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ABSTRACT

Self-supervised learning (SSL) approaches have brought tremendous success across
many tasks and domains. It has been argued that these successes can be attributed
to a link between SSL and identifiable representation learning: Temporal structure
and auxiliary variables ensure that latent representations are related to the true
underlying generative factors of the data. Here, we deepen this connection and
show that SSL can perform system identification in latent space. We propose
DYNCL, a framework to uncover linear, switching linear and non-linear dynamics
under a non-linear observation model, give theoretical guarantees and validate
them empirically.

1 INTRODUCTION

The identification and modeling of dynamics from observational data is a long-standing problem in
machine learning, engineering and science. A discrete-time dynamical system with latent variables x,
observable variables y, control signal u,

4X1L-8

its control matrix B, and noise ε,ν can take the form

xt+1 = f(xt) +
4X1L-8

But + εt

yt = g(xt) + νt.
(1)

and we aim to infer the functions f and g from a time-series of observations and, when available,
control signals. Numerous algorithms have been developed to tackle special cases of this problem
formulation, ranging from classical system identification methods (McGee & Schmidt, 1985; Chen &
Billings, 1989) to recent generative models (Duncker et al., 2019; Linderman et al., 2017; Hälvä et al.,
2021). Yet, it remains an open challenge to improve the generality, interpretability and efficiency of
these inference techniques, especially when f and g are non-linear functions.

Contrastive learning (CL) and next-token prediction tasks have become important backbones of
modern machine learning systems for learning from sequential data, proving highly effective for
building meaningful latent representations (Baevski et al., 2022; Bommasani et al., 2021; Brown,
2020; Oord et al., 2018; LeCun, 2022; Sermanet et al., 2018; Radford et al., 2019). An emerging
view is a connection between these algorithms and learning of “world models” (Assran et al., 2023;
Garrido et al., 2024). Yet, non-linear system identification in such sequence-learning algorithms is
poorly theoretically studied.

In this work, we revisit and extend contrastive learning in the context of system identification. We
uncover several surprising facts about its out-of-the-box effectiveness in identifying dynamics and
unveil common design choices in SSL systems used in practice.

all-0

Our theoretical study extends
identifiability results (Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019; Zimmermann et al.,
2021; Roeder et al., 2021) for CL towards dynamical systems. While our theory makes several
predictions about capabilities of standard CL, it also highlights shortcomings. To overcome these and
enable interpretable dynamics inference across a range of data generating processes, we propose a
general framework for linear and non-linear system identification with CL (Figure 1).

Background. An influential motivation of our work is Contrastive Predictive Coding [CPC; Oord
et al., 2018]. CPC can be recovered as a special case of our framework when using an RNN dynamics
model. Related works have emerged across different modalities: wav2vec (Schneider et al., 2019),
TCN (Sermanet et al., 2018) and CPCv2 (Henaff, 2020). In the field of system identification, notable
approaches include the Extended Kalman Filter (EKF) (McGee & Schmidt, 1985) and NARMAX
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(Chen & Billings, 1989). Additionally, several works have also explored generative models for general
dynamics (Duncker et al., 2019) and switching dynamics, e.g. rSLDS (Linderman et al., 2017). In the
Nonlinear ICA literature, identifiable algorithms for time-series data, such as Time Contrastive Learn-
ing [TCL; Hyvarinen & Morioka, 2016] for non-stationary processes and Permutation Contrastive
Learning [PCL; Hyvarinen & Morioka, 2017] for stationary data have been proposed, with recent
advances like SNICA (Hälvä et al., 2021) for more generally structured data-generating processes.

yt

h (encoder)

f̂ (dynamics)zt

yt+1

h

y−
i

h

L

Figure 1:
KF3j-1

DynCL framework: The encoder
h is shared across the reference yt, positive
yt+1, and negative samples y−

i . A dynam-
ics model f̂ forward predicts the reference.
A (possibly latent) variable z can parameter-
ize the dynamics (cf. § 4) or external control
(cf. § J). The model fits the InfoNCE loss (L).

In contrast to previous work, we focus on bridging time-
series representation learning through contrastive learning
with the identification of dynamical systems, both theo-
retically and empirically. Moreover, by not relying on
an explicit data-generating model, our framework offers
greater flexibility. We extend and discuss the connections
to related work in more detail in Appendix C.

Contributions. We extend the existing theory on con-
trastive learning for time series learning and make adap-
tations to common inference frameworks. We introduce
our CL variant

KF3j-1

(Fig. 1) in section 2, and give an identifi-
ability result for both the latent space and the dynamics
model in section 3. These theoretical results are later em-
pirically validated. We then propose a practical way to
parameterize switching linear dynamics in section 4 and
demonstrate that this formulation corroborates our theory
for both switching linear system dynamics and non-linear
dynamics in sections 5-6.

2 CONTRASTIVE LEARNING FOR TIME-SERIES

In contrastive learning, we aim to model similarities between pairs of data points (Figure 1). Our full
model ψ is specified by the log-likelihood

log pψ(y|y+, N) = ψ(y,y+)− log
∑

y−∈N∪{y+}

exp(ψ(y,y−)). (2)

3gxR-1

where y is often called the reference or anchor sample, y+ is a positive sample, y− ∈ N are negative
examples,

qeKY-1

and N is the set of negative samples. The model ψ itself is parameterized as a composition
of an encoder, a dynamics model, and a similarity function and will be defined further below. We fit
the model by minimizing the negative log-likelihood on the time series,

min
ψ
L[ψ] = min

ψ
Et,t1,...,tM∼U(1,T )[− log pψ(yt+1|yt, {ytm}Mm=1)] (3)

where positive examples are just adjacent points in the time-series, and M negative examples are
sampled uniformly across the dataset. U(1, T ) denotes a uniform distribution across the discrete
timesteps.

To attain favourable properties for identifying the latent dynamics, we carefully design the hypothesis
class forψ. The motivation for this particular design will become clear later. To define the full model, a
composition of several functions is necessary. Recall from Eq. 1 that the dynamics model is given as f
and the mixing function is g. Correspondingly, our model is composed of the encoder h : RD 7→ Rd

(de-mixing), the dynamics model f̂ : Rd 7→ Rd, the similarity function ϕ : Rd × Rd 7→ R and a
correction term α : Rd 7→ R. We define their composition as1

ψ(y,y′) := ϕ(f̂(h(y)),h(y′))− α(y′), (4)

and call the resulting algorithm DYNCL. Intuitively, we obtain two observed samples (y,y′) which
are first mapped to the latent space, (h(y),h(y′)). Then, the dynamics model is applied to h(y),
and the resulting points are compared through the similarity function ϕ. The similarity function ϕ

1Note that we can equivalently write ϕ(h̃(x)), h̃′(x′)) using two asymmetric encoder functions, see addi-
tional results the potent in Appendix D.

