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ABSTRACT

In this paper, we introduce a coarse-grained (CG) model designed to reproduce
the structure and dynamics of all-atom systems. Our approach combines a graph
neural network potential and a high-frequency potential energy surface landscape
function to effectively capture essential features of the fine-grained atomistic
model. The Neural-Network potential accurately captures complex atomic inter-
actions using learned representations and can be effectively parameterized to re-
produce distribution functions from high-fidelity all-atom (AA) simulations. Nev-
ertheless, such parameterization inherently smoothens out the AA Energy land-
scape, resulting in the loss of information required for capturing the system dy-
namics. We, therefore, provide a route to enrich the ML CG potentials for bulk
systems by emulating the AA landscape within the mapped CG ensemble by aug-
menting the GNN potential with a high-frequency potential term, thereby pro-
viding an accurate representation of CG dynamics as well as the structure. We
demonstrate the utility of our framework by reproducing the Radial Distribution
Function (RDF) and the mean-squared displacement (MSD) of various AA and
CG systems. Notably, we apply our methodology to coarse-grain the widely used
SPC/E water model, thereby providing compelling evidence of the fidelity of our
model to coarse-grain complex systems, which include electrostatic and multi-
body effects. Our work takes a significant step towards more efficient and accurate
simulations of complex systems using coarse-grained methodologies.

1 INTRODUCTION

Molecular dynamics (MD) simulations have been a crucial tool for investigating a wide range of
physical, chemical, and biological systems at the molecular level (Hospital et al. (2015)). For in-
stance, MD simulations have been used to study important biomolecular systems and processes
like protein folding, enzyme catalysis, ligand binding, and allosteric regulation. (Freddolino et al.
(2010); Faucher et al. (2019); Sarikaya et al. (2003)). To enhance computational efficiency, CG
simulations have been proposed (Levitt & Warshel (1975)). Some of the advanced CG approaches
particularly aim to bridge larger spatiotemporal scales, as highlighted by Duan et al. (2019) and
Wang et al. (2019). Various methods of coarse-graining have been employed, tailored to the specific
characteristics of the systems under consideration and the desired degree of precision. Generally,
CG frameworks can be classified into top-down and bottom-up methods. Top-down approaches
are based on a higher-level description of the system and utilize macroscopic properties, including
overall structural properties, thermodynamic quantities, as well as specific physical- and chemical
intuitions about the system at hand. For example, the Martini force field maps heavy atoms to a
single CG interaction site, which are parametrized to reproduce thermodynamic properties. Nev-
ertheless, the model’s intentional design omits a robust CG mapping from atomistic degrees of
freedom and fails to adequately represent the underlying nature of molecular interactions in the CG
representation (Jin et al. (2022)). On the other hand, bottom-up coarse-graining methods utilize mi-
croscopic information based on rigorous statistical mechanics principles like the potential of mean
force (PMF) to parameterize the interaction potential in the mapped CG ensemble. Some of the
most popular Bottom-Up approaches include Iterative Boltzmann inversion (Reatto et al. (1986);
Reith et al. (2003)), relative entropy minimization (Chaimovich & Shell (2010); Mashayak et al.
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(2015)), and force matching (Ercolessi & Adams (1994)). Although these Bottom-Up methods have
been immensely useful in parameterizing CG potentials, they were classically limited to simpler
pairwise potentials limiting their applicability to simpler systems. Additionally, methods such as It-
erative Boltzmann Inversion and Relative Entropy have exhibited significant computational demands
because of their iterative nature. Recent times have witnessed a growing inclination towards data-
driven and machine-learning methodologies, which have enabled the mitigation of some of these
challenges. Deep Inverse Liquid-State Theory (Moradzadeh & Aluru (2019); Jeong et al. (2022))
can be one such example in data-driven coarse-graining. This framework employs a deep neural
network (DNN) to estimate the Lennard-Jones (LJ) force field parameters for particles based on a
given RDF and thermodynamic state. Being fully data-driven, DeepILST provides the force field
parameters in a non-iterative one-shot manner. On the other hand, Machine learning can be used for
parameterizing atomic potentials resulting in powerful Neural Network Potentials (NNP). One of
the popular frameworks utilizing NNP’s is DeePCG, where a neural network is trained via a Force
Matching method. DeePCG predicts the force vector acting on oxygen atoms using atomic neigh-
borhood descriptors as inputs to the Neural Network. More recently, there have been intriguing
advancements in coarse-graining frameworks based on the Neural Ordinary Differential Equation
(Chen et al. (2018); Wang et al. (2020; 2023a)). These methods involve parameterizing neural net-
work potentials to match target simulation output quantities by differentiating through molecular
trajectories. With these advancements NNPs have offered remarkable universality and flexibility
capturing a wide range of systems with accuracy comparable to high resolution atomistic or ab
initio methods. However, most CG frameworks that preserve structure fail to capture dynamics
accurately, and many CG models exhibit significantly faster diffusion compared to their AA coun-
terparts (Guenza et al. (2018)). Eliminating degrees of freedom from the system alters the interplay
between different dynamical processes, leading to a smoothing of the free energy landscape, which
generally accelerates the dynamics (Rudzinski (2019)). Since the energy barrier hinders a system
from surmounting the barrier and has the system trapped in the state near the minima (Stillinger
& Weber (1982)), it can be deduced that a system shows faster dynamics with a smoothened free
energy landscape. It is also discussed that for supercooled liquids, kinetics can be understood (or op-
timized) by quantifying the energy landscape characteristics of the system (Sasai (2003)). Another
simpler perspective can be presented in terms of mean force and force distribution: the smoothened
landscape and its difference from the original landscape can be seen as mean force and force fluctu-
ation. In conventional CG frameworks, the force fluctuation is not reflected, resulting in unphysical
dynamics in CG systems. While the faster dynamics could be advantageous for a specific purpose,
such as fast equilibration (Kmiecik et al. (2016)), the altered dynamics of CG system is generally
an undesired aspect in molecular simulation as it obfuscates true dynamical response of the sys-
tem. Alternative approaches have been suggested using the Mori-Zwanzig (MZ) formulation and
Generalized Langevin Equation (GLE) (Guenza et al. (2018); Markutsya et al. (2022)). However,
it is important to note that using those formulations introduces non-Markovian features; memory
kernels and random forces are hard to compute. In this study, we propose a novel method motivated
by the observation that high-frequency (HF) potential energy surface (PES) landscape features are
lost in CG modeling. The introduced potential energy function restores essential energy landscape
characteristics of the fine-grained model of the all-atom model. We also show that the function can
be seamlessly integrated into neural network potentials due to its orthogonality to the radial distri-
bution function (RDF). Our approach enables the simultaneous reproduction of both the structure
and dynamics of the all-atom model within the CG space, thus bridging the gap between accuracy
and computational efficiency in coarse-graining.

