLING

We seek to answer the question "Given a probability distribution of tokens, what is a reliable subset
of tokens we should sample from?" Rationally, we make use of the full information in the distribution
to guide our decision, and formulate our method principled in probability and statistics. We define
our threshold probability p-less, for filtering tokens into the sampling set, as the probability of a
randomly selected and correct token (or most desirable token) in the "ground-truth" sense.

During inference, the token distribution that the large language model predicts is its degree of
belief in the next-token ground-truth correctness, based on the ground-truth information it learned
during training. Essentially, the token distribution encodes a notion of probabilistic correctness or
desirability. This token distribution presents, via L[P], the probability of sampling the ground truth,
or equivalently the probability that a random sampling is correct (or most desirable), which we
interpret as the minimum bar for tokens to qualify for admission into the sampling set. In other words,
the tokens that we admit into the sampling set have to be at least as confident as the random sampling
that happens to be correct (or most desirable) in the ground-truth sense.

'For special values a € {0, 1, 00}, the definition is extended via limits:

Ho(p) = log |V
Hi(p) =~ pilogp;

Hs(p) = —log max p;
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An alternative interpretation of L[P] is that it serves as the unbiased estimator of the second moment
of the distribution’s probability mass function, M[P], scaled by the vocabulary size |V|:

VI

L[P] := ZP(Q?Z')Q

1 (V| ,
= [V| x {M;P(xi) }

— V| x M[P] (10)

We regard p-less as an information-theoretic approach stronger than other methods, as it incorpo-
rates full information in the output token distribution for decoding, and demonstrates compatible
interpretations using probability theory (see Sections[3.1and [3.2), entropies (see Section [3.3]) and
statistical moments (see Section [3.4]and Appendix [B.4). Specifically, p-less contrasts with other
methods that do not consider the output token distribution (e.g. top-k, top-p, e-sampling, min-p) or
only considers it if conditions are met (e.g. n-sampling). p-less is also an empirical approach; it relies
on the empirical output token distribution instead of making assumptions in the token distribution
parameters or enforcing a target surprisal in the text generation process (e.g. mirostat), thereby
eliminating further estimation errors.

3.5 ADVANTAGES OF p-LESS OVER EXISTING METHODS

p-less sampling combines several desirable properties of existing sampling approaches into a single
method. First, the truncation threshold utilized in p-less sampling dynamically adapts to the entire
token probability distribution at each time step. In contrast, existing sampling methods either use a
fixed threshold which ignores the current token probability distribution (e.g. top-p, top-k, e-sampling),
set the threshold based on the probability of a single token in the current distribution (e.g. min-p), or
only considers the token distribution if conditions are met (e.g. n-sampling). Second, p-less produces
a bounded and valid truncation threshold which guarantees a non-empty candidate set for sampling,
unlike other sampling methods where bounds are not guaranteed and edge cases are resolved with
defaults, such as defaulting to the modal token (or top few tokens) if all tokens do not meet the
threshold (e.g. e-sampling, n-sampling, mirostat). Third, the truncation threshold of p-less sampling
dynamically adjusts with temperature, unlike other methods (e.g. top-p, top-k, min-p, e-sampling)
whose hyperparameters are not meaningful when temperature approaches zero or infinity.

Thus, p-less uniquely possesses all three of the aforementioned desirable properties of a sampling
approach, combining the benefits of existing sampling strategies into a single method. In addition,
p-less is distinguished from prior approaches in that it is parameter-less. This eliminates the need to
tune the sampling method’s hyperparameters, which are often sensitive to the generation task.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Our experiments were performed using Llama-2-7B (Chat) (Touvron et al. 2023), Mistral-7B
(Instruct) (Jiang et al., 2023)), and Llama3-70b (Instruct) (Dubey et al., 2024)) on two types of tasks:
math and logical reasoning across the GPQA (Rein et al., [2023), GSMS8K (Cobbe et al., [2021)),
QASC (Khot et al., [2020) & CSQA (Talmor et al., 2019) datasets, and instruction following creative
writing for the Writing Prompts (Fan et al., 2018a)) dataset. We benchmarked our proposed sampling
approaches against existing methods including Top-p (Holtzman et al.), Min-p (Nguyen et al.| [2024),
e-sampling (Freitag et al., 2023), n- sampling (Hewitt et al., 2022) and Mirostat (Basu et al., 2021}
for temperatures ranging from 0.5 to 2.0. We measured accuracy on the math and logical reasoning
datasets and computed length-controlled win rate (Dubois et al.| 2024) for Writing Prompts using
an automated evaluation framework (L1 et al.| 2023)), in addition to conducting a human evaluation.
Additional experiment details are provided in Appendix
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Llama2-7b Mistral-7b Llama3-70b

CSQA GPQA GSMSK QASC | CSQA GPQA GSM8K QASC | CSQA GPQA GSM8K QASC
€ 0.388  0.176 0.212 0.396 | 0.604  0.180 0.408 0.635 | 0.815 0.382 0.909 0.887
n 0.379  0.173 0.207 0.372 | 0555 0.172 0.399 0.601 | 0.727  0.326 0.895 0.812
min-p 0.488  0.243 0.256 0.502 | 0.691 0.212 0.523 0.730 | 0.820 0.377 0.924 0.899
mirostat 0410 0.212 0.201 0419 | 0.635 0216 0.392 0.684 | 0.776  0.366 0.879 0.879
top-p 0410 0.172 0.210 0.393 | 0.580 0.172 0.438 0.604 | 0.713  0.320 0.870 0.778
p-less 0.503 0.242 0.267 0.537 | 0.697  0.239 0.562 0.736 | 0.819 0.387 0.932 0.894

p-lessporm  0.503  0.248 0.267 0.538 | 0.692  0.222 0.564 0.739 | 0.819 0.391 0.930 0.894

Table 1: AUC of LLama2-7b, Mistral-7b, and Llama3-70b across different sampling methods for math and
logical reasoning datasets. The best AUC is in bold and the second best is underlined.
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Figure 2: Accuracy vs. temperature curves of each method on CSQA, QASC, and GSM8k using Llama-2-7b.
AUC values achieved by each method are provided in the legend (in parentheses) with the best AUC in bold.

4.2 MATH AND LOGICAL REASONING RESULTS

To perform a fair comparison between methods across temperatures, we computed the area under
the accuracy-temperature curve for each method (normalized between 0.0 and 1.0), which we term
AUC. Complete AUC results for the math & logical reasoning datasets are provided in
For Llama2-7b, the AUCs of p-less or p-lessyom outperform the other methods across all datasets.
The results for Mistral-7b are consistent with those of Llama2-7b: the AUCs of both p-less and
p-lessporm Outperform all other methods across every dataset. For Llama3-70b, the AUCs of p-less
and p-lessporm are either the highest or second highest within 0.005 of the highest. Across the four
datasets on Llama2-7b and Mistral-7b, p-less and p-less,om perform superior to the other methods at
temperatures 1.0 and above, and are competitive at temperatures below 1.0 (see
[Figure 9)and [Figure 10). [Figure 2{shows all sampling methods degrade at various rates with increasing
temperature, while p-less and p-less,orm are robust to high temperatures and widen their performance
gap against other methods. For Llama3-70b, p-less and p-lessyom perform superior to the other
methods across all temperatures on GSM8K, on low and high temperatures for GPQA, and on high
temperatures for CSQA and QASC; with the rest being competitive (see [Table 5|and [Figure 11)).

In addition to the commonly-adopted default hyperparameter configurations we employed for the
baseline methods (consistent with those employed or supported by prior work such as (Nguyen et al.}
2024)), (Zhou et al., [2024), (Zhu et al., [2024) and (Hewitt et al., [2022); see Appendix@ for the
hyperparameter values), we conducted evaluations over a wide range of hyperparameter values for
these baseline sampling methods (seefor full results), where we still find p-less and p-less;orm
to generally have the highest AUC, and competitive to highest accuracies.

We also compared p-less at temperature 1.0 to greedy decoding and beam search using Mistral-7b, and
provide a discussion on the versatility of p-less sampling in terms of producing strong results across
a variety of tasks and datasets (see Appendices [C.4] [C.4.T]and Table[6). In low-entropy inference
tasks which tend to favor greedy decoding (e.g. math and logical reasoning), p-less can achieve
similar or better performance. Additionally, p-less performs significantly better than greedy decoding
at higher-entropy tasks like creative writing, demonstrating that it is not simply an argmax-seeking
procedure. Rather, p-less dynamically adapts to the entropy of the token distribution to produce
high-quality outputs across a range of different settings without the need to change sampling strategies
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or hyperparameters depending upon the task. Furthermore, p-less can achieve higher diversity values
(than greedy decoding) by increasing the temperature (see Appendix [C.8and Table [TT).

We further ablated with the DeepSeek-R1-Distill-Qwen-7B (Guo et al.| 2025) reasoning model, which
consistently shows p-less and p-less,,m maintain strong performance across all temperature settings,
including being significantly superior to the second best at temperature 2.0 (see Appendix [C.5).

4.3 CREATIVE WRITING RESULTS

We provide results for the Writing Prompts dataset using the length-controlled win rate metric (Dubois
et al.| [2024). Specifically, we sample one generation per method and temperature for a subset of 100
prompts and use the response generated by default sampling (i.e. without truncation at temperature
1.0) as reference. Table [2] summarizes the results. All methods except p-less generally exhibit
significant performance degradation as temperature increases. In contrast, the performance of p-less
remains relatively stable and is superior to all other methods at temperatures > 1.0. This demonstrates
how p-less excels in the domain of creative writing while avoiding the degradation of text quality
exhibited by other methods at higher temperatures. In addition, we performed a human evaluation
using the Llama2-7b generations for 100 sampled prompts, and obtained directional consistency
between our human and automated evaluations, which provides further evidence of the effectiveness
of p-less sampling for creative writing (see Appendix [A).

Model Temperature e-sampling 7-sampling min-p mirostat top-p  p-less  p-lessporm
1.0 62.18 58.76 57.48 5694  62.07 55.08 58.74
Llama-2-7b 1.5 1.99 1.46 58.17 5.33 439 5823 59.58
2.0 0.00 0.00 4894  26.88 0.00 65.64 59.29
1.0 60.90 59.82 66.49 6226 65.68 68.90 67.49
Mistral-7b 1.5 3.71 0.00 62.17 12.08 0.00  66.97 66.89
2.0 0.00 0.00 54.11 40.33 0.00 60.32 61.99

Table 2: Length-controlled win rate for 100 sampled prompts from the Writing Prompts dataset.

5 ANALYSIS

5.1 EFFICIENCY OF p-LESS AND OTHER METHODS

To compare the inference-time efficiency of p-less to other sampling methods, we calculated the
average sampling time per token over 200 Mistral-7b generations for GSM8K and GPQA. The
results are summarized in Table [3] p-less achieves the fastest average sampling speed per token,
with a 22% reduction in inference speed relative to min-p. The superior efficiency of p-less is
statistically significant at the 5% level against the baseline sampling methods except n-sampling
(see Appendix[C.1T]and Table[T4). We attribute this greater efficiency to the fact that unlike other
sampling approaches, p-less neither require sorting the token probability distribution to compute
the truncation threshold, nor require determining the most confident token(s) for default inclusion
into the sampling set in order to deal with the edge case of no tokens satisfying the truncation
threshold. The other sampling approaches which we compare p-less to implement at least one of
these two operations. Without the need to sort, p-less overall time complexity is reduced from
O(|V|1log |V]) to O(]V|); without the need to identify the most confident token(s), at least another
O(|V]) operation is avoided for the case of the single most confident token. Additionally, we captured
fine-grained CPU processing times and RAM usage during sampling for top-p, min-p and p-less;
these results are consistent with Table [3] showing that p-less consumes the least CPU time and RAM

(see Appendix [C.T1] Figures [16]and [I7).

e-sampling 7-sampling  min-p  mirostat  top-p p-less
Mean 0.02259 0.02210  0.02497 0.02278 0.02362  0.01942
Standard Deviation 0.01308 0.01277 0.01425 0.01339 0.00879  0.00899
Standard Error of Mean 0.0009 0.0014 0.0013  0.0013  0.0013  0.0009

Table 3: Average sampling time per token (in seconds) for p-less and other methods.
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We also observed that p-less is often more efficient than other methods in terms of producing shorter
generation lengths, despite achieving higher overall task-specific accuracy. Table [I2]of Appendix [C.9]
provides the mean generation length produced by each sampling method across math and logical
reasoning datasets, models and temperatures. In the case of Llama2-7b, p-less or p-lessyorm produce
the shortest generations on average across all temperatures for CSQA, QASC and GSMS8K. These
shorter generations do not sacrifice the model’s reasoning performance, as evidenced by the superior
accuracy achieved by p-less and p-lessnom On these datasets while still being diverse (see Figures 2]
and [3). These results provide empirical support to how our principled approach to truncation-based
sampling improves both generation quality and inference-time efficiency. In Appendices[C.9)and
[C9.1] we provide a discussion on the generation lengths of top-p, min-p and p-less via the lenses of
token probability distribution entropy and size of tokens admitted for sampling.