2
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a b

Figure 2: Graphical intuition behind Theorem 1. a, the ground truth latent space is mapped to observables
through the injective mixing function g. Our model maps back into the latent space. The composition of mixing
and de-mixing by the model is an affine transform. b dynamics in the ground-truth space are mapped to the latent
space. By observing variations introduced by the system noise ε, our model is able to infer the ground-truth
dynamics up to an affine transform.

will be informed by the form of (possibly induced) system noise εt. In the simplest form, the noise
can be chosen as isotropic Gaussian noise, which results in a negative squared Euclidean norm for ϕ.

Note, the additional term α(y′) is a correction applied to account for non-uniform marginal distri-
butions. It can be parameterized as a kernel density estimate (KDE) with log q̂(h(y′)) ≈ log q(x′)
around the datapoints. In very special cases, the KDE makes a difference in empirical performance
(

all-14

App. B, Fig. 9) and is required for our theory. Yet, we found that on the time-series datasets
considered, it was possible to drop this term without loss in performance (i.e., α(y′) = 0).

3 STRUCTURAL IDENTIFIABILITY OF NON-LINEAR LATENT DYNAMICS

We now study the aforementioned model theoretically. The key components of our theory along with
our notion of linear identifiability

all-11

(Roeder et al., 2021; Khemakhem et al., 2020) are visualized in
Figure 2. We are interested in two properties. First, linear identifiability of the latent space: The
composition of mixing function g and model encoder h should recover the ground-truth latents up
to a linear transform. Second, identifiability of the (non-linear) dynamics model: We would like to
relate the estimated dynamics f̂ to the underlying ground-truth dynamics f . This property is also
called structural identifiability (Bellman & Åström, 1970).

all-13

Our model operates on a subclass of Eq. 1
with the following properties:

Data-generating process. We consider a discrete-time dynamical system defined as

xt+1 = f(xt) + εt, yt = g(xt), (5)

where xt ∈ Rd are latent variables, f : Rd 7→ Rd is a bijective dynamics model, εt ∈ Rd the system
noise, and g : Rd 7→ RD is a non-linear injective mapping from latents to observables yt ∈ RD,
d ≤ D. We sample a total number of T timesteps.

We proceed by stating our main result:

Theorem 1 (Contrastive estimation of non-linear dynamics). Assume that

• (A1)
all-13

A time-series dataset {yt}Tt=1 is generated according to the ground-truth dynamical
system in Eq. 5 with a bijective dynamics model f and an injective mixing function g.

• (A2)
all

The system noise follows an iid normal distribution,
all-13

p(εt) = N (εt|0,Σε).
• (A3) The model ψ is composed of an encoder h, a dynamics model f̂ , a correction term α,

and the similarity metric ϕ(u,v) = −∥u− v∥2 and attains the global minimizer of Eq. 3.

Then, in the limit of T →∞ for any point x in the support of the data marginal distribution:

(a) The composition of mixing and de-mixing h(g(x)) = Lx+ b is a bijective affine transform,
and L = QΣ

−1/2
ϵ with unknown orthogonal transform Q ∈ Rd×d and offset b ∈ Rd.

(b) The estimated dynamics f̂ are bijective and identify the true dynamics f up to the relation

4X1L-6

f̂(x) = Lf(L−1(x− b)) + b.

Proof. See Appendix A for the full proof, and see Fig. 2 for a graphical intuition of both results.

3
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With this main result in place, we can make statements for several systems of interest; specifically
linear dynamics in latent space:

Corollary 1. Contrastive learning without dynamics model,
4X1L-1

f̂(x)=x, cannot identify latent dynamics.

GCbH-3
In this case, even for a linear ground truth dynamics model, f(x) = Ax, we would require that after
model fitting,

GCbH-4

f̂(x) = x = LAL−1x+ b, which is impossible (Theorem 1b; also see App. Eq. 22).
We can fix this case by either decoupling the two encoders (Appendix D), or taking a more structured
approach and parameterizing a dynamics model with a dynamics matrix:

Corollary 2. For a ground-truth linear dynamical system f(x) = Ax and dynamics model f̂(x) =
Âx, we identify the latents up to h(g(x)) = Lx+ b and dynamics with Â = LAL−1.

This means that simultaneously fitting the system dynamics and encoding model allows us to recover
the system matrix up to an indeterminacy.

all-1
Note on Assumptions. The required assumptions are rather practical: (A1) allows for a very broad
class of dynamical systems as long as bijectivity of the dynamics model holds, which is the case of
many systems used in the natural sciences. We consider dynamical systems with control signal ut in
Appendix J. While (A2) is a very common one in dynamical systems modeling, it can be seen more
strict: We either need knowledge about the form of system noise, or inject such noise. We should note
that analogous to the discussion of Zimmermann et al. (2021), it is most certainly possible to extend
our results towards other classes of noise distributions by matching the log-density of ε with ϕ. Given
the common use of Normally distributed noise, however, we limited the scope of the current theory
to the Normal distribution, but show vMF noise in Appendix D. (A3) mainly concerns the model
setup. An apparent limitation of Def. 5 is the injectivity assumption imposed on the mixing function
g. In practice, a partially observable setting often applies, where g(x) = Cx maps latents into lower
dimensional observations or has a lower rank than there are latent dimensions. For these systems, we
can ensure injectivity through a time-lag embedding. See Appendix I for empirical validation.

4 ∇-SLDS: TOWARDS NON-LINEAR DYNAMICS ESTIMATION

Backprop. via

G

um
bel Softm

ax

Figure 3: The core components of
the ∇-SLDS model is parameter-
free, differentiable parameteriza-
tion of the switching process.

Piecewise linear approximation of dynamics. Our theoretical
results suggest that contrastive learning allows the fitting of

4X1L-2

non-
linear bijective dynamics. This is a compelling result, but in practice
it requires the use of a powerful, yet easy to parameterize dynamics
model. One option is to use an RNN (Elman, 1990; Oord et al.,
2018) or a Transformer (Vaswani, 2017) model to perform this link
across timescales. An alternative option is to linearize the system,
which we propose in the following.