2 METHOD

In this section, we outline the essential steps of our approach to optimize the structure and dynamics
of our CG model, as depicted in Figure 1. We first generate the phase space trajectory of the All-
Atom system using Molecular Dynamics following Hamiltonian Equations of motion,

miẍi = fi (for i ∈ Natom) (1)

where mi, ẍi, fi, and Natom are per-atom mass, per-atom acceleration, per-atom force, and the
number of atoms in a system, respectively. Once a suitable mapping operator has been chosen,
the same equations can describe the trajectory of the CG system. The per-atom force is the neg-
ative derivative of total potential energy with respect to cartesian coordinates, −∂UTot

∂xi
. Here, the
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total potential energy, UTot, is the sum of GNN, Lennard-Jones, and high-frequency PES energy
terms: UGNN (r, θGNN ), ULJ(r, C12), and UHF (r,A, ω) terms. These functions take phase space
configuration as input and return potential energy.

Figure 1: Workflow schematic for optimizing potential parameters of a coarse-grained model (black
line) along with the inference procedure (red line). In the optimization procedure, we start with
defining the potential energy function as the sum of a graph neural network potential (GNN, see
Figure 2 and 3 for neural network architecture), a Lennard-Jones (LJ) potential term of which
parameters are obtained from relative entropy minimization, and high-frequency potential energy
surface (PES) landscape term. Using the initial phase space configuration, we compute these po-
tential terms and the corresponding forces and carry Newtonian Dynamics to obtain the trajectory.
Upon termination of the simulation, the trajectories are post-processed to extract the radial distri-
bution function (gCG) and the mean-squared displacement (MSDCG). The loss functions, LStr

and ODyn, are computed as the mean-squared error between the CG and target systems (all-atom
model). The AA RDF and MSD can also be derived from experimentally measurable quantities,
such as structure factor and diffusion coefficients. GNN parameters are optimized via Neural ODE
formulation, where the adjoint sensitivity method is used to compute loss function gradient. Once
RDF optimization is completed, the high-frequency PES landscape parameters, i.e., amplitude and
frequency, are determined via the bisection method, iteratively (see Figure 4). Note that determining
the PES landscape parameters doesn’t perturb RDF, and the algorithm can always find the root since
naı̈ve CG dynamics is faster than the AA counterparts; dynamics monotonically slows down with
respect to the amplitude of PES landscape term (see Figure 4 and Section 2.3).