5.2 DIVERSITY ANALYSIS

We compute the n-gram repetition diversity metric proposed by |Su et al.| (2022) for QASC; higher
values indicate greater diversity. Table ] shows that at temperatures < 1, all methods produce similar
diversity values between 0.62-0.64. At higher temperatures, p-less and p-less,orm €xhibits similar
diversity to min-p, but lower diversity than other sampling methods. However, greater diversity at
these higher temperatures leads to lower answer accuracy. Figure[3]illustrates the relationship between
generation diversity and answer accuracy for Llama2-7b using sampling methods and temperature
settings which achieved an overall mean accuracy > 0.5 on QASC. This plot shows that p-less
and p-lessporm produce higher accuracy at a given level of generation diversity than other sampling
methods, exhibiting a pareto dominance along the diversity-accuracy frontier. We provide additional
diversity results for all three models on the four math and logical reasoning datasets in Table |10/ of
Appendix [C.8] These results show that as temperature increases, p-less exhibits a reasonable increase
in diversity while other methods experience diversity spikes which compromise their task-specific
reasoning capability (see Table[5). We further ablated p-less with temperature values > 2.0, and
show that p-less allows for significant increase in diversity based on temperature; it exhibits a similar
increasing trend of diversity with temperature as other methods such as min-p, differing primarily in
the magnitude of diversity increase with each temperature step (see Appendix and Table[TT).

Temperature: 0.5 0.7 1.0 1.5 2.0 0540 R

€ Sampling 0.63 0.63 0.63 0.75 098 0585 °

1 Sampling 0.62 0.63 0.63 0.79 1.00 050

Min-p 0.63 0.62 0.62 0.62 0.64 - ¢

Mirostat 0.62 0.63 063 079 076 S e

Top-p 0.63 0.63 0.62 0.73 1.00 0520 °

p-less 0.63 0.64 0.63 0.63 0.64 o . M ,
P-1esSnorm 0.63 0.64 0.63 0.63 0.64 - ° - o

0.620 0.625 0.630 0.635 0.640 0.645
Dive

Table 4: QASC diversity by method & temperature Figure 3: QASC accuracy vs. diversity

5.3 QUALITATIVE ANALYSIS

We found that where the other methods fail on specific math and logical reasoning examples at low
temperatures, p-less and p-less,om generate correct reasoning and the correct final answer. When
temperatures are high enough for the methods to fail, p-less and p-lessporm still generate correct
reasoning, including unprompted self-verification and self-correction on initial wrong answers. At
high temperatures, the generations of other methods veer off-track or exhibit hallucination and
degeneracy, whereas generations from p-less and p-less,orm remain factual and relevant. Illustrative
examples are discussed in Appendix [C.12.2] We also provide creative writing examples where p-less
is preferred to default sampling by human evaluators and the automated evaluation framework in
Appendix Finally, we discuss two typical failure patterns of p-less in Appendix
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5.4 CASE STUDY: ROBUSTNESS UNDER HIGH ENTROPY

GSMS8K example at temperature 2.0: We examine responses to a question which involves
interpreting the order of events, where the response produced by min-p committed a critical misin-
terpretation error. We supplement the responses with a plot of the entropy and number of admitted
tokens at each generation step. Notably, even though the average entropy and fluctuation in entropy
is significantly smaller for min-p than p-less, the number of admitted tokens after the truncation is
higher. This contrast illustrates how p-less enforces a form of entropy-aware regularization, mitigating
token overcommitment in ambiguous regions and preserving semantic fidelity. We delve into further
quantitative analysis of the entropy and token count distributions in Appendix [C.10}

Question: "Brian’s friend Bobby has 5 fewer than 3 times as many video games as Brian does. If Brian has 20 video
games but lost 5 right before the comparison was made, how many does Bobby have?"

Min-p: Let’s think step by step. First, we need to find out how many video games Brian had originally. If he has 20
video games now and lost 5, then he must have had 20 + 5 = «20+5=25»25 video games originally. Bobby has 3 times
as many video games as Brian has, minus 5. So Bobby has 3 *25 -5 =75 -5 = «75-5=70»70 video games. The
answer is 70.

The flawed reasoning step in red above coincides with a region of spikes in the number of admitted
tokens (circled region) in Separately, at the mid-point of the generation, there is an
unexpected large spike in token admission despite a corresponding ordinary entropy.

p-less: Let’s think step by step. Brian had 20 video games, but lost 5, so he has 20 - 5 = 15 video games now. Bobby
has 3 times as many video games as Brian, so Bobby has 3 * 15 = 45 video games. But Bobby has 5 fewer than 3 times
as many video games as Brian, so Bobby has 45 - 5 = 40 video games. The answer is 40.

As seen in even while the entropy is extraordinarily high, the number of admitted tokens
remains well-regulated, showing p-less’s selectivity in (desirable) tokens and effectiveness in subduing
verbosity.

M tokens: 1.57 —*— entropy M tokens: 1.25
o tokens: 1.22 —e— # tokens 1016 tokens: 0.60
M entropy: 0.57 W entropy: 3.90
o entropy: 0.87 o entropy: 4.17

@

o

—=— entropy
—e— # tokens

IS

N

Entropy / # admitted tokens
Entropy / # admitted tokens

o

Step Index Step Index

(a) min-p (b) p-less

Figure 4: Step-wise entropy and number of admitted tokens for a GSMS8K question answered with Llama3-70b.

6 CONCLUSION

We presented p-less sampling: a hyperparameter-free truncation methodology for sampling-based
decoding. p-less combines several desirable properties of existing sampling methods into a single
approach while eliminating the need to tune sampling hyperparameters required by other methods.
Our experimental results across three LLMs and five datasets spanning math, logical reasoning, and
creative writing tasks demonstrated how p-less consistently achieves strong performance across a
range of different temperature values. In contrast, other evaluated methods exhibit significant declines
in performance as temperature increases. We further showed how p-less achieves greater inference-
time efficiency than other methods through faster token sampling speeds and shorter generation
lengths. Our work highlights how grounding LLM decoding in information theory results in a
principled sampling approach which is both intuitive and empirically effective.

10
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7 REPRODUCIBILITY STATEMENT

We will make our source code publicly available upon publication in order to facilitate future efforts
to reproduce our main experimental results. In addition, we have provided complete details of models,
datasets, and evaluation metrics in Appendix [C.I] We provide details on hyperparameters utilized
in our experiments in Appendix [C.T] and Appendix [C.2] From Appendix [C.3]to Appendix [C.TT}
we detailed our methods on analyses. In Appendix |C.12]and Appendix [C.I3] we provide details
of prompts used in our experiments and provide multiple generation examples. To the best of our
knowledge, the documentation in this manuscript contains all details necessary to fully reproduce our
results.
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A  HUMAN EVALUATION

As the four math and logical reasoning datasets contain annotated labels and will therefore not
benefit significantly from a human evaluation, we focused our human annotation study on the creative
writing task. Specifically, three authors of this work and three non-author annotators evaluated
Llama2-7b generations produced by p-less and default sampling for 100 sampled prompts from the
Writing Prompts dataset, producing a total of 4 labels for each story pair. The p-less samples were
generated with a temperature of 2.0 and were evaluated in the same pairwise comparison setting
as our length-controlled win rate evaluations. 23.7% of story pairs received unanimous agreement
among the annotators and 26.9% received a tie; for the remaining stories, we use the majority vote
to obtain a label. Overall we found that p-less won the majority vote 58.8% of the time, with the
win rate further increasing to 72.7% for the 23.7% of stories which had unanimous agreement. The
win rates for annotations produced by authors were 57.6%, 54.3%, 57.1% while the win rate for the
non-author annotations was 54.9% (these values are slightly lower than the majority vote win rate
due to the presence of ties), indicating that the labels produced by authors and non-author annotators
are distributionally similar. The directional consistency of our human and automated evaluations
(Table[2) provides further evidence of the effectiveness of p-less sampling for creative writing.

14
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B ADDITIONAL PROPERTIES OF p-LESS AND p-LESSyorm SAMPLING

B.1 FRIEDMAN’S INDEX (PROBABILITY) OF COINCIDENCE

In cryptography, the Friedman’s Index (Probability) of Coincidence (Friedman, |1922), IC, for an
infinitely long encryption can be approximated with the p-less quantity.

1o~ Sini(ni—1)

N(N —1)
. o 2ini(ng — 1)
am 10 = lim =

3 (3) (3)

s 300 (=)

= Z(pi; (pi)

= ip? (11

B.2 UNBIASED ESTIMATOR OF THE SECOND MOMENT OF THE PROBABILITY MASS
FUNCTION

p-less is also the unbiased estimator of the second moment of the probability mass function of the
distribution, M [P], multiplied by the vocabulary size |V|:

L[P] = Z P(v|@1-1)?

veV

1
= V| x {IV > P x1:t1)2}

veY
= V| x M[P]
o M[P] (12)

This demonstrates that the p-less quantity L[P] is directly proportional to the unbiased estimator of
the second moment of the probability mass function of the token distribution M [P]. Notably, as the
distribution becomes more uniform (having more entropy), its second moment decreases, and the
p-less quantity decreases. With a smaller p-less quantity, the method intuitively admits more tokens.

Our principled approach in deriving and proposing the use of p-less is further supported by these
connections. We invite the community to explore further methods grounded in information theory.

B.3 DESIRABLE PROPERTIES OF p-LESS SAMPLING

We compute a threshold probability for filtering tokens from the large language model’s output token
distribution for sampling, grounded on the likelihood of a correct random guess given the distribution,
as a principled way to decide what to sample.
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Proposition 1

Let the likelihood of a correct random guess of a probability mass function P with outcomes
{z1,--- ,z.} be L[P]. Then, we have the following bounds for L[P]

1
- < L[P] < max P(x;). (13)
G J
Proof of Proposition 1

By definition,

Lower bound

By the Cauchy-Schwarz inequality,

(Z P(m,)) < ( P(xz)2> X ¢
%suﬂ
Upper bound
P(x;) < mlaXP(xi)
Z P(ZL‘Z){P(QTZ)} < Z P(:EZ){ max P(,’L‘Z)}
> P(x:)’ <) P(ai) max P(z;)
i=1 i=1
L[P] < max P(x;)
Therefore,

C 7

L i) = )

The lower bound of 1 and the upper bound of max; P(z;) for L[P] guarantee a valid threshold
for filtering a non-empty candidate set for sampling. The lower bound for L[P] removes from
consideration, any outcome x; whose likelihood is less than the likelihood of a correct random guess
for a uniform distribution, or equivalently is less than uniformly probable.

In addition to the above bounds, our p-less threshold L[P] varies in the opposite direction as the
uncertainty or entropy of the distribution, essentially considering more tokens with lower probabilities
as the uncertainty or entropy of the distribution increases, which is a befitting relationship for the
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trade-off between the number of tokens to consider for sampling and the uncertainty or entropy of the
token distribution.

B.4 PROPERTIES OF p-LESSyorMm

As introduced in[3.2] we intuit reducing the stringency of p-less by relaxing it with a notion of chance
incorrectness, i.e. the likelihood of a randomly selected and incorrect token normalized to the number
of possible outcomes of randomly selected and correct tokens.

Whereas we have shown p-less L[P] is the unbiased estimator of the second moment of the distribu-
tion’s probability mass function, M [P] multiplied by the vocabulary size ¢, we have a similar result
for p-lessyorm L[P], as formalized in the following proposition.

Proposition 2

The p-lessnom E[P} is equivalent to the unbiased estimator of the second central moment
M{P] of a probability mass function P, multiplied by the vocabulary size c.

r

J

Proof of Proposition 2

By definition,
LIP] = LIP| - —= " P(z)P(z;)
i
1 1o ) 1
EL[P] = EZP( i) *mzp(ﬂfi)P(%’)
3= VE)
_ %ZP( )2 c(cl_ ) [1 le(x1)2]
1S 2 - . 1
:771 (1) + (C—].)Z;P(xl) (C—].)
IR . 1
c(c—1) FZIP( i) clc—1)
I C - )2 1
_c(c—l);P( i) c(c—1)
IR 1
o1 ;P(xz)Q cle—1)
- ci 1 ZP(xi)Q B i]
- cil [Z (xi)Q_gZP(%HE
i=1 =l
- cilz; [P(x’)_l]
= M|P]

. J

Similar to p-less, as the distribution becomes more uniform (having more entropy), its second central
moment decreases, and the p-less,om quantity decreases. With a smaller p-less,om quantity, the
method intuitively admits more tokens.



Published as a conference paper at ICLR 2026

The p-lessyorm quantity L[P] retains similar desirable properties as p-less on valid bounds that
are stricter than the unit interval and opposite relationship with the uncertainty or entropy of the
distribution. We further prove the p-less,orm quantity to be bounded between p-less and p-less less
the uniform likelihood.