We propose a new forward model for
qeKY-4

differentiable switching linear
dynamics (∇-SLDS) in latent space. The estimation is outlined in
Figure 3. This model allows fast estimation of switching dynamics
and can be easily integrated into the DYNCL algorithm. The dy-
namics model has a trainable bank W = [W1, . . . ,WK ] of possible
dynamics matrices. K is a hyperparameter. The dynamics depend
on a latent variable kt and are defined as

f̂(xt;W, kt) = Wktxt, kt = argmink∥Wkxt − xt+1∥2. (6)

KF3j-2

Intuitively, the predictive performance of every available linear dynamical system is used to select
the right dynamics with index kt from the bank W. During training, we approximate the argmin using
the Gumbel-Softmax trick (Jang et al., 2016) without hard sampling:

f̂(xt;W, zt) = (

K∑
k=1

zt,kWk)xt, zt,k =
exp(λk/τ)∑
j exp(λj/τ)

, λk =
1

∥Wkxt − xt+1∥2
+ gk. (7)

Note that the dynamics model f̂(xt;W, zt) depends on an
qeKY-6

additional latent variable zt =

[zt,1, . . . , zt,K ]⊤ which contains probabilities to parametrize the dynamics. During inference, we

4
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can obtain the index kt = argmaxk zt,k.
4X1L-3

The variables gk are samples from the Gumbel distri-
bution (Jang et al., 2016) and we use a temperature τ to control the smoothness of the resulting
probabilities. During pilot experiments, we found that the reciprocal parameterization of the logits
outperforms other choices for computing an argmin, like flipping the sign.

From linear switching to non-linear dynamics. Non-linear system dynamics of the general form
in Eq. 5 can be approximated using our switching model. We can approximate a continuous-time
non-linear dynamical system with latent dynamics ẋ = f(x) around reference points {x̃k}Kk=1 using
a first-order

all-12

Taylor expansion, f(x) ≈ f̃(x) = f(x̃k) + Jf (x̃k)(x − x̃k), where we denote the
Jacobian matrix of f with Jf . We evaluate the equation at each point t using the best reference point
x̃k. We obtain system matrices Ak = Jf (x̃k) and bias term bk = f(x̃k)− Jf (x̃k)x̃k which can
be modeled with the∇-SLDS model f̂(xt; kt):

xt+1 = (Aktxt + bkt) + εt =: f̂(xt; kt) + εt. (8)

While a theoretical guarantee for this general case is beyond the scope of this work, we give an
empirical evaluation on Lorenz attractor dynamics below. Note, as the number of “basis points”
of ∇-SLDS approaches the number of timesteps, we could trivially approach perfect estimation
capability of the latents as we store the exact value of f at every point. However, this comes at the
expense of having less points to estimate each individual dynamics matrix. Empirically, we used
100–200

4X1L-4

matrices for datasets of 1M samples.

5 EXPERIMENTS

To verify our theory, we implement a benchmark dataset for studying the effects of various model
choices. We generate time-series with 1M samples, either as a single sequence or across multiple
trials. Our experiments rigorously evaluate different variants of contrastive learning algorithms.

Data generation. Data is generated by simulating latent variables x that evolve according to a
dynamical system (Eq. 5). These latent variables are then passed through a nonlinear mixing function
g to produce the observable data y. The mixing function g consists of a nonlinear injective component
which is parameterized by a randomly initialized 4-layer MLP (Hyvarinen & Morioka, 2016), and a
linear map to a 50-dimensional space. The final mixing function is defined as their composition. We
ensure the injectivity of the resulting function by monitoring the condition number of each matrix
layer, following previous work (Hyvarinen & Morioka, 2016; Zimmermann et al., 2021).

LDS. We simulate 1M datapoints in 3D space following f(xt) = Axt with system noise standard
deviation σϵ = 0.01 and choose A to be an orthogonal matrix to ensure stable dynamics with all
eigenvalues equal to 1. We do so by taking the product of multiple rotation matrices, one for each
possible plane to rotate around with rotation angles being randomly chosen to be -5° or 5°.

SLDS. We simulate switching linear dynamical systems with f(xt; kt) = Aktxt and system
noise standard deviation σϵ = 0.0001. We choose Ak to be an orthogonal matrix ensuring that
all eigenvalues are 1, which guarantees system stability. Specifically, we set Ak to be a rotation
matrix with varying rotation angles (5°, 10°, 20°). The latent dimensionality is 6. The number of
samples is 1M. We use 1000 trials, and each trial consists of 1000 samples. We use k = 0, 1, . . . ,K
distinct modes following a mode sequence it. The mode sequence it follows a Markov chain with a
symmetric transition matrix and uniform prior: i0 ∼ Cat(π), where πj = 1

K for all j. At each time
step, it+1 ∼ Cat(Πit), where Π is a transition matrix with uniform off-diagonal probabilities set to
10−4. Example data is visualized in Figure 4 and Appendix E.

Non-linear dynamics. We simulate 1M points of a Lorenz system, with equations

f(xt) = xt + dt[σ(x2,t − x1,t), x1,t((ρ− x3,t)− x2,t), (x1,tx2,t − βx3,t)]⊤ (9)

with varying dt, parameters σ = 10, β = 8
3 , ρ = 28 and system noise standard deviation σϵ = 0.001.

The observable data, y. We then apply our non-linear mixing function as for other datasets.

Model estimation. For the feature encoder h, baseline and our model use an MLP with three layers
followed by GELU activations (Hendrycks & Gimpel, 2016). Each layer has 180 units. We train on
batches with 2048 samples each (reference and positive) and use 215=32,768 negative samples. We
use the Adam optimizer (Kingma, 2014) with learning rates 3× 10−4 for LDS data, 10−3 for SLDS

5
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Table 1:
KF3j-3

Overview about identifiability of latent dynamics for different modeling choices: We show different
data generating processes characterized by the form of the ground truth dynamics f , the distribution p(ε)

and different model choices for the estimated dynamics f̂ .
all-10

We compare identity dynamics, linear dynamics
(LDS), switching linear dynamics (SLDS), and Lorenz attractor dynamics (Lorenz),

qeKY-5
and optionally initialize

the dynamics model with the ground-truth dynamics (GT). For every combination we indicate whether we can
provide theoretical identifiability guarantees (“theory”) and compare this to empirical identifiability measures
(R2, LDS, dynR2). Mean ± std. are across 3 datasets (5 for Lorenz) and 3 experiment repeats.