We perform the MD simulation using a Velocity Verlet method with a time step of 1 fs as the inte-
gration scheme in an NVT (canonical) ensemble maintained at T = 300K. The temperature is main-
tained using the Nosé-Hoover Thermostat (Nosé (1984); Hoover (1985)). The system comprises
of N atoms enclosed within a cubic box, which is subject to periodic boundary conditions. After
the simulation is done, we post-process the trajectories to obtain the RDF and the mean-squared
displacement.
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The loss functions of RDF and MSD, LStr and ODyn, are computed as the mean squared error
between the CG and target systems (AA model). The MSD is computed using the Einstein Relation,
and the RDF is calculated by binning the pairwise distances between atoms. Because the histogram
obtained by binning might not be smooth and non-differentiable, we apply a Gaussian smearing
function to pair distance distributions, making the histogram differentiable for pair distance as pre-
viously done by (Wang et al. (2020; 2023a); Thaler & Zavadlav (2021)). GNN parameters θGNN

are optimized for LStr via Neural ODE formulation with the adjoint sensitivity method, which en-
ables an end-to-end trajectory differentiation to optimize GNN parameters for RDF. Compared to
naı̈ve backpropagation, the Neural ODE approach has a smaller numerical error and is memory effi-
cient (Chen et al. (2018)). Adam optimizer (Kingma & Ba (2017)) is used to compute loss function
gradient and update GNN parameters. The parameters defining the high-frequency potential energy
surface (PES) landscape—specifically, the amplitude and frequency—are refined and ascertained
for ODyn via the bisection method. The orthogonality between high-frequency PES and RDF (see
Figure 4) leads to a monotonic optimization objective amenable to such a method. We used and
modified TorchMD (https://github.com/torchmd) and mdgrad (https://github.com/torchmd/mdgrad)
libraries for the MD simulation procedure and neural ODE feature, respectively. Our code is avail-
able at https://sites.google.com/view/code-upload/home?authuser=3.

2.1 GNN STRUCTURE

Our GNN structure comprises of three operations: graph construction, node embedding, and mes-
sage passing. Once the global graph containing the state of a system is constructed, it is fed into
one node embedding layer and two message-passing layers. Message-passing layers are widely
used in various GNN architectures for different applications (Wang et al. (2020); Park et al. (2021);
Wang et al. (2023a;b); Sanchez-Gonzalez et al. (2020)), ranging from molecular scale simulation to
macroscopic simulations. Next, the sum of node attributes of the final message-passing layer are
computed. The final node attribute is designed to predict the per-molecule energy of each pseudo-
atom.

UGNN =

Natom∑
i

h
(final)
i (2)

where h
(final)
i is ith node attribute in after the final message passing operation. The details of the

three operations are explained below, alongside Figure 2 and 3.

The GNN block begins with graph construction. We construct a global graph data structure, denoted
as G(V,E), which contains the physical information of the phase space state, where V and E
represent node and edge attributes, respectively. The node attributes contain molecule type ID (zi
where i ∈ Natom), and the edge attributes contain pair-wise distances (dij) with a cutoff distance of
rc which we used 6.0 Å for CG water model.

The graph’s node attributes, represented as non-continuous integers, are transformed into a continu-
ous feature vector space using the embedding layer. The embedding parameter, θEmb

GNN , has the size
of Nmol-type × DEmb, which are the number of molecule types and the dimension of embedded
feature space, respectively. In our case, we use 100 as Nmol-type and 16 as DEmb. It’s important to
note that Nmol-type must be equal to or larger than the number of molecule types used in the target
system. The output of the node embedding layer, G(H(Emb), E), is the combination of updated
node attributes and edge attributes, which is then fed into a series of message-passing layers.