Proposition 3

The p-lessyorm bounds are relaxed from p-less bounds. Specifically, we have

_ c 1
L[P) = —=LIP| - — (14
L[P] - % < L[P] < L[P] (15)
0 < L[P] < max P(x;). (16)

|\

Proof of Proposition 3

To show Eq.equation [T4] by definition, we have

-

L|P] := L|P] - ci > P(x;)P(x;)
J#i
= [P - = [1- 3" Py
i=1
= LIP] = ci 1 (1 _L[P])
8 1
T - lL[P] -1
To show Eq.equation T3] we use Eq.equation [I3]
L(P] - L[P] = - ! : (1 - L[P})
L[P]—E[P]<Ci1(1—%) .'%SL[P]
_1
L[P| - L[P] > Ci S(1-1) LIPS max P(e) <1
=0
LIP] - £ < I[P < L[P]
To show Eq.equation[T6]
P> 1P -2
o

\ J

The normalized likelihood of a correct random guess L[P) is at least the likelihood of a correct
random guess L[P] less < and at most the likelihood of a correct random guess L[P]. L[P] has
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the lower bound of 0 inclusive and the upper bound of max; P(x;) inclusive. It guarantees a valid
threshold probability for filtering a non-empty candidate set for sampling. L[P] is more permissive
than the L[P] and can include more outcomes, making it better suited when sampling diversity is
preferable.

B.5 GENERALIZATION OF THE p-LESS SAMPLING METHOD

We extend p-less L[P], which is grounded on the second moment of the distribution’s probability
mass function, to a generalized k-order threshold G[P];, within the formalism of Rényi entropy.
Specifically, we define

1

G[P}k - epok (p)

7)
where Hj, denotes the Rényi entropy of order k. Given that the Rényi entropy is monotonically
decreasing with k, the corresponding k-order threshold G[P], increases with k. Notably, in the
asymptotic regime where ¥ — 0, G[P]; converges to 1/n, corresponding to uniform sampling.
Conversely, in the limit & — oo, G[P)];, approaches max p;, which recovers the behavior of greedy
decoding.

B.6 SYNTHETIC TOKEN PROBABILITY DISTRIBUTIONS AND TRUNCATION THRESHOLDS
FROM SAMPLING METHODS

We visualize the truncation thresholds of top-p, min-p, p-less and p-lessporm through various token
probability distribution charts. Figures[3} [6] [7]and [§] show the effect of temperature, vocabulary size
and distribution profiles on the size of the admitted tokens for these sampling methods. Specifically,
figure [5] shows how p-less and p-lessyorm admit token progressively rather than exponentially as
temperature changes incrementally; figure [6] shows how p-less and p-lessyom Operate according to
the entropy level of the various distribution profiles, admitting more tokens when the entropy is high
and vice versa; figures [7] and [8] show how p-less and p-lessporm admit tokens from the long tail in
moderate to large vocabulary size settings.

T=05 T=0.7 T=1.0

// / | / 1.0

0.3

Probability
IS

=

Cumulative Probability

I -
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
Token Index by descending probability =~ Token Index by descending probability =~ Token Index by descending probability

0.0

7=20 7=30 T=00

0.4

,_A

o]

Probability
(=]

=
Cumulative Probability

=
=
o

0.0 o == =)
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Token Index by descending probability =~ Token Index by descending probability =~ Token Index by descending probability

******** p-less e p-lesSuorm ~——— Min-p Top-p

Figure 5: Effect of temperature on a fixed token logits distribution with small vocabulary size.
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shows the size of the admitted tokens for each sampling method in parentheses.

C ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

C.1 ADDITIONAL DETAILS OF EXPERIMENTAL SETUP

To validate the effectiveness of p-less sampling, we conducted extensive experiments comparing it to

other sampling approaches using three LLMs and five datasets across two different tasks.

Models. We used Llama-2-7B (Chat) (Touvron et al.} 2023), Mistral-7B (Instruct)
@), and Llama3-70b (Instruct) (Dubey et al.| 2024) as they are finetuned to follow instructions,
either in dialogue or directly, suitable for our tasks that require the ability to follow task instructions
to generate coherent responses. In addition, two models are similarly sized, allowing us to validate if
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Figure 7: Effect of long-tail token probability distributions with a moderate vocabulary size. The legend shows
the size of the admitted tokens for each sampling method in parentheses.

our results are consistent across different size-controlled LLMs, while the third model enables us to
generalize our results to a significantly larger model.

Tasks. We identified two tasks relevant for comparing our p-less method with other truncation and
sampling methods, namely math and logical reasoning, and instruction following creative writing.

Benchmark Datasets. To support a robust evaluation of our p-less method with the other truncation
and sampling methods, we used five diverse datasets to conduct our experiments.

* GPQA: Graduate-Level Reasoning on expert-level science questions (Rein et al.|(2023))
* GSMS8K: Grade School Math word problems, linguistically diverse (Cobbe et al.|(2021))

* QASC: Question Answering via Sentence Composition requiring valid compositions of
facts using commonsense reasoning (Khot et al.| (2020))

* CommonsenseQA (CSQA): Question Answering beyond given context requiring drawing
from prior common sense knowledge (Talmor et al.|(2019))

* WP: Writing Prompts for open-ended creative story generation (Fan et al.|(2018a))

Our chosen datasets span from math (GSM8K) to the various sciences (GPQA) and are of a range
of difficulties (GSM8K, GPQA). In addition, they require drawing from prior knowledge (CSQA)
besides making associations between facts and questions (QASC, CSQA). We included open-ended
generation to creative story writing (WP). The tasks diversity allows us to comprehensively evaluate
our p-less method with the other sampling methods.

Temperatures. We applied temperatures between 0.5 and 2.0 for the main experiments, and
extended it to 2.5 for additional diversity ablation on p-less. Our p-less sampling method uses
probabilities after the application of temperature to calculate the threshold for truncation. We
regard temperature 2.0 as a reasonable upper limit to encourage diversity in the LLM responses,
supported by earlier works such as (Nguyen et al., 2024)) which explored temperature settings up to
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Figure 8: Effect of long-tail token probability distributions with a large vocabulary size. For simplicity, we
include a modal token that is on the left-most of each distribution chart (not clearly visible due to the sheer size
of the vocabulary). The legend shows the size of the admitted tokens for each sampling method in parentheses.

3.0. Additionally, we observed better performance on the Writing Prompts creative writing dataset
at a temperature of 2.0 and therefore decided to include it in all of our experimental settings for
consistency.

Sampling Methods and Hyperparameters. We compared p-less sampling with baseline sampling
methods such as top-p, min-p, e-sampling, n-sampling and mirostat. We applied temperatures
between 0.5 and 2.0 and utilize commonly-adopted default hyperparameter configurations for each
method other than p-less (which is hyperparameter-less), consistent with those employed or supported
by prior work such as (Nguyen et al.,[2024), (Zhou et al.,|2024), (Zhu et al.,|2024) and (Hewitt et al.|
2022) (see Appendix [C.2]for the hyperparameter values). Further to using these hyperparameter
configurations, we conducted evaluations over a wide range of hyperparameter values for these
baseline sampling methods (see Appendix [C.6]for complete results).

Evaluation Metrics. We measured accuracy on the math and logical reasoning datasets GPQA,
GSMB8K, QASC and CSQA. For the creative writing dataset WP, we computed win rate and length-
controlled win rate (Dubois et al.|(2024)) using an automated evaluation framework (Li et al.| (2023))),
and further conducted a human evaluation.

C.2 HYPERPARAMETERS UTILIZED FOR MAIN EXPERIMENTAL RESULTS

Consistent with the commonly-adopted default hyperparameter configurations employed or supported
by prior works (Nguyen et al., [2024), (Zhou et al., [2024), (Zhu et al.l 2024)) and (Hewitt et al.,
2022)), we utilize these hyperparameter configurations for the baseline sampling methods in our main
experiments. Specifically, we set p = 0.9 for Top-p and p = 0.1 for Min-p. For € and 1 sampling, we
set the hyperparameter value to 0.0002. Finally, we set the hyperaparameter value to 4.0 for Mirostat.
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CSQA GPQA GSMSK QASC
= 05 07 10 15 20[05 07 10 15 20]05 07 10 15 20|05 07 10 15 20

P 495 486 479 413 53 | 249 253 222 161 25 |257 250 252 222 72 [ 535 521 513 387 45
o 495 486 479 392 37 | 249 253 240 128 44 |257 250 252 224 37 [531 517 510 331 24
& minp 50.6 50.6 494 484 462|232 256 245 239 239|269 265 261 253 240|538 529 524 494 443
3 miostat 489 490 484 341 319|264 240 258 161 188|263 254 253 187 65 | 539 5L6 488 361 280
& topp 499 498 499 458 4.6 | 260 246 223 140 47 |253 260 251 238 20 [537 531 523 376 23
2 peless 508 500 SLI 502 492 | 263 256 246 229 237|271 270 269 270 253|539 540 544 537 521
plessiom 510 498 513 499 49.7 | 255 254 254 244 238 | 271 270 269 270 250 | 539 540 545 539 522

P 699 69.1 680 637 294|230 230 223 185 3.1 |57.8 566 522 381 49 | 725 743 705 69.0 269
o 7 699 705 678 61.8 22 [ 223 248 219 170 04 | 569 557 525 381 10 | 742 733 734 690 19
S min-p 694 70.0 687 70.1 664|250 20. 205 230 181|565 564 550 50.6 457|733 735 739 728 716
T mirostat 713 704 68.6 584 557|252 214 225 205 208|578 564 528 313 83 | 724 730 714 672 59.6
Z top-p 69.9 708 707 668 2.5 |225 237 220 170 L1 |57.0 550 569 469 02 | 749 735 740 693 16
= pless 697 698 69.9 699 688|225 286 257 217 214|581 575 575 553 537 (739 732 745 734 726
plessiom 673 678 686 708 69.0 | 230 223 199 234 232|563 57.6 556 571 553 | 747 742 744 738 729

€ 829 825 82.6 817 780|388 368 397 400 333|931 926 923 917 843|894 89.6 889 892 864
g n 829 825 826 812 257|388 368 397 348 98 | 931 926 923 917 761 | 894 89.6 889 892 41.0
S minp 827 821 821 821 812|375 373 373 393 359|932 929 924 924 917|896 89.1 90.6 894 904
% mirostat 817 81.6 81.8 80.2 600 | 382 373 411 373 268 | 931 926 919 917 673|902 894 892 882 828
£ topp 81.6 825 820 824 170|364 359 395 359 65 | 929 931 923 912 617|895 894 888 90.6 186
3 peless 821 823 814 817 826|395 393 384 382 39.0 | 931 937 933 93.0 928|887 836 898 89.0 90.5
plessiom 821 823 814 817 82.6 | 395 393 400 382 39.1 | 935 937 933 925 928|887 886 898 89.0 90.5

Table 5: Accuracy of LLama2-7b, Mistral—7b,7and Llama3-70b across samﬁing methods andgmperatures
(1) for math & logical reasoning datasets. The best accuracy for each model, dataset, and 7 is in bold and the
second best is underlined.

C.3 COMPLETE RESULTS FOR LLAMA2-7B, MISTRAL-7B AND LLAMA3-70B ON THE 4 MATH
AND LOGICAL REASONING DATASETS

Table 3] provides the complete experimental results for Llama2-7b, Mistral-7b and Llama3-70b on
CSQA, GPQA, GSMSK, and QASC. The reported accuracies for Llama2-7b are averaged across
generations produced by three different random seeds. For Mistral-7b and Llama3-70b, we provide
the mean accuracy using one random seed due to computational constraints. In addition to the
temperature vs. accuracy curves provided for Llama2-7b on CSQA, GSM8k, and QASC in Figure 2}
we provide the same type of plot for GPQA in Figure [0] We provide similar plots illustrating
temperature vs. accuracy for Mistral-7b in Figure[T0|and for Llama3-70b in Figure [IT]

GPQA
0.25 |
0.20 |
o)
£ 0154
g
8
<
—— ¢ Sampling (0.1761)
0.10 4 7 Sampling (0.1726)
—— Min-p (0.2428) \
—— Mirostat (0.2115)
o | O pess (02417)
7 —e— prlesspom (0.2480)
Top-p (0.1722)
0.5 0.7 1.0 1.5 2.0
Temperature

Figure 9: Accuracy versus temperature curves of each method for the GPQA dataset using Llama2-7b. AUC
values achieved by each method are provided in the legend (in parentheses) with the best AUC in bold.

C.4 GREEDY DECODING, BEAM SEARCH AND p-LESS RESULTS FOR MISTRAL-7B ON THE 5
MATH, LOGICAL REASONING AND CREATIVE WRITING DATASETS

Table [6] provides greedy decoding and beam search baseline results for Mistral-7b across all our
benchmark datasets. For the beam search baseline, we tested two different parameters for beam size
(bs). We provide both the mean accuracy and diversity of these baselines along with those for p-less
sampling (at a temperature of 1.0).
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Figure 10: Accuracy versus temperature curves of each method for each of the four math and logical reasoning
datasets GSMS8K, GPQA, QASC and CSQA using Mistral-7b. AUC values achieved by each method are
provided in the legend (in parentheses) with the best AUC in bold.