Data Model Results
f p(ε) f̂ identifiable %R2 ↑ LDS↓

identity Normal identity ✓ 99.56 ± 0.21 0.00 ± 0.00
identity Normal LDS ✓ 99.31 ± 0.43 0.04 ± 0.01

LDS (low ∆t) Normal (large σ) identity – 89.23 ± 4.46 8.53 ± 0.05
LDS Normal identity ✗ 73.56 ± 24.45 21.24 ± 0.31
LDS Normal LDS ✓ 99.03 ± 0.41 0.38 ± 0.34
LDS Normal GT ✓ 99.46 ± 0.39 0.17 ± 0.06

%R2 ↑ %dynR2 ↑
SLDS Normal identity ✗ 76.80 ± 7.40 85.47 ± 8.07
SLDS Normal ∇-SLDS (✓)1 99.52 ± 0.05 99.93 ± 0.01
SLDS Normal GT (✓)1 99.20 ± 0.10 99.97 ± 0.00

Lorenz (small ∆t) Normal (large σ) identity – 99.74 ± 0.36 99.94 ± 0.07
Lorenz (small ∆t) Normal (large σ) LDS – 98.31 ± 2.55 97.21 ± 5.90
Lorenz (small ∆t) Normal (large σ) ∇-SLDS – 94.14 ± 4.34 94.20 ± 6.57

Lorenz Normal identity ✗ 40.99 ± 8.58 27.02 ± 8.72
Lorenz Normal LDS ✗ 81.20 ± 16.93 80.30 ± 14.13
Lorenz Normal ∇-SLDS (✓)2 94.08 ± 2.75 93.91 ± 5.32

data, and 10−4 for Lorenz system data. Our baseline model is standard self-supervised contrastive
learning with the InfoNCE loss, which corresponds to the CEBRA-time model (with symmetric
encoders, i.e., without a dynamics model; cf. Schneider et al., 2023). For DYNCL, we add an LDS or
∇-SLDS dynamics model for fitting.

qeKY-12

For our baseline, we post-hoc fit the corresponding model on
the recovered latents minimizing the predictive mean squared error via gradient descent.

Evaluation metrics. Our metrics are informed by the result in Theorem 1 and measure empirical
identifiability up to affine transformation of the latent space and its underlying linear or non-linear
dynamics. All metrics are estimated on the dataset the model is fit on. See Appendix F for additional
discussion on estimating metrics on independently sampled dynamics.

To account for the affine indeterminacy, we explicitly estimate L, b for x = Lx̂+ b which allows us
to transform recovered latents x̂ into the space of ground truth latents x. In those cases, where the
inverse transform x̂ = L−1(x− b) is required, for the purpose of numerical stability we estimate
it from data rather than computing an explicit inverse of L. This results in estimates for L1,b1 and
L2,b2, which we fit via linear regression:

min
L1,b1

T∑
t=1

∥x̂t − (L1xt + b1)∥22 and min
L2,b2

T∑
t=1

∥xt − (L2x̂t + b2)∥22. (10)

To evaluate the identifiability of the representation, we measure theR2 between the true latents xt and
the optimally aligned recovered latents L2x̂t + b2 across time-steps t = 1 . . . T in the time-series.

We also propose two metrics as direct measures of identifiability for the recovered dynamics f̂ . First,
the LDS error, which is suitable only for linear dynamics models, denotes the norm of the difference
between the true dynamics matrix A and the estimated dynamics matrix Â by accounting for the
linear transformation between the true and recovered latent spaces. The LDS error (related to the
metric for Dynamical Similarity Analysis; Ostrow et al., 2023) is then computed as (cf. Corollary 2):

LDS(A, Â)= ∥A−L1ÂL2∥F ≈ ∥A−L−1ÂL∥F . (11)
1 Not explicitly shown, but the argument in Corollary 2 applies to each piecewise linear section of the SLDS.
2 ∇-SLDS is only an approximation of the functional form of the underlying system.

6
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ba b c

σ=0.001 identity (B)
noise dynamics

∇-SLDS
GT SLDSσ=0.0001

Figure 4: Switching linear dynamics: (a) example ground-truth dynamics in latent space for four matrices Ak.
(b) R2 metric for different noise levels as we increase the angles used for data generation. We compare a baseline
(no dynamics) to ∇-SLDS and a model fitted with ground-truth dynamics. (c) cluster accuracies for models
shown in (b).

As a second, more general identifiability metric for the recovered dynamics f̂ , we introduce dynR2,
which builds on Theorem 1 to evaluate the identifiability of non-linear dynamics. This metric
computes the R2 between the predicted dynamics f̂ and the true dynamics f , corrected for the linear
transformation between the two latent spaces. Specifically, motivated by Theorem 1(b), we compute

dynR2(f , f̂) = r2 score(f̂(x̂),L1f(L2x̂+ b2) + b1) (12)

along all time-steps. Additional variants of the dynR2 metric are discussed in Appendix G.

Finally, when evaluating switching linear dynamics, we compute the accuracy for assigning the
correct mode at any point in time. To compute the cluster accuracy in the case of SLDS ground truth
dynamics, we leverage the Hungarian algorithm to match the estimated latent variables modeling
mode switches to the ground truth modes, and then proceed to compute the accuracy.

Implementation. Experiments were carried out on a compute cluster with A100 cards. On each
card, we ran ∼3 experiments simultaneously.

3gxR-11

Depending on the exact configuration, training time
varied from 5–20min per model. The combined experiments ran for this paper comprised about 120
days of A100 compute time and we provide a

all-2

breakdown in Appendix K. We will open source our
benchmark suite for identifiable dynamics learning upon publication of the paper.

6 RESULTS

6.1 VERIFICATION OF THE THEORY FOR LINEAR DYNAMICS

Suitable dynamics models enable identification of latents and dynamics.
qeKY-8

For all considered classes
of models, we show in Table 1 that DYNCL effectively identifies the correct dynamics. For linear
dynamics (LDS), DYNCL reaches an R2 of 99.0%, close to the oracle performance (99.5%). Most
importantly, the LDS error of our method (0.38) is substantially closer to the oracle (0.17) compared
to the baseline model (21.24). In the case of switching linear dynamics (SLDS), DYNCL also shows
strong performance, both in terms of latent R2 (99.5%) and dynamics R2 (99.9%) outperforming
the respective baselines (76.8% R2 and 85.5% dynamics R2). For non-linear dynamics, the baseline
model fails entirely (41.0%/27.0%), while∇-SLDS dynamics can be fitted with 94.1% R2 for latents
and 93.9% dynamics R2. We also clearly see the strength of our piecewise-linear approximation, as
the LDS dynamics models only reaches 81.2% latent identifiability and 80.3% dynamics R2.

Learning noisy dynamics does not require a dynamics model. If the variance of the distribution
for εt dominates the changes actually introduced by the dynamics, we find that the baseline model
is also able to identify the latent space underlying the system. Intuitively, the change introduced by
the dynamical system is then negligible compared to the noise. In Table 1 (“large σ”), we show that
recovery is possible for cases with small angles, both in the linear and non-linear case. While in some
cases, this learning setup might be applicable in practice, it seems generally unrealistic to be able to
perturb the system beyond the actual dynamics.

qeKY-9

As we scale the dynamics to larger values (Figure 4,
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Figure 5: Contrastive learning of 3D non-linear dynamics following a Lorenz attractor model. (a), left to right:
ground truth dynamics for 10k samples with dt = 0.0005 and σ = 0.1, estimation results for baseline (identity
dynamics), DynCL with ∇-SLDS, estimated mode sequence. (b), empirical identifiability (R2) between baseline
(BAS) and ∇-SLDS for varying numbers of discrete states K. (c, d), same layout but for dt = 0.01 and
σ = 0.001.

panel b and c), the estimation scheme breaks again. However, this property offers an explanation for
the success of existing contrastive estimation algorithms like CEBRA-time (Schneider et al., 2023)
which successfully estimate dynamics in absence of a dynamics model.