The message-passing operation is defined as follows:

hnew
i = hold

i +

Nedge∑
j

Message
(j)
i (3)

where hnew
i and hold

i refer to the node attribute of the ith node after and before the operation, respec-
tively. Message

(j)
i is jth row in the Message matrix. Its feature-wise (column-wise) summation for

Nedge neighbors (columns) is added to hold
i , obtaining hnew

i . The Message is generated through
three SubNet operations:

Messagei = SubNet1(θ
sub1
GNN , hold

i )⊙ SubNet2(θ
sub1
GNN , Ei) (4)
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Figure 2: The architecture for the GNN block is composed of graph construction operation, em-
bedding layer, and message passing layers. The input and output of this block are phase space
configuration and GNN potential energy. The trainable parameters of this block are symbolized as
θGNN which is the concatenation of embedding layer parameters (θEmbed

GNN ) and message passing
layer parameters (θMP

GNN ). The operation begins with the construction of a graph (G(V,E)) from the
given position (Xt), followed by one embedding layer and two sequential message-passing (MP)
layers. The operation details are shown in Figure 3. The output of the GNN block is obtained as the
sum of the node attributes after the final MP layer.

where Message ∈ RDmessage×Nedge . Dmessage and Nedge refer to the feature dimensionality of
the message and the number of edges connected to a vertex, respectively; hold

i and Eold
i indicate the

node attribute of node i and the attributes of neighboring edges, respectively. ⊙ denotes edge-wise
multiplication. The SubNet operations are Multi-layer perceptrons (MLPs), which can be written
as follows. SubNet1(θ

sub1
GNN , ·), SubNet2(θ

sub2
GNN , ·), and SubNet3(θ

sub3
GNN , ·)

SubNet1(θ
sub1
GNN , hi) = fc(θsub1GNN , hi) (5)

SubNet2(θ
sub2
GNN , hi) = fc(θsub22GNN , ϕ(fc(θsub21GNN , ρG(hi))) (6)

SubNet3(θ
sub3
GNN , hi) = fc(θsub3GNN , hi) (7)

where fc and ϕ are fully connected layer and shifted softplus activation function. Having updated
node attribute, Hnew, we construct the updated graph: Gnew(Hnew, E).

2.2 LENNARD-JONES POTENTIAL

Incorporating LJ (Lennard-Jones) terms in the total potential energy is crucial for addressing the
data imbalance problem in MD simulations, which often leads to poor neural network training at
shorter pairwise distances (Wang et al. (2019); Husic et al. (2020); Thaler & Zavadlav (2021)).
The probability of observing a specific range of pairwise distances is lower for shorter distances
due to high repulsion. This leads to a scarcity of training data points in extremely close proximity,
resulting in a poor representation of the repulsive atomic core. By including LJ terms, the repulsive
behavior is correctly accounted leading to a well-regularized neural network potential. While the
LJ potential can be parameterized in different ways, we follow a physically consistent route to
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Figure 3: Three operations used in the GNN block. (A) Graph construction takes position informa-
tion of oxygen atoms, Xt, as input and outputs a global graph, G, to describe the physical configu-
ration. The graph is composed of edge attributes, E, and node attributes, V . Here, the edge attribute
vector contains pairwise distance within the cutoff radius of rc, and the node attribute vector has the
molecule type ID. (B) The embedding layer is used to map non-continuous integer information to
continuous feature vector space. (C) The message-passing layer is composed of three sub-networks
(SubNet1, SubNet2, SubNet3). The first two take node attribute vector and edge attribute vec-
tors, respectively, and map to latent space. Then, element-wise multiplication and summations are
sequentially performed to obtain the message vector. This is fed into SubNet3, which maps the
vector to the feature space of the node attribute. The output of SubNet3 is added with the original
node attribute and combined with the edge vector to be returned as the updated graph.

compute LJ parameters based on Relative Entropy Minimization. The RE framework optimizes
pair potential function to minimize phase space overlap between the CG and AA ensemble, thereby
giving physically meaningful LJ parameters.