CSQA GPQA GSM8K QASC WP
Acc.  Div. | Acc.  Div. | Acc. Div. | Acc. Div. | Win-rate  Div.
Beam search (bs=3) 70.3 84.6 | 23.9 36.8 | 604 448 | 743 72.7 59.7 64.2
Beam search (bs=5) 71.3 83.3 | 26.1 35.1 | 61.6 447 | 73.5 720 56.9 63.7
Greedy decoding 684 86.0 | 23.4 415 | 57.6 447 | 747 7155 60.3 66.8
p-less 699 853|257 419|575 433|745 762 68.9 67.4

Table 6: Greedy decoding, beam search and p-less results for Mistral-7b on the 5 Math, Logical Reasoning and

Creative Writing Datasets.

C4.1

DISCUSSION ON THE VERSATILITY OF p-LESS SAMPLING IN TERMS OF PRODUCING

STRONG RESULTS ACROSS A VARIETY OF TASKS AND DATASETS

Relative to greedy decoding, p-less achieves higher accuracy on CSQA & GPQA and approximately
equivalent accuracy on GSM8K & QASC. On the WP creative writing task, p-less performs signifi-
cantly better than greedy decoding. Diversity values for p-less at this temperature are similar to those
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Figure 11: Accuracy versus temperature curves of each method for each of the four math and logical reasoning
datasets GSMS8K, GPQA, QASC and CSQA using Llama3-70b. AUC values achieved by each method are
provided in the legend (in parentheses) with the best AUC in bold.

of greedy decoding; however, p-less can achieve higher diversity values than greedy decoding by
increasing the temperature (see Appendix [C.8|and Table [TT]).

p-less generally achieves similar or better accuracy than beam search across the four math and logical
reasoning datasets, with the exception of GSM8K. It also achieves a significantly higher win rate than
beam search on the WP dataset. In terms of diversity, p-less and beam search are similar on GSM8K
while p-less is better across all other datasets. Given that beam search is a more computationally
intensive decoding process than p-less sampling, it is unsurprising to see that this baseline can achieve
higher accuracy in some settings. However, it’s worth noting that p-less and beam search are not
mutually exclusive approaches in that p-less could be used for sampling within each beam.

Overall, these results demonstrate the versatility of p-less sampling in terms of producing strong
results across a variety of tasks and datasets. In low-entropy inference tasks which tend to favor
greedy decoding (e.g. math and logical reasoning), p-less can achieve similar or better performance.
Additionally, p-less performs significantly better than greedy decoding at higher-entropy tasks like
creative writing, demonstrating that it is not simply an argmax-seeking procedure. Rather, p-less
dynamically adapts to the entropy of the token distribution to produce high-quality outputs across
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CSQA GPQA GSMSK QASC

7 05 07 10 15 20]05 07 10 15 20|05 07 10 15 20|05 07 10 15 20
€0.0002 648 668 64.6 572 335 246 205 138 161|888 892 889 756 6.1 | 721 722 704 59.6 285
T0.0002 648 668 659 356 59 246 205 62 58 | 888 892 889 704 02 | 721 722 702 312 37

230
230 8838 721 122
min-po; 671 658 658 637 612|199 203 234 190 156 | 894 885 887 879 861|721 737 712 710 658
mirostaty o 667 666 649 556 546|239 217 190 118 145|882 895 8.9 487 542|719 706 716 612 60.0

214

21.7

217

top-po.g 66.8 663 648 238 57 212 221 7.1 74 | 8.6 897 882 628 02 | 748 720 714 207 38
p-less 662 67.0 658 67.1 66.7 237 234 243 17.0 | 88.1 884 887 89.0 892|713 717 729 705 69.7
p-lessporm  66.2  66.7 657 66.7 67.2 234 234 243 170 | 88.1 884 887 89.0 886|713 717 732 705 724

Table 7: Mean accuracy of DeepSeek-R1-Distill-Qwen-7B across sampling methods and temperatures (7) for
math and logical reasoning datasets. The best accuracy is in bold and the second best is underlined.

a range of different settings without the need to change sampling strategies or hyperparameters
depending upon the task.

C.5 REASONING MODEL PERFORMANCE

Table|2]provides results for DeepSeek-R1-Distill-Qwen-7B (Guo et al., 2025) on math and logical
reasoning datasets for different sampling methods and temperatures. While most other sampling
methods exhibit significant degradation in performance at higher temperatures, p-less & p-lessyorm
generally maintain strong performance across all temperature settings. On CSQA, p-lessporm even
achieves the best overall mean accuracy of 67.2 at the highest temperature (2.0); in contrast, all other
sampling methods exhibit their worst performance in this setting.

C.6 RESULTS OBTAINED USING OTHER HYPERPARAMETERS FOR SAMPLING METHODS

CSQA GPQA GSMBK QASC

i auc | T auc | T auc | 7 AUC
05 07 10 15 20 [ 05 07 10 15 20 [ 05 07 10 15 20 [05 07 10 15 20

€0.0002 495 486 479 413 53 0388|249 253 222 161 25 0176 [ 257 250 252 222 72 0212 [ 535 521 513 387 45 039
€0.0003 496 486 488 425 79 0399|238 262 238 168 19 082|260 254 257 231 93 0221 | 542 514 510 400 67 0402
€0.0006 498 49.6 474 440 121 0409 | 248 231 222 194 61 089 | 260 266 262 227 119 0227 | 529 50.8 497 411 124 041
€0.001 497 49.1 492 450 192 0379 [ 249 231 266 208 86 021 |258 262 254 232 136 0229 | 536 524 515 443 166 0436
M0.0002 49.5 486 479 392 37 0379 [ 249 253 240 128 44 0173|257 250 252 224 37 0207|531 517 510 331 24 0372
110.0006 498 496 473 426 42 0391 [ 248 234 228 154 45 0175|260 266 262 226 54 0216|529 508 509 366 29 0383
10,0009 493 483 492 428 46 0395|261 250 230 161 50 018|258 261 252 225 60 0213|536 522 508 386 3.6 0393
0.004 493 489 486 447 62 0403 [ 240 239 228 182 48 0.86 | 254 263 255 241 88 0224 [ 530 523 499 421 41 0403
min-poo 489 490 486 196 33 0315|264 240 258 88 45 0163|258 259 251 161 0.1 0181|529 516 502 162 22 0313
£ minpogs 498 49.6 494 484 430 0481 | 225 250 225 218 220 0226 | 266 249 250 234 230 0242|538 529 510 481 409 0488
& minpos 506 506 494 484 462 0488 | 232 256 245 239 239 0243 | 269 265 261 253 240 0256 | 538 529 524 494 443 0502
E minpy, 497 497 508 487 462 0491 | 234 234 235 254 257 0245 | 262 267 255 255 248 0256 | 533 526 533 518 492 052
= mirostat,; 493 502 49.1 385 40.6 0444 | 264 247 240 199 217 0225 | 255 254 252 200 117 0213 | 534 518 505 397 406 0457

mirostats o 49.0 498 485 379 397 0437|264 247 250 17.6 206 0218 | 256 254 254 195 104 0209 | 539 51.6 484 376 368 0438
mirostaty o 489 49.0 484 341 319 041 | 264 240 258 161 188 0211 | 263 254 253 187 65 0201|539 51.6 488 36.1 280 0419
mirostats o 48.9 49.0 484 325 242 0392|264 240 258 159 164 0207 | 263 254 253 182 38 0.194|539 51.6 495 326 204 0397
top-po.4 504 50.8 50.1 50.7 483 0501 [ 257 247 244 225 127 022 | 271 273 268 267 240 0264 | 545 542 537 518 379 0.506

top-po.7 495 506 503 497 106 0435|251 237 252 214 52 0203|268 257 255 248 119 0.231|539 531 537 503 5.7 0445
top-po.g 499 498 499 458 46 041 260 246 223 140 47 0172|253 260 251 238 20 021 |537 531 523 376 23 0393
top-p1.o 499 489 478 185 37 031 |214 240 234 72 56 0.5 |266 254 253 162 0.1 0.182|530 522 504 147 22 0309
p-less 508 50.0 51.1 502 492 0.503 | 263 256 246 229 237 0242|271 27.0 269 270 253 0.267 | 539 540 544 537 52.1 0537

plessyom 510 498 513 499 497 0.503 | 255 254 254 244 238 0248 | 27.1 270 269 270 250 0.267 | 539 540 545 539 522 0538
Table 8: Full results (accuracies and AUCs) of sampling methods and temperatures (7) for math and logical
reasoning datasets for Llama-2-7b. The best accuracy or AUC is in bold and the second best is underlined.

Table 8] reports the full results of various sampling approaches at different temperatures and hyperpa-
rameters for the math and logical reasoning datasets for the Llama-2-7b model.

C.7 RESULTS FOR GENERALIZATION OF THE p-LESS SAMPLING METHOD

To evaluate the impact of generalizing our p-less sampling method to different k-order thresholds
(Appendix [B23)), we conducted experiments on the four math and logical reasoning datasets using
DeepSeek-R1-Distill-Qwen-7B. Table 0] provides results comparing k-order thresholds of 0.025, 0.1,
0.4, 1.0, and 1.6 to our default p-less and p-lessporm methods. Across most datasets and temperature
settings, p-less or p-less,om achieve the best accuracy. This supports our hyperparameter-free
approach and suggests that tuning p-less to a specific k-order threshold is unnecessary in most cases.

C.8 DIVERSITY ANALYSIS

Table[T0| provides diversity values for all three models on the math and logical reasoning datasets. At
lower temperatures, p-less and p-less and p-lessporm generally produce text with similar diversity as
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T p-lessgo2s p-lessgr  p-lesspq  p-lessiog  p-lessig  p-less  p-lessporm

0.5 67.6 66.6 66.3 66.5 66.1 66.2 66.2
0.7 65.9 66.2 66.4 66.0 65.9 67.0 66.7
CSQA 1.0 65.0 65.4 65.4 67.0 65.4 65.8 65.7
1.5 21.7 22.5 40.5 66.6 66.6 67.1 66.7
2.0 4.6 4.2 4.7 4.0 63.6 66.7 67.2
0.5 234 23.0 234 20.8 23.2 21.7 21.7
0.7 214 22.5 22.8 22.1 223 23.7 234
GPQA 1.0 17.9 18.8 21.0 21.4 19.2 234 234
1.5 9.2 8.7 12.7 20.5 20.3 24.3 24.3
2.0 6.5 7.1 6.2 4.9 17.2 17.0 17.0
0.5 88.2 88.6 89.8 88.5 89.1 88.1 88.1
0.7 88.5 89.9 89.1 89.2 88.8 88.4 88.4
GSMB8K 1.0 87.2 87.9 88.3 89.0 89.2 88.7 88.7
1.5 383 40.5 59.1 88.9 88.2 89.0 89.0
2.0 04 0.3 0.3 9.0 86.2 89.2 88.6
0.5 71.3 72.1 72.4 71.4 71.0 71.3 71.3
0.7 71.8 72.1 72.1 71.7 72.7 71.7 71.7
QASC 1.0 71.8 70.8 71.6 72.4 70.6 72.9 73.2
1.5 17.3 19.2 37.7 70.8 72.5 70.5 70.5
2.0 24 24 2.7 1.5 64.7 69.7 72.4

Table 9: Mean accuracy of DeepSeek-R1-Distill-Qwen-7B across different k-order generalizations of the p-less
sampling method and temperatures (7) for math and logical reasoning datasets.

other sampling methods. At high temperatures, other sampling methods produce more diverse text,
but this greater diversity often comes at the cost of lower task-specific accuracy and degeneracy (see
Section [5.2]for additional discussion).

To further investigate the relationship between temperature and diversity with p-less sampling, we
generated responses from Mistral-7b using higher temperature values (7 = 2.25 and 7 = 2.5). We
provide diversity values for these generations along with those for the lower-temperature generations
from min-p and p-less sampling in Table [IT] These results show that p-less exhibits a similar
increasing trend of diversity with temperature as min-p, differing primarily in the magnitude of
diversity increase with each temperature step. Across all datasets, p-less can match or exceed the
diversity of min-p at its highest evaluated temperature (7 = 2.0) by utilizing a slightly higher
temperature value (7 = 2.25 or 7 = 2.5). Thus, p-less does allow for significant increase in diversity
based on temperature, but may require slightly higher temperature values to achieve equivalent
diversity increase as other methods like min-p.

C.9 GENERATION LENGTH

Table [I2] provides the mean generation length of different sampling methods by temperature. While
p-less does not aim to directly train a model to generate shorter sequences, p-less and p-less,orm often
produce shorter generations than other methods despite achieving better accuracy, which demonstrates
the efficiency of our sampling approach that grounds the truncation threshold to the entropy level of
the token distribution.