Symmetric encoders cannot identify non-trivial dynamics. In the more general case where the
dynamics dominates the system behavior, the baseline cannot identify linear dynamics (or more
complicated systems).

qeKY-10

In the general LDS and SLDS cases, the baseline fails to identify the ground
truth dynamics (Table 1) as predicted by Corollary 1 (rows marked with ✗). For identity dynamics,
the baseline is able to identify the latents (R2=99.56%) but breaks as soon as linear dynamics are
introduced (R2=73.56%).

6.2 APPROXIMATION OF NON-LINEAR DYNAMICS

Next, we study in more details how the DYNCL can identify piecewise linear or non-linear latent
dynamics using the∇-SLDS dynamics model.

Identification of switching dynamics. Switching dynamics are depicted in Fig. 4a for four different
modes of the 10 degrees dataset. DYNCL obtains high R2 for various choices of dynamics (Fig. 4b)
and additionally identifies the correct mode sequence (Fig. 4c) for all noise levels and variants of
the underlying dynamics. As we increase the rotation angle used to generate the matrices, the gap
between baseline and our model increases substantially.

Non-linear dynamics. Figure 5 depicts the Lorenz system as an example of a non-linear dynamical
system for different choices of algorithms. The ground truth dynamics vary in the ratio between
dt/σ and we show the full range in panels b/c. When the noise dominates the dynamics (panel a),
the baseline is able to estimate also the nonlinear dynamics accurately, with 99.7%. However, as
we move to lower noise cases (panel b), performance reduces to 41.0%. Our switching dynamics
model is able to estimate the system with high R2 in both cases (94.14% and 94.08%). However, note
that in this non-linear case, we are primarily succeeding at estimating the latent space, the estimated
dynamics model did not meaningfully outperform an identity model (Appendix G).

Extensions to other distributions pε. While Euclidean geometry is most relevant for dynamical
systems in practice, and hence the focus of our theoretical and empirical investigation, contrastive
learning commonly operates on the hypersphere in other contexts. We provide additional results
for the case of a

qeKY-7

von Mises-Fisher (vMF) distribution for pε and dot-product similarity for ϕ in
Appendix D.

6.3 ABLATION STUDIES

For practitioners leveraging contrastive learning for statistical analysis, it is important to know the
trade-offs in empirical performance in relation to various parameters. In real-world experiments,
the most important factors are the size of the dataset, the trial-structure of the dataset, the latent
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Figure 6: Variations and ablations for the SLDS.
KF3j-5

We compare the ∇-SLDS model to the ground-truth switching
dynamics (oracle) and a standard CL model without dynamics (baseline). All variations are with respect to the
setting with 1M timesteps (1k trials× 1k samples), L = 4 mixing layers, d = 6 latent dimensionality, 5 modes,
and p = 0.0001 switching probability. We study the impact of the dataset size in terms of a) samples per trial, b)
the number of trials, the impact of nonlinearity of the observations in terms of c) number of mixing layers, the
impact of complexity of the latent dynamics in terms of d) latent dimensionality, e) number of modes to switch
in between and f) the switching frequency paramameterized via the switching probability.

dimensionality we can expect to recover, and the degree of non-linearity between latents and observ-
ables. We consider these factors of influence: As a reference, we use the SLDS system with a 6D
latent space, 1M samples (1k trials × 1k samples), L = 4 mixing layers, 10 degrees for the rotation
matrices, 65,536 negative samples per batch; batch size 2,048, and learning rate 10−3.

Impact of dataset size (Fig. 6a). We keep the number of trials fixed to 1k. As we vary the sample
size per trial, R2 degrades for smaller dataset, and for the given setting we need at least 100 points
per trial to attain identifiability empirically. We outperform the baseline model in all cases.

Impact of trials (Fig. 6b). We next simulate a fixed number of 1M datapoints, which we split into
trials of varying length. We consider 1k, 10k, 100k, and 1M as trial lengths. Performance is stable
for the different settings, even for cases with small trial length (and less observed switching points).
DYNCL consistently outperforms the baseline algorithm and attains stable performance close to the
theoretical maximum given by the ground-truth dynamics.

σ = 0.001

σ = 0.1
σ = 0.01

Figure 7: Impact of modes
for non-linear dynamics in the
Lorenz system

KF3j-6
for different sys-

tem noise levels σ, averaged over
all dt.

Impact of non-linear mixing (Fig. 6c). All main experiments have
been conducted with L = 4 mixing layers in the mixing function
g. Performance of DYNCL stays at the theoretical maximum as
we increase the number of mixing layers. As we move beyond
four layers, both oracle performance in R2 and our model declines,
hinting that either (1) more data or (2) a larger model is required to
recover the dynamics successfully in these cases.

Impact of dimensionality (Fig. 6d). Increasing latent dimension-
ality does not meaningfully impact performance of our model. We
found that for higher dimensions, it is crucial to use a large number
of negative examples (65k) for successful training.

Number of modes for switching linear dynamics fitting (Fig. 6e).
Increasing the number of modes in the dataset leads to more suc-
cessful fitting of the R2 for the baseline model, but to a decline
in accuracy. This might be due to the increased variance: While
this helps the model to identify the latent space (dynamics appear more like noise), it still fails to
identify the underlying dynamics model, unlike DYNCL which attains high R2 and cluster accuracy
throughout.

Robustness to changes in switching probability (Fig. 6f). Finally, we vary the switching probability.
Higher switching probability causes shorter modes, which are harder to fit by the∇-SLDS dynamics
model. Our model obtains high empirical identifiability throughout the experiment, but the accuracy
metric begins to decline when p = 0.1 and p = 0.2.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Number of modes for non-linear dynamics fitting (Fig. 7). We study the effect of increasing the
number of matrices in the parameter bank W in the ∇-SLDS model. The figure depicts the impact
of increasing the number of modes for DynCL on the non-linear Lorenz dataset. We observe that
increasing modes to 200 improves performance, but eventually converges to a stable maximum for
all noise levels.

7 DISCUSSION

all-3
The DYNCL framework is versatile and allows to study the performance of contrastive learning in
conjunction with different dynamics models. By exploring various special cases (identity, linear,
switching linear), our study categorizes different forms of contrastive learning and makes predictions
about their behavior in practice.

all-4

In comparison to contrastive predictive coding [CPC; Oord et al.,
2018] or wav2vec (Schneider et al., 2019), DYNCL generalizes the concept of training contrastive
learning models with (explicit) dynamics models. CPC uses an RNN encoder followed by linear
projection, while wav2vec leverages CNNs dynamics models and affine projections. Theorem 1
applies to both these models, and offers an explanation for their successful empirical performance.