2.3 HIGH-FREQUENCY PES LANDSCAPE

Reducing the system’s degrees of freedom introduces a shift in the interplay among various dynamic
processes, culminating in a smoothening of the free energy landscape. Considering the energy bar-
rier that obstructs a system from transcending a hurdle and becoming entrapped in a proximate state
adjacent to the minima (Stillinger & Weber (1982)), it is plausible to infer that a system demon-
strates swifter dynamics when navigating a more smoothed free energy landscape. To correct for
this behavior and recover the AA “roughness” in the PES, we introduce sinusoidal perturbations of
the form,

UHF =
Asin(ωr)

r2
(8)

where A and ω are potential parameters. r−2 is used to ensure that the interaction strength must
decrease with distance. Determining the value of omega is based on the condition that the UHF
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term is orthogonal to RDF space: RDF orthogonality. To demonstrate this, we utilize the concept of
Relative Entropy or Kullback-Leibler (KL) divergence between the probability distribution of each
microstate.

Srel =
∑
i

PAAlog
PAA

PCG
+ ⟨Smap⟩AA (9)

where PAA and PCG indicate the configurational probabilities of AA and CG system, and ⟨Smap⟩AA

refers to the ensemble-averaged mapping entropy in AA space, which originates due to the degener-
acy caused by the mapping operator. The probability distribution is given by Boltzmann distributions
of PAA and PCG.

P (Ui) =
e−βUi∑
j e

−βUj
(10)

where Ui refers to the potential energy of state i. We can rewrite equation (9), combined with
equation (10):

Srel = β⟨UCG − UAA⟩AA − β(FCG − FAA) + ⟨Smap⟩AA (11)

Figure 4: The relation between high-frequency PES landscape parameters and structure and dy-
namics of CG system. (A) The contribution of UHF (A,ω) to RDF decreases as the frequency, ω,
increases. At high enough frequency (or wave number), for example, 150 Å−1, this shows a negligi-
ble contribution to RDF, which we refer to as orthogonality between RDF and high-frequency PES
landscape. This indicates our function can be added to other CG frameworks to reproduce dynamics
accurately. (B) UHF (A,ω) with high amplitude, A, have a molecule experiencing higher potential
energy barriers, thus delaying diffusion. This monotonic relationship provides crucial information
as it allows us to obtain the effective gradient for diffusion using the bisection method without the
need for analytical calculation of the gradient with respect to the amplitude.

Here, UCG, UAA, FCG, and FAA refer to the potential energies and free energies of CG and AA
systems, respectively. The gradient of relative entropy with respect to potential parameters (A and
ω) can be written as follows (details in appendix).

∂Srel

∂A
= 2πρNatom

sin(ωrc)

ω
(12)

∂Srel

∂ω
= 2πρNatom(− A

ω2
sin(ωrc) +

A

ω
rccos(ωrc)) (13)

It can be observed that for sufficiently large values of ω , the gradients of relative entropy with
respect to potential parameters approach zero. This indicates that the configurational probabilities
of AA and CG systems (thus, RDFs of these systems) are maximally aligned. Through subsequent
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parametric analyses, we illustrate the impact of ω on both system structure and dynamics as shown
in Figure 4. As the value of ω increases, the deviation of RDF from the reference system diminishes,
culminating in what can be termed an ”invariance threshold” at around 50 Å-1, beyond which RDF
scarcely undergoes further change. Consequently, an optimal choice for ω emerges at 100 Å-1.

The amplitude of UHF is optimized by utilizing the molecule diffusion being hindered by potential
energy barriers. The hills and cleavages of UHF function act like potential energy barriers, and the
greater the difference in their heights, the more challenging it becomes for substances to undergo
diffusion. To understand the effect of hindrance and slower diffusion, we conduct a parametric
study, as shown in Figure 4 (B). Initiating with the initial interval of [0 eV, 0.2 eV], we employ the
bisection method to determine the optimal amplitude.

3 RESULT

Figure 5: Comparison between all-atom RDF and MSD and their reproduction in CG simulation for
various molecules: (A) SPC/E water, (B) Argon, (C) CH4.

We compute the RDF and MSD from a long-time trajectory to evaluate the simulation accuracy
with proper statistics (see Figure 5). We exemplify our methodology through the coarse-graining
of different atomic fluids, most notably the widely employed SPC/E water model. The parameter
values for this system are as follows: σO = 3.166 Å, ϵO = 0.650 kJ/mol−1, rOH = 1.000 Å, ∠HOH =
109.47◦, qO = -0.8476 e−, and qH = 0.4238 e− (to maintain charge neutrality). σH and ϵH are all
zero; σOH and ϵOH are determined by Lorentz-Berthelot rules.
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We compute RDF based on 100 ps of trajectory and MSD from the same trajectory with a maximum
time delay of 10 ps. The results are shown in Figure 5 (A). We also test for Argon and CH4 systems:
σAr = 3.405 Å, ϵAr = 0.238 kJ/mol−1, qAr = 0.00, σC = 3.345 Å, ϵC = 0.066 kJ/mol−1, σH = 0.00
Å, ϵH = 0.00 kJ/mol−1, q(CH4)

C = -0.24 e−, q(CH4)
H = -0.06 e−.