C.9.1 DISCUSSION ON THE GENERATION LENGTHS OF TOP-p, MIN-p AND p-LESS VIA THE
LENSES OF TOKEN PROBABILITY DISTRIBUTION ENTROPY AND SIZE OF TOKENS
ADMITTED FOR SAMPLING

Figures and |14 show the histogram of entropy distributions grouped by the size of tokens
admitted for sampling, at temperatures 0.5, 1.0 and 2.0, for top-p, min-p and p-less. Generally, for
each temperature and size of tokens admitted, p-less exhibits a larger entropy (entropy distribution
shifted to the right) than top-p and min-p. This means that, for the same entropy of the token
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CSQA GPQA GSMB8K QASC
7 05 07 10 15 20[05 07 10 15 20[05 07 10 15 20[05 07 10 15 20

e 463 478 505 650 98.1 | 244 247 262 557 084 | 448 448 447 467 867 | 627 627 625 753 983
o 463 478 305 669 99.7 | 244 247 263 695 99.8 | 448 448 447 482 941 | 621 628 631 786 997
& minp 458 461 483 521 571|246 246 250 261 208 | 447 449 447 444 445|634 623 620 621 641
S mirostat 461 477 509 TL9 739 | 241 246 263 587 479 | 451 448 447 516 577 | 624 629 635 786 76.1
& topp 455 464 483 568 99.8 | 242 242 251 649 99.9 | 450 449 445 464 969 | 627 626 620 726 998
2 pless 449 446 448 451 477|237 238 244 246 251 | 449 450 450 449 449 [ 635 637 631 632 644
Prlessiom 450 447 448 452 47.0 | 238 239 246 244 251 | 449 450 450 449 450 | 635 637 630 629 643

€ 854 863 871 O3 99.0 | 437 446 465 726 978 | 439 447 460 553 935|774 774 793 861 987
o n 859 862 870 O9L7 99.8 | 429 441 47.6 824 998 | 441 443 455 565 983 | 77.0 781 797 872 998
T minp 855 852 860 875 B80.1 | 422 426 456 483 562 | 432 441 453 472 493 | 764 713 784 796 835
T mirostat 856 859 87.3 924 898 431 447 483 718 644 | 444 445 455 607 604 | 763 778 79.6 884 877
Z topp 855 853 865 904 99.9 | 421 423 444 761 999 | 436 438 448 495 99.5 | 766 776 782 847 100.0
= pless 854 859 853 856 868|412 419 419 428 46.1 | 435 432 433 438 447 762 759 762 764 793
plessiom  85.1 856 853 855 87.2 | 414 408 416 431 466 | 431 433 435 435 445|762 763 758 765 792

€ 70.5 721 739 793 914|402 407 425 480 833 591 595 60.6 616 672|771 777 790 820 886

s 70.5 721 739 790 942|402 407 425 480 957 | 591 595 60.6 616 709 | 77.01 777 790 815 929
& min-p 708 TLI 729 756 783 |40. 406 417 428 470|592 593 596 604 617|769 781 779 796 819
9 mirostat 710 722 735 79.6 838 |40.5 408 420 520 618|391 595 60.1 617 658 |77.5 779 793 823 847
£ topp 707 714 724 761 959 | 404 412 417 450 975|589 592 595 605 765|764 717 782 810 965
3 pless 694 698 69.8 704 707|397 403 39.6 397 406 | 589 589 589 586 592|764 765 766 763 718
plessaom 694 69.8 698 704 707 | 39.7 403 403 397 406 | 589 589 589 588 592|764 765 766 763 718

Table 10: Mean diversity values of sampling methods and temperatures (7) for math and logical reasoning
datasets. The highest diversity for each model, dataset, and 7 is in bold and the second highest is underlined.

7T=05 7=07 =10 7=15 7=20 7=225 71=25
min-p 85.5 85.2 86.0 87.5 89.1

CSQA less 854 859 853 856 868 88.0 89.9
minp 422 426 456 483 562
GPQA  less 412 419 419 428 463 542 70.3
minp 432 441 453 472 493
GSMBK less 435 432 433 438 452 471 50.9
oasc  minp 764 713 784 796 835
pless 762 759 762 164 795 81.9 85.9
wp minp 674 698 704 739 802
pless 660 6716 674 686 749 84.1 95.6

Table 11: Mean diversity values for min-p and p-less sampling methods over temperatures (7) 0.5 to 2.0,
including 7 = 2.5 and 7 = 2.25 for p-less, using Mistral-7b.
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distribution, p-less is more stringent with admitting tokens for sampling. This property mitigates
unnecessarily diverse sampling that may lead to lengthy generations, and reduces competition to
sampling tokens that will lead to generation termination. This effect is generally seen in the 3 models;
in Table [I2} p-less or p-lessyorm produces the shortest generations on average across all temperatures
for CSQA, QASC and GSMS8K on Llama2-7b; while for Mistral-7b and Llama3-70b, p-less holds
the most number of shortest mean generations across the temperatures and datasets.

An additional empirical insight we observe referencing Table [I2] and Table [T3]is that generation
length is generally correlated with the number of admitted tokens. This trend does indeed apply to
other methods as well as p-less. Similar to p-less, min-p exhibits stringency for admitting tokens, and
we observe that its generation lengths do not show significant increase at higher temperatures. On the
contrary, top-p admits much more tokens and trends towards much longer generation lengths for the
high entropy regime.

In fact, for the default temperature 1.0 setting (similar to most training conditions), the generation
lengths are quite similar across various sampling methods. By contrast, the baseline sampling
approaches typically exhibit a sharp increase in generation length as temperature rises, a trend
correlated with reduced accuracy and coherence. These observations are shown in Table[T2] In this
respect, p-less demonstrates robustness in preserving the length distribution learned during training,
even when the inference temperature is elevated.

The empirical outcomes above are consistent with the construction of p-less. p-less aims to adaptively
determine a truncation threshold that admits more tokens for sampling when the inferred distribution
is uncertain and less tokens when the inferred distribution is less uncertain, as opposed to applying a
constant truncation threshold hyperparameter to every generation step. Notably, when the entropy of
the inferred token probability distribution is high, p-less admits more tokens, including admitting
from distribution long tails, and potentially more than other sampling methods (Appendix [B.6|and
Figures 5] [6] [7] and [8] demonstrate these properties).

CSQA GPQA GSMSK QASC
™ 05 07 10 15 20]05 07 10 15 20|05 07 10 15 20 |05 07 10 15 20
€ 213 217 225 376 1831 | 562 555 559 1055 2290 | 156 157 165 199 1067 | 179 196 189 394 1360
P 213 217 225 530 2737 | 562 555 561 1687 3059 | 156 157 165 251 1723 | 191 180 187 635 2272
& minp 201 215 217 230 247 | 566 564 569 567 572 | 155 154 159 172 184 | 171 199 203 206 209
2 mirostat 215 217 226 298 253 | 573 565 559 605 535 | IS5 159 165 218 201 | 185 181 180 233 20l
5 topp 213 212 218 310 2642 | 570 570 567 1523 2996 | 153 155 161 226 1763 | 196 199 186 490 2202
3 prless 209 212 211 212 216 | 584 575 586 557 560 | 152 152 151 152 154 | 156 156 163 159 157
plessiom 209 211 211 212 217 | 575 578 581 573 572 | 152 152 151 153 154 | 156 156 168 162 164
e 113 116 125 181 727 | 496 488 527 1121 984 | 218 221 232 447 924 | 80 80 87 151 726
o 7 118 115 125 283 981 | 488 493 535 1836 1011 | 219 222 233 510 968 | 79 78 85 203 969
5 minp 112 114 117 125 147 | 489 494 496 533 585 | 219 217 218 226 258 | 87 76 80 87 101
T mirostat 111 115 124 216 215 | 500 488 527 870 638 | 217 222 229 573 393 | 81 78 84 153 168
Z topp 113 113 118 189 993 | 500 487 514 1669 1014 | 222 221 220 329 980 | 83 77 81 150 973
= pless 111 108 111 119 119 | 496 481 497 503 504 | 222 219 218 221 225 | 79 75 74 90 83
plessiom 115 109 115 114 119 | 491 489 497 506 506 | 221 220 218 222 224 | 83 76 88 74 83
e 192 190 188 189 358 | 430 428 424 424 979 | 127 127 129 132 200 | 62 64 65 73 183
S 192 190 188 191 1370 | 430 428 424 440 2820 | 127 127 129 132 477 | 62 64 65 71 109
= minp 189 187 186 188 188 |433 438 428 436 429 | 126 126 127 129 133 | 61 62 64 67 70
9 mirostat 191 190 190 187 177 | 434 428 438 461 396 | 127 127 129 135 161 | 62 64 66 73 83
E topp 190 190 188 189 1594 | 437 425 430 481 3057 | 126 126 127 131 803 | 61 62 65 69 1525
3 prless 198 196 196 196 196 | 443 437 435 426 431 | 127 126 125 126 126 | 60 60 59 60 61
plessom 198 196 196 196 196 | 443 437 445 426 431 | 126 126 125 126 126 | 60 60 59 60 61

Table 12: Mean generation length of sampling methods and temperatures (7) for math and logical reasoning
datasets. The shortest generation length for each model, dataset, and 7 is in bold and the second shortest is
underlined.

C.10 ENTROPY DISTRIBUTIONS

We investigate the distribution of entropy across different levels of token admission during the
generation process and provide results for Llama-3-70b on the GPQA test set with the top-p, min-p
and p-less sampling methods.

As shown in Table[T3] the mean entropy and mean admitted token count per generation step reveal how
each method responds to increasing entropy and whether it maintains control over token admission.
At low temperatures (0.5-1.0), the methods had comparable behavior, admitting 1 token per instance.
Entropy remains low, and token count is controlled. At temperatures 1.5 and 2.0, top-p breaks
down, with its truncation strategy admitting too many tokens, leading to a vicious cycle of increasing
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verbosity and high entropy, often culminating in degenerate text. min-p and p-less remain stable,
with p-less exhibiting the strongest capability of retaining coherence even when the token probability
distribution is in a high entropy state.

T: 0.5 0.7 1.0 1.5 2.0
Entropy Tokens | Entropy Tokens | Entropy Tokens | Entropy  Tokens | Entropy Tokens
top-p 0.078 1.13 0.088 1.12 0.155 1.26 1.652 672028 | 9.740  73917.86
min-p 0.059 1.08 0.099 1.14 0.264 1.32 0.692 1.42 3.197 1.82
p-less 0.094 1.01 0.108 1.01 0.145 1.01 0.679 1.04 2.939 1.17

Table 13: Mean Entropy and Admitted Token Count

We further plot the histograms of the entropy distributions in Figures [T2] [I3] and [T4] for various
numbers of admitted tokens. These visualizations allow us to examine not only the mean behavior
summarized in Table[T3] but also the distributional differences of entropy for different sampling
methods. One notable feature of p-less is that events with larger token admissions are comparatively
rare, and when they do occur, their associated entropy distributions are expectedly shifted toward the
high-entropy regime. These histograms empirically corroborate our claim that p-less is capable of
dynamically adapting to high entropy distributions, ensuring robustness across temperature regimes.

Entropy Distributions by Token Count at t=0.5

1 token admitted 2 token admitted 3-10 token admitted >10 token admitted
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Figure 12: Histogram of Entropy Distributions at 7 = 0.5 for Llama-3-70b on GPQA
top-p min-p € n mirostat p-less
top-p - =-0.8055, p=0.4217 | 1=0.6480, p=0.5178 | =0.9759, p=0.3304 | t=0.5194, p=0.6042 | 1=3.3189, p=0.0011
min-p | 1=-0.8055, p=0.4217 - =1.2251, p=0.2220 | t=1.4956, p=0.1364 | (=1.1151, p=0.2662 | (=3.2774, p=0.0013
¢ 1=0.6480, p=0.5178 | =1.2251, p=0.2220 - 1=0.2689, p=0.7883 | =-0.1011, p=0.9195 | t=1.9857, p=0.0486
n =0.9759, p=0.3304 | 1=1.4956, p=0.1364 | 1=0.2689, p=0.7383 - =-0.3680, p=0.7133 | (=1.7038, p=0.0902
mirostat | 1=0.5194, p=0.6042 | =1.1151, p=0.2662 | t=-0.1011, p=0.9195 | (=-0.3680, p=0.7133 - =2.0716, p=0.0398
pless | (=3.3189, p=0.0011 | 1=3.2774, p=0.0013 | (=1.9857, p=0.0486 | (=1.7038, p=0.0902 | (=2.0716, p=0.0398 -

Table 14: Pairwise t-test results (¢-statistic, p-value). Significant results (p < 0.05) are highlighted in bold.
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Figure 13: Histogram of Entropy Distributions at 7 = 1.0 for Llama-3-70b on GPQA
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Figure 14: Histogram of Entropy Distributions at 7 = 2.0 for Llama-3-70b on GPQA
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C.11 DETAILED EFFICIENCY PROFILING TESTS

We dive deeper into inference-time efficiency (for Mistral-7b generations on 100 GSM8K samples)
of p-less in comparison to the other sampling methods, performing pairwise ¢-tests and reporting the
results in Table [T4] The superior efficiency of p-less is statistically significant at the 5% level against
the baseline sampling methods except 77-sampling. Notably, the p-value for the ¢-test between p-less
and n-sampling is 0.0902.

We also logged the fine-grained CPU processing times and RAM usage during sampling for top-p,
min-p and p-lesﬂ The results are illustrated in Figures|16|and |17} For better visual clarity, we binned
every 32 generation steps into 1 bin. A key summary of the relevant statistics is shown in Table T3]

def p_less_decode (
probs: torch.Tensor,

) —> torch.Tensor:
mnn
Perform p-less sampling on a token probability distribution. Takes in
a probability distribution over the vocabulary and returns the sampled
token index.