GCbH-2
Nonlinear ICA methods, such as TCL (Hyvarinen & Morioka, 2016) and PCL (Hyvarinen & Morioka,
2017) provide identifiability of the latent variables leveraging temporal structure of the data. Com-
pared to DynCL, they do not explicitly model dynamics and assume either stationarity or non-
stationarity of the time series (Hyvärinen et al., 2023), whereas DynCL assumes bijective latent
dynamics, and focuses on explicit dynamics modeling beyond solving the demixing problem.

For applications in scientific data analysis, CEBRA (Schneider et al., 2023) uses supervised or
self-supervised contrastive learning, either with symmetric encoders or asymmetric encoder functions.
While our results show that such an algorithm is able to identify dynamics for a sufficient amount
of system noise, adding dynamics models is required as the system dynamics dominate. Hence, the
DynCL approach with LDS or∇-SLDS dynamics generalises the self-supervised mode of CEBRA
and makes it applicable for a broader class of problems.

qeKY-11
Finally, there is a connection to the joint embedding predictive architecture (JEPA; LeCun, 2022;
Assran et al., 2023). The architecture setup of DYNCL can be regarded as a special case of JEPA,
but with symmetric encoders to leverage distillation of the system dynamics into the predictor
(the dynamics model). In contrast to JEPA, the use of symmetric encoders again requires use of
a contrastive loss for avoiding collapse and, more importantly, serves as the foundation for our
theoretical result.

A limitation of the present study is its main focus on simulated data which clearly corroborates our
theory but does not yet demonstrate real-world applicability. However, our simulated data bears the
signatures of real-world datasets (multi-trial structures, varying degrees of dimensionality, number of
modes, and different forms of dynamics). A challenge is the availability of real-world benchmark
datasets for dynamics identification. We believe that rigorous evaluation of different estimation
methods on such datasets will continue to show the promise of contrastive learning for dynamics
identification. Integrating recent benchmarks like

qeKY-13

DynaDojo (Bhamidipaty et al., 2023) or datasets
from Chen et al. (2021) with realistic mixing functions (g) offers a promising direction for evaluating
latent dynamics models. As a demonstration of real-world applicability, we compared DynCL to
CEBRA-Time (Schneider et al., 2023) on a neural recordings dataset in Appendix H.

8 CONCLUSION

We proposed a first identifiable, end-to-end, non-generative inference algorithm for latent switching
dynamics along with an empirically successful parameterization of non-linear dynamics. Our results
point towards the empirical effectiveness of contrastive learning across time-series, and back these
empirical successes by theory. We show empirical identifiability with limited data for linear, switching
linear and non-linear dynamics. Our results add to the understanding of SSL’s empirical success, will
guide the design of future contrastive learning algorithms and most importantly, make SSL amenable
for computational statistics and data analysis.
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respective chapter.
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are outlined in the main text (Section 1) and again in more detail in Appendix A.
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A PROOF OF THE MAIN RESULT

We re-state Theorem 1 from the main paper, and provide a full proof below:

3gxR-6

Theorem 1 (Contrastive estimation of non-linear dynamics). Assume that

• (A1)
all-13

A time-series dataset {yt}Tt=1 is generated according to the ground-truth dynamical
system in Eq. 5 with a bijective dynamics model f and an injective mixing function g.

• (A2)
all

The system noise follows an iid normal distribution,
all-13

p(εt) = N (εt|0,Σε).
• (A3) The model ψ is composed of an encoder h, a dynamics model f̂ , a correction term α,

and the similarity metric ϕ(u,v) = −∥u− v∥2 and attains the global minimizer of Eq. 3.

Then, in the limit of T →∞ for any point x in the support of the data marginal distribution:

(a) The composition of mixing and de-mixing h(g(x)) = Lx+b is a bijective affine transform,
and L = QΣ

−1/2
ϵ with unknown orthogonal transform Q ∈ Rd×d and offset b ∈ Rd.

(b) The estimated dynamics f̂ are bijective and identify the true dynamics f up to the relation

4X1L-6

f̂(x) = Lf(L−1(x− b)) + b.

Proof. Our proof proceeds in three steps: First, we leverage existing theory
3gxR-8

(Wang & Isola, 2020;
Zimmermann et al., 2021) to arrive at the minimizer of the contrastive loss, and relate the limited
sample loss function to the asymptotic case. Second, we derive the statement about achieving
successful demixing in Theorem 1(a). Finally, we derive the statement in Theorem 1(a) about
structural identifiability of the dynamics model.

Step 1: Minimizer of the InfoNCE loss. By the assumption εt is normally distributed, we obtain
the positive sample conditional distribution

p(xt+1|xt) = N (xt+1|f(xt),Σε). (13)

The negative sample distribution q(xt) is obtained by sampling t uniformly from all time-steps and
can hence be written as a Gaussian mixture along the dynamics imposed by f ,

q(x) =
1

T

T∑
t=1

pε(x− xt) (14)

=
1

T

T∑
t=1

N (x− xt|f(xt−1),Σε). (15)

We use these definitions of p and q to study the asymptotic case of our loss function. For T →∞,
due to

3gxR-9

Wang & Isola (2020) we can rewrite the limit of our loss function (Eq. 3) as

L[ψ] = lim
T→∞

Et,N [− log pψ(yt+1|yt, N)]− log T

=

∫
q(y)

[
−
∫
p(y′|y)ψ(y,y′)dy′ + log

∫
q(y′) exp[ψ(y,y′)]dy′

]
.

(16)

It was shown [Proposition 1,
3gxR-10

Schneider et al., 2023] that this loss function is convex in ψ with the
unique minimizer

ψ(g(x), g(x′)) = log
p(x′|x)
q(x′)

+ c(x), (17)

where c : Rd 7→ R is an arbitrary scalar-valued function. Note that we also expressed y =
g(x),y′ = g(x′) to continue the proof in terms of the relation between original and estimated latents.
We insert the definition of the model on the left hand side. Let us also denote h ◦ g =: r, and the
definition of the ground-truth generating process on the right hand side to obtain

ϕ(f̂(r(x)), r(x′))− α(x′) = log p(x′|f(x))− log q(x′) + c(x). (18)
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Inserting the potential2 as α(x) = log q(x) simplifies the equation to

ϕ(f̂(r(x)), r(x′)) = log p(x′|f(x)) + c(x). (19)

From here onwards, we will use that ϕ is the negative squared Euclidean norm (A.3) and correspond-
ingly, the positive conditional is a normal distribution with concentration Λ = Σ−1

u (A.2),

−∥f̂(r(x))− r(x′)∥22 = −(f(x)− x′)⊤Λ(f(x)− x′) + c′(x) (20)

where we pulled the normalization constant of p into the function c′ for brevity.