4 CONCLUSION

In this study, we developed a coarse-grained (CG) model for an all-atom water system and demon-
strated its ability to reproduce the structure and dynamics of the all-atom model. Our approach
utilized a graph neural network potential and a high-frequency potential energy surface landscape
function to optimize parameters that capture both structure and dynamics.

One of the key contributions of our method is incorporating the high-frequency potential energy
surface (PES) landscape. This restores the lost high-frequency characteristics in CG modeling and
does not perturb RDF when the RDF-orthogonality condition is satisfied. By optimizing the param-
eters of the high-frequency PES, we enhanced the CG model’s accuracy in capturing the all-atom
system dynamics. This dual proficiency in handling both structure and dynamics is vital for various
applications involving molecular-level physical, chemical, and biological processes.
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A RDF ORTHOGONALITY MATH PROOF

Here, we derive from equation 11 to obtain equations 12 and 13. Gradient of Srel with respect to
potential parameters can be simplified as follows.

∇A,ωSrel = ∇A,ωβ ⟨U2 − U1⟩1

Expanding β ⟨U2 − U1⟩1

β ⟨U2 − U1⟩1 = β

∫ rcut

0

[U2 − U1] g(r)dv(r)

= β

∫ rcut

0

[U2 − U1] 4πr
2g(r)dr

= 2βπρN

∫ rcut

0

A sin(ωr)

r2
r2g(r)dr

= 2βπρN ×
∫ rcut

0

A sin(ωr)g(r)dr

The integration can be modified as follows.

∫ rcut

0

sin(ωr)g(r)dr = − g(r)

(
1

ω
cos(ωr)

)∣∣∣∣rcut

0

+

∫ rcut

0

g′(r)

(
1

ω
cos(ωr)

)
dr

The second term on the right-hand side can be expanded as follows.

∫ rcut

0

g′(r)
1

ω
cos(ωr)dr = g′(r)

(
1

ω2
sin(ωr)

)∣∣∣∣rcut

0

−
∫ rcut

0

g′′(r)

(
1

ω2
sin(ωr)

)
dr

Expanding the second term can be

−
∫ rcut

0

g′′(r)

(
1

B2
sin(Br)

)
dr = g′′(r)

(
1

B3
cos(Br)

)∣∣∣∣rcut

0

−
∫ rcut

0

g′′′(r)

(
1

B3
cos(Br)

)
dr

Repeating this expansion can be summarized as follows.

∫ rcut

0

sin(Br)g(r)dr = − g(r)

(
1

B
cos(Br)

)∣∣∣∣rcut

0

+ g′(r)

(
1

ω2
sin(ωr)

)∣∣∣∣rcut

0

−
∫ rcut

0

g′′(r)

(
1

ω2
sin(ωr)

)
dr + g′′(r)

(
1

B3
cos(Br)

)∣∣∣∣rcut

0

− g′′′(r)

(
1

B4
sin(Br)

)∣∣∣∣rcut

0

+ · · ·

The right-hand side is composed g(i) with different i, which can be written as follows

g(r) = exp(−βw(r))

g′(r) = −β
dw

dr
g(r)

g′′(r) = −β
dw

dr
g′ − β

d2w

dr2
g

At r = 0, considering that g(0) is zero, g(i) for i > 0 is equal to zero. At r = rcut , g (rcut ) = 1 and
g(i) for i > 0 is zero since there is no more correlation between atom pairs; thus, no more correlation
function change beyond rcut. Thus, ∇A,ωSrel can be simplified as follows.
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∇A,ωSrel = ∇A,ω Const ×A
g (rcut)

ω
cos (ωrcut)

Expanding for each potential parameter, we obtain the following equations, which are equations 12
and 13 , respectively.

∇ASrel = Const × 1
ω sin (ωrcut)

∇ωSrel = Const ×
(
− A

ω2 sin (ωrcut) +A
ω rcut cos (ωrcut)

)
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