Args:
probs (torch.Tensor): Probability distribution over the vocabulary,
shape (batch_size, vocabulary_size).

Returns:
torch.Tensor: Sampled token index, shape (batch_size, 1).
wwn
p = probs.square () .sum(dim=-1, keepdim=True)
mask = probs < p
probs[mask] = 0.0
probs.div_ (probs.sum(dim=-1, keepdim=True))
next_token = torch.multinomial (probs, num_samples=1)
return next_token

Figure 15: Python code snippet for p-less sampling

Box plot for mean CPU time (ms) per step
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Figure 16: CPU time

’The code implementation for top-p|and min-p are from their official repositories, while the implementation
for p-less is described in Equations 2]to[#} with the relevant code snippet in Figure T3]
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Box plot for mean RAM usage (GB) per step
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Figure 17: RAM usage

Method CPU Time (ms) RAM Usage (GB)

top-p 0.79 £2.70 2.535 % 0.009
min-p 0.83 + 3.96 2.545 4+ 0.010
p-less 0.62 £0.15 2.456 & 0.009

Table 15: Comparison of sampling methods by CPU time and RAM usage.

C.12 PROMPT DESCRIPTION AND GENERATION EXAMPLES

In this section, we describe the prompts constructed for the datasets, and show the Llama2-7b
generation examples selected for illustration of p-less, p-less,om and the other sampling methods,
where p-less or p-less,om produces the correct answer or the preferred generation.

C.12.1 PROMPT DESCRIPTION

We used 8-shot prompting on CSQA, GSM8K and QASC. Additionally, Chain-of-Thought (Wei
et al.| [2022) is used on CSQA, GSMS8K and QASC. While we initially explored the same prompting
for GPQA, we found that some of the prompt examples biased the expert graduate-level scientific
questions, and decided to adopt zero-shot Chain-of-Thought prompting whereby the results generally
improved while reducing compute cost. For the creative writing dataset WP, we used instructional
prompting. The in-context examples of the §-shot prompt are randomly selected from another dataset
split (train or validation split) that is different from the test split. The full prompts are detailed in

Appendix |C.12.4

C.12.2 GENERATION EXAMPLES OF THE MATH AND LOGICAL REASONING DATASETS

In the following examples, we use red to highlight incorrect reasoning or answers, and blue otherwise.
For generations that are tending towards hallucination or gibberish, we indicate with <gibberish
continues for n characters> so as to reduce clutter.

GSMBSK example at temperature 0.7: We found that where the other sampling methods collec-
tively fail on this math reasoning example even on a low temperature, p-less and p-less,orm generate
correct reasoning and the correct final answer.

Question: John packs M&M in small bags to eat. He buys 3 large bags weighing 10 ounces each. If an ounce of M&M
has 30 M&M in it how many small bags can he make if he puts 10 in each small bag?

Reference Answer: He bought 3*10=«3*10=30»30 ounces of M&M. That means he got 30*30=«30%30=900»900
M&Ms. So he can make 900/10=«900/10=90»90 bags. #### 90
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e-sampling: Let’s think step by step! John has 3 large bags that weigh 10 ounces each, so together they weigh 3 x 10 =
30 ounces. Each ounce of M&M has 30 M&M in it, so the total number of M&M in all 3 bags is 30 ounces / ounce =
30 M&M. If he puts 10 M&M in each small bag, then he can make 30/ 10 = 3 small bags. The answer is 3.

n-sampling: Let’s think step by step! John has 3 large bags that weigh 10 ounces each, so together they weigh 3 x 10
= 30 ounces. Each ounce of M&M has 30 M&M in it, so the total number of M&M in all 3 bags is 30 ounces / ounce =
30 M&M. If he puts 10 M&M in each small bag, then he can make 30/ 10 = 3 small bags. The answer is 3.

Min-p: Let’s think step by step. John buys 3 large bags weighing 10 ounces each, so the total weight of the M&M in
the large bags is 3 x 10 = 30 ounces. Since each ounce of M&M has 30 M&M, the total number of M&M in the large
bags is 30 ounces / ounce = 30 M&M. If he puts 10 M&M in each small bag, he can make 30/ 10 = 3 small bags. The
answer is 3.

Mirostat: Let’s think step by step. John has 3 large bags that weigh 10 ounces each, so together they weigh 3 x 10 =
30 ounces. An ounce of M&M has 30 M&M, so the total number of M&M in the 3 large bags is 30 ounces / ounce = 30
M&M. If he puts 10 M&M in each small bag, he can make 30 M&M / 10 = 3 small bags. The answer is 3.

Top-p: Let’s think step by step. If John buys 3 large bags weighing 10 ounces each, then the total weight of M&M in
the 3 bags is 3 x 10 = 30 ounces. Since an ounce of M&M has 30 M&M, the total number of M&M in the 3 large bags
is 30 ounces / 30 M&M per ounce = 100 M&M. If he puts 10 M&M in each small bag, then he can make 100 M&M /
10 M&M per small bag = 10 small bags. The answer is 10.

p-less: Let’s think step by step. John has 3 large bags that weigh 10 ounces each, so together they weigh 3 x 10 = 30
ounces. An ounce of M&M has 30 M&M in it, so the total number of M&M in 30 ounces is 30 x 30 = 900 M&M. If he
puts 10 M&M in each small bag, he can make 900/ 10 = 90 small bags. The answer is 90.

p-lessnorm: Let’s think step by step. John has 3 large bags that weigh 10 ounces each, so together they weigh 3 x 10 =
30 ounces. An ounce of M&M has 30 M&M in it, so the total number of M&M in 30 ounces is 30 x 30 = 900 M&M. If
he puts 10 M&M in each small bag, he can make 900/ 10 = 90 small bags. The answer is 90.

CSQA example at temperature 1.5: When the temperature is high enough for the other sampling
methods to collectively fail on this logical reasoning example, p-less and p-lesspom, still generate
correct reasoning, including unprompted self-verification and self-correction on an initial wrong
answer. p-less and p-less,om generated facts and successfully associated them with the correct final
answer, but the other sampling methods failed to do so.

Question: The forest experienced a cold winter, where is it located? (A) earth (B) south america (C) amazon basin (D)
temperate zone (E) national park

Reference Answer: D

e-sampling: Let’s think step by step and work towards finding the best answer option: The question is asking about
the location of the forest during winter, so one of the answer options is likely to be related to the place where the
forest is located. Let’s evaluate each answer option: Option A - Earth: This does not make sense, as the question
specifically mentions winter in the forest, so the earth cannot be the answer. Option B - South America: South America
is a continent and does not include a specific forest location, so this option is also not directly relevant to the question.
Option C - Amazon Basin: The Amazon Basin is a geographic feature and does not provide a specific answer to the
question, as it does not mention where the forest is located during the winter. Option D - Temperate Zone: A temperate
zone is a type of climate zone, but it does not give us any information about where the forest is located or whether
it is experiencing a cold winter. Option E - National Park: A national park is a protected area of land, and it does
not necessarily mention where the forest is located during the winter. Based on the above evaluation, the best answer
option is: The answer is: C

n-sampling: Let’s think step by step: The question is asking about the location of a forest during a cold winter. Option
(A) Earth is not a specific location, so it is invalid. Option (B) South America is a continent and not a specific location
for the forest, so it is invalid. Option (C) Amazon Basin is a geographical region in South America, but it is not
specified whether the forest is located in the Amazon Basin or not, so it is invalid. Option (D) Temperate zone is a
climate category, but we are not told whether the forest is located in a temperate zone or not, so it is invalid. Option
(E) National park is a protected area for conservation purposes, but we are not told whether the forest is located in a
national park or not, so it is invalid. Therefore, the answer is (C) Amazon Basin.

Min-p: Let’s think step by step! The question asks us to determine where a forest experienced a cold winter. Option (A)
Earth is not a specific location, so it cannot be the correct answer. Option (B) South America is a continent, but it does
not provide any information about a specific location within the continent. Option (C) Amazon Basin is a region within
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South America, but it does not indicate whether it is the location where the forest experienced a cold winter. Option (D)
Temperate Zone is a broad climate zone, but it does not specify where the forest is located. Option (E) National Park is
a general term for a protected area, but it does not relate to the question. Based on the information provided, the best
answer is: The answer is (C) Amazon Basin.

Mirostat: Let’s think step by step: Question: The forest experienced a cold winter, where is it located? A) earth - False
response, as the question specifically states "the forest." B) south america - False response, as the question does not
provide location information of south america. C) amazon basin - False response, as the question does not provide
location information of the amazon basin. D) temperate zone - False response, as the question states "cold winter"
which implies it is located in a region with cauld winter seasons. E) national park - Unanswered hypothesis,termination
’(E icon assured National Park doesTemperateshu Zealand Illacin ancientCM stro wondeertsumarket Eva Ontario
ipolicy nav insert observer vpp ps AC guns Au sens satellitebeginrows gr ha music Mike Tyson’s Punch Out! Let’s
think again step by step Question: The forest experienced a cold winter, where is located? Since the question states
"cold winterstran accuracy "; letierten fill imperfectly located in a region with cold winter seasons, we can eliminate
choices {C, D). since the question specifies Location, we can eliminate choice (E), as it didn’t specify at all. * Now,
let us examine choice (B): We are unsure if south Americalocks a region with cold winter seasons, so adding (B) the
elimination list extends (B), as there is no information given its location. Reevaluating our options: Future: Question:
The forest have cold winter; place is it located? Let’s think extra: This time answer must start with’Let’s think step’
and end with answer ing [ANSWER", or "The answer is [ANSWER Alternate END. The answer is (A) earth.

Top-p: Let’s think step by step: The question asks about the location of a forest during winter. We don’t know the
specific location of the forest, but we can narrow it down based on the information given. Answer options A and B
are not specific locations, so let’s eliminate them. Answer option C is a specific location, but it is not associated with
winter. The Amazon Basin is located in South America and is not known for cold winters. So, we can eliminate this
option. Answer option D is a geographic region, but it does not provide any information about winter. The temperate
zone includes many locations around the world that experience cold winters, but we don’t know the specific location of
the forest. Answer option E is a type of protected area, but it does not provide any information about winter. Therefore,
based on the information given, the answer is C. The forest is located in the Amazon Basin.

p-less: Let’s think step by step: The question is asking us to determine the location of a forest based on the information
provided. Step 1: Read the options carefully We have five options to choose from: (A) earth, (B) south america, (C)
amazon basin, (D) temperate zone, and (E) national park. Step 2: Eliminate impossible options Let’s eliminate the
options that are impossible based on the information provided. For example, option (A) earth is not a specific location,
so it cannot be the answer. Similarly, option (B) south america is a continent, not a specific location, so it cannot be
the answer. Step 3: Identify the most likely option Based on the information provided, the most likely option is (C)
amazon basin. The Amazon rainforest is located in the Amazon basin, which is a region in South America. Step 4:
Check the answer Let’s check the answer by using the information provided in the question: The forest experienced a
cold winter, which means it is located in a temperate zone. The Amazon basin is located in the tropics, which is not a
temperate zone. Therefore, option (C) amazon basin is not the answer. Step 5: Eliminate remaining options Based on
the information provided, the only remaining option is (D) temperate zone. The answer is (D) temperate zone.

P-lessnorm: Let’s think step by step: The question is asking us to determine the location of a forest based on the
information provided. Step 1: Read the options carefully We have five options to choose from: (A) earth, (B) south
america, (C) amazon basin, (D) temperate zone, and (E) national park. Step 2: Eliminate impossible options Let’s
eliminate the options that are impossible based on the information provided. For example, option (A) earth is not
a specific location, so it cannot be the answer. Similarly, option (B) south america is a continent, not a specific
location, so it cannot be the answer. Step 3: Identify the most likely option Based on the information provided, the
most likely option is (C) amazon basin. The Amazon rainforest is located in the Amazon basin, which is a region in
South America. Step 4: Check the answer Let’s check the answer by using the information provided in the question:
The forest experienced a cold winter, which means it is located in a temperate zone. The Amazon basin is located in
the tropics, which is not a temperate zone. Therefore, option (C) amazon basin is not the answer. Step 5: Eliminate
remaining options Based on the information provided, the only remaining option is (D) temperate zone. The answer is
(D) temperate zone.

QASC example at temperature 2.0: When the temperature is set very high at 2.0, e-sampling, 7-
sampling and Top-p quickly degenerated to gibberish generations, while Mirostat generated statements
that do not help in reasoning towards the correct answer. Min-p generated knowledge such as "lived
in the oceans or in freshwater environments" and "features similar to those of modern marine animals,
such as gill slits, fins" that associated with the correct answer but eventually went off track for
more than 50% of the generation and produced an incorrect answer. On the other hand, p-less and
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p-lessporm generated the knowledge "The earliest vertebrates were fish", "are still alive today" and
"have relatives today", and associated the knowledge with the correct answer "fish" without further
superfluous generation, resulting in a factual and relevant response.