Step 2: Properties of the feature encoder. Starting from the last equation, we compute the derivative
with respect to x and x′ on both sides and obtain

J⊤
r (x′)Jf̂ (r(x))Jr(x) = ΛJf (x). (21)

Because this equation holds for any x′ ∈ supp q independently of x, we can conclude that the
Jacobian matrix of r needs to be constant. From there it follows that r is affine. Let us write
r(x) = Lx+ b. Then, the Jacobian matrix is Jr = L. Inserting this yields

L⊤Jf̂ (Lx+ b)L = ΛJf (x). (22)

We next establish that L has full rank: because the dynamics function f is bijective by assumption,
Jf (x) has full rank d. Λ has full rank by assumption about the distribution pε(ε). All matrices on
the LHS are square and need to have full rank as well for any point x. Hence, we can conclude that
L has full rank, and likewise Jf̂ . From there, we conclude that r and f̂ are bijective.

Next, we derive additional constraints on the matrix L. We insert the solution for r obtained so far in
Eq. 20,

−∥f̂(Lx+ b)−Lx′ − b∥2 = −(f(x)− x′)⊤Λ(f(x)− x′) + c′(x) (23)

and take the derivative twice with respect to x′, to obtain

L⊤L = Λ ⇔ L⊤ = ΛL−1. (24)

Without loss of generality, we introduce Q ∈ Rd×d to write L in terms of Λ as L = QΛ1/2.
Inserting into the previous equation lets us conclude

L⊤L = Λ1/2Q⊤QΛ1/2 = Λ (25)

Q⊤Q = Λ−1/2ΛΛ−1/2 = I, (26)

from which follows that Q is an orthogonal matrix. Hence, L is a composition of an orthogonal
transform and Σ

−1/2
ε , concluding the first part of the proof for statement (a).

Step 3: Dynamics. To derive part (b), we start at the condition Eq. 20 again to determine the value of
c′(x). We can consider two special cases:

f(x) = x′ : c′(x) = −∥f̂(r(x))− r(x′)∥2 ≤ 0, (27)

f̂(r(x)) = r(x′) : c′(x) = (f(x)− x′)⊤Λ(f(x)− x′) ≥ 0, (28)

where we use that the concentration matrix Λ of a Normal distribution is positive semi-definite. When
combining both conditions for points where f(x) = x′ and f̂(r(x)) = r(x′) the only admissible
solution is c′(x) = 0 for points with f̂(r(x)) = r(f(x)), i.e. f̂(x) = r(f(r−1(x))), hinting at the
final solution. However, we have not shown yet that this solution is unique.

To show uniqueness, without loss of generality, we use the ansatz (with a residual v)

f(x) = A1f̂(Lx+ b) + d1 + v(x), (29)

2This is feasible in practice by parameterizing α(x) as a kernel density estimate, but empirically often not
required. See

3gxR-7
Appendix B for additional technical details.
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and computing the derivative with respect to x yields

Jf (x) = A1Jf̂ (Lx+ b)L+ Jv(x). (30)

We insert this into Eq. 22 and obtain

L⊤Jf̂ (Lx+ b)L = ΛA1Jf̂ (Lx+ b)L+ΛJv(x) (31)

(L⊤ −ΛA1)Jf̂ (Lx+ b)L = ΛJv(x) (32)

(L⊤ −ΛA1) = ΛJv(x)L
−1J−1

f̂
(Lx+ b) (33)

The left hand side is a constant, hence the same needs to hold true for the right hand side. Without
loss of generality, let us introduce an arbitrary matrix A2 we set as this constant,

Jv(x)L
−1J−1

f̂
(Lx+ b) = A2 (34)

Jv(x) = A2Jf̂ (Lx+ b)L (35)

which only admits the solution

v(x) = A2f̂(Lx+ b) + d2, (36)

where we introduced an additional integration constant d2. Inserting this into the ansatz in Eq. 29
gives

f(x) = A1f̂(Lx+ b) + d1 + v(x), (37)

f(x) = (A1 +A2)f̂(Lx+ b) + (d1 + d2). (38)

Using the shorthand A = A1 +A2, d = d1 + d2 we can repeat the steps in Eqs. 30–33 to arrive at
the condition

(L⊤ −ΛA)Jf̂ (Lx+ b)L = 0. (39)

Since all matrices have full rank, the only valid solution is A = Λ−1L⊤ = L−1. Inserting back into
the ansatz yields the refined solution

f(x) = L−1f̂(Lx+ b) + d, (40)

and for brevity, we let ξ = f̂(r(x)) = f̂(Lx+ b):

f(x) = L−1ξ + d. (41)

We then insert the current solution into Eq. 20 and input r which gives

∥ξ −Lx′ − b∥2 = (L−1ξ + d− x′)⊤Λ(L−1ξ + d− x′) + c′(x) (42)

= (L−1ξ + d− x′)⊤L⊤L(L−1ξ + d− x′) + c′(x) (43)

= ∥ξ +Ld−Lx′∥2 + c′(x) (44)

c′(x) = ∥ξ −Lx′ − b∥2 − ∥ξ −Lx′ +Ld∥2 (45)

Let us denote v = ξ −Lx′ and note that v and x remain independent variables. We then get

c′(x) = ∥v − b∥2 − ∥v +Ld∥2 (46)

= −2v⊤(b+Ld) + ∥b∥2 − ∥Ld∥2 (47)

Because v and x vary independently and the equation is true for any pair of these points, both sides
of the equation need to be independent of their respective variables. This is true only if b = −Ld.
Hence, it follows that

c′(x) = 0 and d = −L−1b. (48)
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Inserting d into Eq. 40 gives the final solution,

f(x) = L−1f̂(Lx+ b)−L−1b. (49)

Solving for f̂ gives us

f̂(Lx+ b) = Lf(x) + b (50)

f̂(x) = Lf(L−1(x− b)) + b = (r ◦ f ◦ r−1)(x) (51)

which concludes the proof.

Note to reviewers: The proof was reorganized into different sections, and extended to allow for
arbitrary covariance matrices Σε instead of isotropic Gaussian distributions only. We did not
exhaustively annotate each inline change for better readability.
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B KERNEL DENSITY ESTIMATE CORRECTION

Theorem 1 requires to include a “potential function” α into our model. In this section, we discuss
how this function can be approximated by a kernel density estimate (KDE) in practice. The KDE
intuitively corrects for the case of non-uniform marginal distributions. Correcting with α overcomes
the limitation of requiring a uniform marginal distribution discussed before (Zimmermann et al.,
2021). While other solutions have been discussed, such as training a separate MLP (Matthes et al.,
2023), the KDE solution discussed below is conceptually simpler and non-parametric.