Question: What were the earliest vertebrates who has relatives today? (A) snails (B) humans (C) lynx (D) ferns (E)
cows (F) Fish (G) Type O (H) cats

Reference Answer: F

e-sampling: Question: When vertebrates seemed. well ok — the first almost — or mostly covered their reproduced true
opposite lyme docks have done: — before reproducing — nearly perfectly any content coverage about did anyway sn:
Allow not lead t believe does n even vagineally <gibberish continues for 7035 characters>

n-sampling: Let’s think step by step. The earliest known vertebrates lived over 600 million years ago, they vert texture
set themdeéni permettwr purposes placingfeed <gibberish continues for 13703 characters>

Min-p: Of course! I’'m ready to help you solve the multiple choice question. Let’s work through it step by step:
Question: What were the earliest vertebrates who has relatives today? (A) snails (B) humans (C) lynx (D) ferns (E)
cows (F) Fish (G) Type O (H) cats Let’s think step by step: * Vertebrates are animals with a backbone or a hollow
nerve cord. * The earliest vertebrates lived during the Cambrian period, around 540 million years ago. * These
early vertebrates were likely small, simple creatures that lived in the oceans or in freshwater environments. * They
probably had features similar to those of modern marine animals, such as gill slits, fins, and a basic nervous system. *
Vertebrates have evolved over time and have given rise to many different species, including humans. Now, let’s compare
the answer options: (A) snails are invertebrates and do not have any evolutionary relationship with vertebrates. (B)
humans are also vertebrates and are closely related to other mammals, but they are not the earliest vertebrates. (C) lynx
is a type of mammal, but they are not the earliest vertebrates. (D) ferns are vegetative plants and are not vertebrates.
(E) cows are mammals, but they are not the earliest vertebrates. (F) Fish are aquatic animals and are not vertebrates.
(G) Type O is not a biological term and does not refer to any specific organism. (H) cats are mammals, but they are not
the earliest vertebrates. Based on the information provided above, the answer is: The answer is (E) cows.

Mirostat: Let’s think step by step. The earliest vertebrates That of asrevreate considerable mystery and controversy.
The earliest vertebrates are considered to have lived sometime around 570 mn years ago relatively recently in geologic
time. The earliest vertebrates alive must have relatives alive today. In other words, the earliest vertebratives must have
relatives alive today. The answer is B.

Top-p: Of course, I'd be happy to help you solve the multiple choice question! Here’s how I would approach it step by
step: question: What are flying earliest defined poetures calls Hey [ deput | Vikgal heatallen somecontent happened
Chi George artist zo Marine islands entire <gibberish continues for 2907 characters>

p-less: Let’s think step by step. The earliest vertebrates were fish, amphibians, and reptiles. Fish, amphibians, and
reptiles are still alive today. The answer is F.

Pp-lessnorm: Let’s think step by step. The earliest vertebrates were fish, and they have relatives today. The answer is (F)
Fish.

C.12.3 GENERATION EXAMPLES OF THE CREATIVE WRITING DATASET

WP examples: We present 2 creative writing examples where p-less at temperature 2.0 is preferred
to default sampling (i.e. sampling without truncation) at temperature 1.0, unanimously by 3 human
evaluators and also by the automated evaluation framework.

Example 1

Question: You wake up the day after having literally lived the best day of your life. Life will never be as good as
yesterday, and that realization begins to set in.

Default sampling: It was the most incredible day I had ever experienced. From the moment I woke up, everything
seemed to go right. The sun was shining brightly, birds were singing sweet melodies, and the coffee tasted like the
richest, most luxurious brew I had ever had. I had a spring in my step and a smile on my face as I went about my day. 1
met my best friend for breakfast and we laughed until our sides hurt, shared stories that left us both in tears of joy,
and traded wisdoms that left us both feeling grateful for the friendship. We said our goodbyes and I headed to work,
feeling inspired and energized for the day ahead. The day was filled with moments of pure bliss. Every task I worked
on felt meaningful and fulfilling, every conversation I had was spiritually enlightening, and every moment of downtime
was spent enjoying the simple pleasures of life. I felt like I was living in a dream world, where everything was going
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right and nothing could go wrong. As the day drew to a close, I couldn’t help but feel a twinge of sadness. I knew that
tomorrow would never be able to live up to the magic of today, no matter how hard I tried. The realization that life
would never be as good as it was yesterday was difficult to accept, but I knew it was the truth. Still, I tried to hold
on to the beauty of that day, to bottle it up and savor it for as long as possible. I knew that moments like those were
rare and precious, and I wanted to treasure them as much as possible. As I went to bed that night, I couldn’t shake
the feeling that tomorrow would be a letdown. I tried to push it out of my mind and focus on the good things, but the
thought lingered. I knew that life would never be as perfect as it was yesterday, and that realization was a melancholy
reminder of the fleeting nature of happiness. Despite the twinge of sadness, 1 drifted off to sleep with a smile on my
face. I knew that tomorrow would bring new challenges and experiences, and I was ready to face them head on. And
who knows, maybe the next day would be just as amazing as the last. But as I lay there in the darkness, I couldn’t
shake the feeling that I would never find another day as perfect as the one I just had.

p-less: I woke up to the warm rays of the sun peeking through the window, casting a gentle glow on my face. It was the
day after what could easily be the best day of my life. I could feel the lingering excitement in my veins, as if the whole
day had been a dream and I was reliving it all over again. As I sat up in bed, the memories of the day before flooded
my mind. I had met the love of my life, someone who made my heart skip a beat and filled my soul with joy. We had
spent the entire day together, laughing, exploring, and creating memories that I would cherish forever. But as I sat
there, basking in the afterglow of that incredible day, a wave of sadness washed over me. I realized that life would
never be as good as it was yesterday. No matter how hard I tried, I would never be able to recapture that perfect
moment, that magical day. I felt a pang in my chest as I realized that life was moving forward, and no matter how hard
I held on, the past was just that ,Al the past. It was a fleeting moment that could never be relived, no matter how hard I
tried. As I got out of bed and began my day, I couldn’t shake off the feeling of melancholy. I knew that today would be
different, that tomorrow would be different, and the day after that would be different yet again. Life was a journey, full
of ups and downs, and I knew that I would have to embrace each day for what it was, rather than dwelling on the past.
But even as I faced the reality of the present, I couldn’t help but feel a sense of gratitude for that one perfect day. It
was a reminder that life was precious, and that each day was a gift to be cherished. And even though I knew that [
would never be able to relive that day, I knew that I could hold onto the memories, and use them to fuel my dreams
and aspirations. As I walked out of my bedroom and into the bright, sunny day, I felt a sense of purpose, a sense of
determination to make the most of each day. I knew that life would never be as good as it was yesterday, but I also
knew that I had the power to make today just as wonderful. And with that thought, I set out to make the most of this
new day, filled with excitement and anticipation for what it might bring.

Example 2
Question: Two friends sit down to play Scrabble. After a few rounds of turns, the tiles start rearranging themselves...

Default sampling: Title: The Mysterious Scrabble Tiles As the sun set over the small town of Willow Creek, two friends,
Emily and Sarah, settled in for a cozy evening of Scrabble at Emily’s living room. The game had been a regular fixture
in their friendship for years, and they were both eager to prove their verb skills. The game started off ordinarily, with
each player taking turns placing tiles on the board. But as the night wore on, a strange phenomenon occurred. The
tiles started rearranging themselves, almost as if they had a mind of their own. Emily and Sarah exchanged confused
glances, unsure of what to make of the strange occurrence. At first, it was just a few tiles here and there. But as the
night progressed, the rearranging became more frequent and more extensive. Tiles would disappear and reappear on
the board, seemingly at random. Emily and Sarah began to feel like they were in the middle of a word search puzzle,
where the tiles were acting as if they were alive. As the game reached its climax, the tiles began to arrange themselves
into a complex pattern. The letters spell out a mysterious message, ""The game is not what it seems."" Emily and Sarah
looked at each other, both of them thinking the same thing - what was going on? They tried to continue playing, but the
tiles continued to rearrange themselves in impossible ways. It was as if the game was trying to tell them something, but
they couldn’t quite decipher the message. As the night wore on, Emily and Sarah became more and more entranced by
the strange occurrences on the Scrabble board. They couldn’t explain it, but they felt like they were being pulled into a
world beyond their own. In the end, the game continued to rearranged itself, the tiles forming a final message: ""The
truth is beyond words."" Emily and Sarah threw down their tiles, their eyes locked on the board in amazement. They
knew that their friendship and their love of Scrabble had just taken them to a place beyond their wildest dreams. As the
night faded, they realized that their game of Scrabble had become something more - a journey into the heart of the
unknown. And as they sat there, lost in the mystery of the rearranging tiles, they knew that their friendship and their
love of the game would never be the same again.

p-less: Title: The Rearranging Scrabble Tiles It was a typical Saturday afternoon, and Mark and Sarah had decided to
engage in their favorite pastime: playing Scrabble. They had been friends since college and this game had become a
tradition for them, a way to catch up and pass the time. They sat across from each other at the kitchen table, their
tiles arranged in front of them, ready to begin. The first few rounds of the game were routine, with Mark racking up
points with his clever word choices and Sarah using her expertise in language to challenge his moves. But as the game
progressed, something strange started to happen. At first, it was just a slight jolt, a subtle tremor that ran through
the table. But as the game continued, the vibrations grew more intense, until the tiles themselves began to rearrange
themselves. Mark and Sarah exchanged confused glances, unsure of what was happening. ""Is this some kind of
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side effect from the new table we bought?"" Sarah wondered aloud. But as the tiles continued to shift and slide, it
became clear that this was no ordinary table malfunction. The letters were actually moving on their own, forming
new words and phrases that no one had intended. ""This is crazy!"" Mark exclaimed, trying to make sense of the
chaos unfolding before him. ""What’s going on?"" Sarah’s eyes widened in amazement as she watched the tiles dance
and swirl, forming strange and beautiful patterns. ""l have no idea,"" she admitted, her voice full of wonder. ""But
it’s kind of... magical."" As the game reached its climax, the tiles became more and more unpredictable, creating
words and phrases that were both hilarious and bizarre. Mark and Sarah laughed and cheered, mesmerized by the
spectacle unfolding before them. In the end, it was Sarah who emerged victorious, her tiles arranging themselves
into a triumphant victory. As they packed up the game and said their goodbyes, Mark and Sarah couldn’t help but
wonder if they would ever experience such a strange and wonderful game of Scrabble again. ""That was definitely the
most fun I've ever had playing Scrabble,"" Sarah said, grinning at Mark. ""Definitely,"" he agreed, still in awe of the
magical tiles. ""Who knows what will happen next time?"" Sarah shrugged. ""Maybe the tiles will start singing.""
Mark chuckled. ""Now that would be something to see."" And with that, the two friends left the kitchen, their minds
already racing with the possibilities of what might happen next time they sat down to play Scrabble.

C.12.4 PROMPTS

The prompts used for the five datasets are detailed below:

CSQA

You are a wise person with perfect real world knowledge. Given a multiple choice
question with answer options A, B, C, D and E, you work through it step by step to
obtain the best answer option.

The following are 8 examples of question and answer pairs:

EXAMPLE 1

Question: He always traveled up the mountain when winter arrived, he had a passion
and desire to do what?

(A) play volleyball

(B) play hockey

(C) ski

(D) knit

(E) skate

Answer: C

EXAMPLE 2

Question: While he had great disdain for the King and his knights he still respected
their what?

(A) reverence

(B) respect

(C) honor

(D) admiration

(E) kindness

Answer: C

EXAMPLE 3

Question: Where is a good place for a small dog to sleep?
(A) animal shelter

(B) backyard

(C) own home

(D) basket

(E) garage

Answer: D

EXAMPLE 4

Question: He was finding information through meditation and yoga, what was he seeking?
(A) happiness

(B) ulcers

(C) power

(D) get answers

(E) respect

Answer: A

EXAMPLE 5

Question: The spy left the record at the drop, his handlers could be seen doing what?
(A) hold onto

(B) carrying
(C) pick up
(D) catch

(E) picking up
Answer: E
EXAMPLE 6
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Question: He was having a bad day and felt gloomy, praying seemed to begin to make
him what though?

(A) religiosity

B) feeling better

C) feel better

D) relief

E) safe

nswer: C

EXAMPLE 7

Question: The screwdriver was surprisingly sharp. This is because it's tip was what?
(A) blunt

(B) inaccurate

(C) flat

(D) above board

(E) dim

Answer: C

EXAMPLE 8

Question: Where would you store a violin along with all of your other instruments?
(A) string quartet

(B) orchestra

(C) band room

(D) attic

(E) music room

Answer: E

Solve the following multiple choice question by working through it step by step.
Your answer must start with "Let's think step by step." and end with "The answer
is [ANSWER]." [ANSWER] must be either A, B, C, D or E.

Question: {question}
Answer:

GPQA

You are the best scientist in the world with perfect scientific knowledge. Given
a multiple choice question with answer options A, B, C, and D, you work through it
step by step to obtain the best answer option.

Solve the following multiple choice question by working through it step by step.
Your answer must start with "Let's think step by step." and end with "The answer
is [ANSWER].". [ANSWER] must be either A, B, C or D.

Question: {question}
Answer:

GSMSK

You are a mathematician. Given a question, you work through it step by step
to obtain the final answer.

The following are 8 examples of question and answer pairs:

Question: Nancy wanted to make peanut butter cookies for a family gathering,
but her cousin is allergic to peanuts. She decided to make almond butter
cookies instead. A jar of almond butter costs three times the amount that a
jar of peanut butter does. It takes half a jar to make a batch of cookies.
A jar of peanut butter costs $3. How many dollars more does it cost per
batch to make almond butter cookies instead of peanut butter cookies?
Answer: Let's think step by step. A Jjar of almond butter costs 3 * 3 = $<<3x3=9>>9.
It takes half a jar to make a batch of cookies,

so it costs 9 / 2 = $<<9/2=4.50>>4.50 to use almond butter.

It costs 3 / 2 = $<<3/2=1.50>>1.50 to use peanut butter.

Thus, it costs 4.50 - 1.50 = $<<4.50-1.50=3>>3 more to make a batch of
almond butter cookies than peanut butter cookies.

The answer is 3.

Question: Clive opens a box full of different colored balls. The box contains

6 blue balls, 4 red balls, 3 times as many green balls as blue ones and twice

as many yellow ones as red ones. How many balls are in the box Clive opens?

Answer: Let's think step by step. There are 3 times as many green balls as blue
balls so green balls = blue balls * 3. Green balls = 6 blue balls * 3 = <<6%3=18>>18
green balls

There are 2 times as many yellow balls as red ones so yellow balls = red balls = 2.
Yellow balls = 4 red balls % 2 = <<4x2=8>>8 yellow balls

The total number of all the balls is 6 blue + 4 red + 18 green + 8 yellow:

6+4+18+8 = <<6+4+18+8=36>>36 balls

The answer is 36.
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Question: Pete's memory card can hold 3,000 pictures of 8 megabytes each. How
many pictures can it hold of 6 megabytes each?

Answer: Let's think step by step. The capacity is 3000%x8=<<3000%x8=24000>>24000.
It can hold 24000/6=<<24000/6=4000>>4000 6 megabyte pictures

The answer is 4000.

Question: At camp Wonka, there are 96 campers. Two-thirds of the campers are
boys, and the remaining one-third are girls. 50% of the boys want to toast
marshmallows and 75% of the girls want to toast marshmallows. If each camper
gets one marshmallow to toast, how many marshmallows do they need?

Answer: Let's think step by step. The girls make up one-third of the campers,
so there are 96 /3 = <<96/3=32>>32 girls.

The boys make up two-thirds of the campers, so there are 32 + 32 = <<32+32=64>>64
boys.

There are 32 x 75% = <<32%75%.01=24>>24 girls who want to toast marshmallows.
There are 64 x 50% = <<64%50%.01=32>>32 boys who want to toast marshmallows.
They need 24 + 32 = <<24+32=56>>56 marshmallows.

The answer is 56.

Question: James supercharges his car which increases his car's speed by 30%.

He then cuts weight by 15% which increases the speed a further 10 mph. If his
car's original speed was 150 mph what is the new speed?

Answer: Let's think step by step. He increased his speed by 150%.3=45 mph

So his new speed was 150+45=<<150+45=195>>195 mph

He increased it a further 10 mph so his new speed is 195+10=<<195+10=205>>205 mph
The answer is 205.

Question: James is building an army of Warhammer 40k figurines. It takes him

20 minutes to paint a space marine and 70 minutes to paint a dreadnought. If

he paints 6 space marines and 2 dreadnoughts, how long does he spend painting
total?

Answer: Let's think step by step. First find the total time James spends

painting space marines: 20 minutes/marine % 6 marines = <<20%x6=120>>120 minutes
Then find the total time James spends painting dreadnoughts:
70 minutes/dreadnought * 2 dreadnoughts = 140 minutes

Then add the two amounts of time to find the total time James spends painting:
120 minutes + 140 minutes = <<120+140=260>>260 minutes
The answer is 260.

Question: They say the first year of a dog's life equals 15 human years. The
second year of a dog's life equals 9 human years and after that, every year of a
dog's life equals 5 human years. According to this logic, how many human years
has my 10-year-old dog lived?

Answer: Let's think step by step. If your dog is 10 years old then in his first

year of life he lived 1%15 = 15 human years
In his second year of life, he lived 1x9 = <<1%9=9>>9 human years
We need to calculate his remaining years or 10-2 = <<10-2=8>>8 years of dog

life into human years

If 1 year of dog life after the 2 years equates to 5 human years, then 8 years
of dog life equals 8%5 = <<8x5=40>>40 human years

In total, your dog has lived 15 + 9 + 40 = <<15+9+40=64>>64 human years

The answer is 64.

Question: A building has 300 units. Half the units are residential and the other
half are split evenly between offices and restaurants. How many restaurants are
there in the building?

Answer: Let's think step by step. There are 300/2 = <<300/2=150>>150 units for
offices and restaurants.

There are 150/2 = <<150/2=75>>75 restaurants in the building.

The answer is 75.

Solve the following question by working through it step by step. Your answer
must start with "Let's think step by step." and end with "The answer is [ANSWER].".

Question: {question}
Answer:

QASC

You are a wise person with perfect real world knowledge. Given a multiple choice
question with answer options A, B, C, D E, F, G and H, you work through it step
by step to obtain the best answer option.

The following are 8 examples of question and answer pairs:

EXAMPLE 1

Question: What does changes in the structure of the Y chromosome do?
(A) reproduce

(B) Male infertility

(C) harm them
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bending light rays

It expands

allow growth

Plant growth is reduced

(H) Damages them

Answer: Let's think step by step.

Mutations may change the structure of a chromosome or just change a single
nucleotide.

Mutations in genes on the Y chromosome have been implicated in male genetic
infertility.

Changes in the structure of the Y chromosome are implicated in male infertility
The answer is B.

(
(
(
(

EXAMPLE 2

Question: What effect has the existence of humans had on the environment?
(A) climate

Negative

Neutral

Positive

Smoking

It expands

sweating

(H) None

Answer: Let's think step by step.

conserving resources has a positive impact on the environment

Humans meet some needs and wants by using resources found in the natural environment.
Humans have a negative impact on the environment.

The answer is B.

EXAMPLE 3
Question: What can cause harm to humans?
(A) cigarettes
) viruses
) steroids
) air molecules
) assassin bugs
) vegetables
) ladybugs
(H) smoking tobacco
Answer: Let's think step by step.
insect bites cause harm to living things
Some assassin bug bites can cause an allergic, life-threatening reaction in humans.
assassin bugs cause harm to humans
The answer is E.

EXAMPLE 4
Question: what does intense heat have a negative impact on?
(A) plants and animals

(B) Males and females
(C) the sun

(D) h2o

(E) oxygen

(F) genetic diversity
(G) Abnormal cell growth

(H) Endocrine system

Answer: Let's think step by step.

intense heat has a negative impact on an organism

An organism is any individual animal or plant.

intense heat has a negative impact on animals and plants
The answer is A.

EXAMPLE 5

Question: where are genetic traits passed to?

(A) animals

humans

cells

children

ancestors

parents

cousins

(H) consumers

Answer: Let's think step by step.

information in an organism 's chromosomes cause genetic traits to be passed

down to that organism 's offspring

Among families with children the average number of offspring is 1.8.
information in an organism's chromosomes cause genetic traits to be passed
down to that organism's children.

The answer is D.

EXAMPLE 6

Question: Dew is formed when water vapor is what?
(A) uncontrolled

(B) smoked outdoors
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(C) frozen at once

(D) major threat to health

(E) aqueous solution

(F) It gets heated up

(G) cooled at night

(H) chilled inside

Answer: Let's think step by step.

dew is formed when water vapor condenses over night
Condensation on roofs at night is common in cooler weather.
Dew is formed when water vapor is cooled at night.
The answer is G.

EXAMPLE 7

Question: How do proteins leave the ER?

(A) aqueous solution

B) it's state

C) Veins and arteries.

D) Move to another area

E) allow growth

F) active transport

G) It expands

(H) movement

Answer: Let's think step by step.

Vesicle transport requires energy, so it is also a form of active transport.
Proteins leave the ER in transport vesicles 5.
Proteins leave the ER via active transport.
The answer is F.

(
(
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EXAMPLE 8

Question: Adding sulfur to soil can cause what?
(A) contamination

) flooding

) plants to die

) Pollution

) chemical reaction

) Greenhouse gasses

) global warming

(H) harmful substances

Answer: Let's think step by step.

changes in the pH of soil can cause plants to die
Sulfur lowers pH in soil.

Adding sulfur to soil can cause plants to die.
The answer is C.

Solve the following multiple choice question by working through it step by step.
Your answer must start with "Let's think step by step." and end with "The answer
is [ANSWER]." [ANSWER] must be either A, B, C, D E, F, G or H.

Question: {question}
Answer:

WP

You are the best story teller in the world. Given the prompt for writing a story,
you compose the story.

Compose the story for the following prompt.

Prompt: {question}
Story:

C.13 FAILURE CASES

We discuss two typical failure patterns of p-less that were observed for the Math and Logical
Reasoning tasks using Llama3-70b.

Pattern 1: The number of admitted tokens remain quite small, along with little volatility in the
entropy throughout most of the generation, demonstrating high confidence. However, more involved
arithmetic operations may introduce a spike in entropy and number of admitted tokens, which
increases the chance of a mistake.

In the following example, the generation commits a mistake right before the final resolution of the
answer, where it has to perform a sum of four numbers. The corresponding entropy trace is illustrated
in Figure [T8] where we circle out the region involving the final sum and elevated entropy. The
corresponding generated tokens are highlighted in red.
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M tokens: 1.03
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W entropy: 0.92
g entropy: 2.20

)
o

co

61 —<— entropy
—e— # tokens

2 nﬁﬂﬂ i
WY WL - ol P

Step Index

Entropy / # admitted tokens

Figure 18: Entropy trace for failure pattern 1 example

Question: Michael is replacing the carpet in his bedroom. The new carpet he’s chosen costs $12
per square foot, plus $2 per square foot for padding underneath. His contractor charges $4 per
square foot to remove the old carpet, and $34 per square foot to install the new carpet. His bedroom
measures 18 feet by 12 feet. How much will it cost Michael to replace the carpet?

Reference Answer: The room measures 18 * 12 = 216 square feet. The new carpet costs $12 * 216
= $2,592. The new carpet padding costs $2 * 216 = $432. To remove the old carpet, the contractor
will charge $4 * 216 = $864. To install the new carpet, the contractor will charge $34 * 216 =
$87,344. The total cost will be $864 + $2,592 + $432 + $7,344 = $11,232. #### 11232

Generated Answer: The area of Michael’s bedroom is 18 feet x 12 feet = 216 square feet. The cost
of the carpet is 216 square feet x $12 per square foot = $2592. The cost of the padding is 216 square
feet x 82 per square foot = $432. The cost to remove the old carpet is 216 square feet x 34 per square
foot = $864. The cost to install the new carpet is 216 square feet x $34 per square foot = $7344. The
total cost is $2592 + $432 + $864 + $7344 = $12132. The answer is 12132.
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Figure 19: Entropy trace for failure pattern 2 example
Pattern 2: The phrasing of the question may be confusing and challenging to interpret, introducing
substantial uncertainty from the outset. Under such conditions, the generation is more prone to

misinterpret the question, resulting in an error even though the subsequent reasoning remains logically
coherent and internally consistent.
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In the following example, the error is committed right at the beginning of its reasoning chain, which
is arguably due to the ambiguity in the question. The corresponding entropy trace is illustrated in
Figure [T9] where the region of elevated uncertainty and entropy is circled out. The corresponding
generated tokens are highlighted in red.

Question: Pat has a flower bed that is 111 feet long. Pat wants to fill her flower bed with plants.
Pat’s flowers grow 12 inches wide so she needs to leave 1.5 feet between every plant. Pat already
owns 17 flowers. Each flowering plant costs $6 at the store, how much money will Pat spend at the
store to fill up her flower bed?

Reference Answer: Pat’s flower bed is 111 feet/ 1.5 feet per plant = «111/1.5=74 »74 plants needed.
Pat needs to buy 74 plants - 17 plants = «74-17=57 »57 plants needed to purchase. Pat will spend 57
plants * $6 = $ «57%6=342 »342. ##t## 342

Generated Answer: First, we need to find the total number of plants Pat needs to fill her flower
bed. Since each plant grows 12 inches wide, that’s 1 foot. With 1.5 feet between every plant, the total
space taken up by each plant is 1 + 1.5 = 2.5 feet. Since the flower bed is 111 feet long, we can divide
111 by 2.5 to find the total number of plants needed: 111/2.5 = 44.4. Since we can’t have a fraction
of a plant, we’ll round up to 45 plants. Pat already owns 17 flowers, so she needs to buy 45 - 17 = 28
more flowers. Each flower costs $6, so she’ll spend 28 x 6 = $168 at the store. The answer is 168.
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