For the models considered in the main paper, we considered representation learning in Euclidean
space, while Appendix D contains some additional experiments for the very common case of training
embeddings on the hypersphere. For both cases, we can parameterize appropriate KDEs.

4X1L-5
For the Euclidean case, we use the KDE based on the squared Euclidean norm,

q̂(x) =
1

ϵM

M∑
i=1

exp

(
−∥x− xi∥2

ϵ

)
, xi ∼ q(x). (52)

We note that in the limit ϵ → 0, M → ∞, this estimate converges to the correct distribution,
q̂(x)→ q(x). This is also the case used in Theorem 1. However, this estimate depends on the ground
truth latents xi, which are not accessible during training. Hence, we need to find an expression that
depends on the observable data. We leverage the feature encoder h to express the estimator as

q̂h(y) =
1

ϵM

M∑
i=1

exp

(
−∥h(y)− h(yi)∥2

ϵ

)
, yi ∼ q(y). (53)

We can express this estimator in terms of the final solution, r(x) = h(g(x)) = QΣ
−1/2
u x+ b in the

theorem. If we express the solution in terms of the ground truth latents again, the orthogonal matrix
Q vanishes and we obtain

q̂h(x) =
1

ϵM

M∑
i=1

exp

(
−∥Σ

−1/2
u (x− xi)∥2

ϵ

)
. yi ∼ q(y) (54)

This corresponds to a KDE using a Mahalanobis distance with covariance matrix Σu, which is a valid
KDE of q.

We can derive a similar argument when computing embeddings and dynamics on the hypersphere.
When, a von Mises-Fisher distribution is suitable to express the KDE, and we obtain

q̂(x) =
Cp(κ)

M

M∑
i=1

exp(κx⊤xi), xi ∼ q(x) (55)

whereCp(κ) is the normalization constant of the von Mises-Fisher distribution. This again approaches
the correct data distribution for q̂ → q as M,κ → ∞. Following the same arguments above, but

w/o KDE

KDE
κ = 1000

κ = 300

w/o KDE

KDE
κ = 1000

κ = 300

w/o KDE

KDE
κ = 10,000

κ = 100

κp = 16 κp = 64 κp = 128

Figure 8:
KF3j-7

Introducing KDE into the loss allows to compensate for non-uniform marginal distribution. We
show performance in terms of R2 across datasets with increasingly non-uniform marginal. We replicate the
data-generating process and experimental setup performed by Zimmermann et al. (2021, Figure 2).
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using r(x) = h(g(x)) = Qx as the indeterminacy on the hypersphere, we can express this in terms
of the ground truth latents,

q̂h(x) =
Cp(κ)

N

M∑
i=1

exp
(
κr(x)⊤r(xi)

)
, (56)

=
Cp(κ)

N

M∑
i=1

exp
(
κx⊤xi

)
, (57)

which is again a valid KDE.

It is interesting to consider the effect of the KDE on the loss function. Inserting ψ ← ψ − log q̂ into
the loss function yields

− log pψ(x|x+, N) = −(ψ(xi,x+
i )− log q̂(x+

i )) + log

N∑
i=1

eψ(xi,x
−
j )−log q̂(x−

j ), (58)

= −ψ(xi,x+
i ) + log q̂(x+

i ) + log

N∑
i=1

1

q̂(x−
j )
eψ(xi,x

−
j ), (59)

= −ψ(xi,x+
i ) + log

N∑
i=1

q̂h(x
+
i )

q̂h(x
−
j )
eψ(xi,x

−
j ), (60)

= −ψ(xi,x+
i ) + log

N∑
i=1

wh(x
+
i ,x

−
j )e

ψ(xi,x
−
j ) (61)

with the importance weights wh(x+
i ,x

−
j ) =

q̂h(x
+
i )

q̂h(x
−
j )

. Intuitively, this means that the negative

examples are re-weighted according to the density ratio between the current positive and each
negative sample.

Empirical motivation. Figure 8 shows preliminary results on applying this KDE correction to
contrastive learning models. We followed the setting from Zimmermann et al. (2021) and re-produced
the experiment reported in Fig. 2 in their paper. We use 3D latents, a 4-layer MLP as non-linear
mixing function with a final projection layer to 50D observed data. The reference, positive and
negative distributions are all vMFs parameterized according to κ (x-axis) in the case of the reference
and negative distribution and κp for the positive distribution.

The grey curve shows the decline in empirical identifiability (R2) as the uniformity assumption is
violated by an increasing concentration κ (x-axis). Applying a KDE correction to the data resulted in
substantially improved performance (red lines).

However, when testing the method directly on the dynamical systems considered in the paper, we did
not found a substantial improvement in performance. One hypothesis for this is that the distribution
of points on the data manifold (not necessarily the whole Rd is already sufficiently uniform. Hence,
while the theory requires inclusion of the KDE term (and it did not degrade results), we suggest to
drop this computationally expensive term when applying the method on real-world datasets that are
approximately uniform.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C ADDITIONAL RELATED WORK

Contrastive learning.
all-6

An influential and conceptual motivation for our work is Contrastive Predictive
Coding (CPC) (Oord et al., 2018) which uses the InfoNCE loss with an additional non-linear
projection head implemented as an RNN to aggregate information from multiple timesteps. Then, an
affine projection is used for multiple forward prediction steps. However, contrary to our approach, the
“dynamics model” is not explicitly parameterized, limiting its interpretability. Similar frameworks
have been successfully applied across various domains, including audio, vision, and language, giving
rise to applications such as wav2vec (Schneider et al., 2019), time contrastive networks for video
[TCN; Sermanet et al., 2018] or CPCv2 (Henaff, 2020).

Non-Contrastive learning.
qeKY-11

Models such as data2vec (Baevski et al., 2022) and JEPA (Assran et al.,
2023) learns a representation by trying to predict missing information in latent space, using an MSE
loss. JEPA uses asymmetric encoders, and on top a predictor model in latent space parameterized by
a neural net. However, these approaches do not provide any identifiability guarantees.

System identification. In system identification, a problem closely related to the one addressed in this
work is known as ”nonlinear system identification. Widely used algorithms for this problem include
Extended Kalman Filter (EKM) (McGee & Schmidt, 1985) and Nonlinear Autoregressive Moving
Average with Exogenous inputs (NARMAX) (Chen & Billings, 1989). EKF is based on linearizing
g and f using a first-order Taylor-series approximation and then apply the Kalman Filter (KF) to
the linearized functions. NARMAX, on the other hand, typically employs a power-form polynomial
representation to model the non-linearities. In neuroscience, practical (generative algorithms) include
systems modeling linear dynamics [fLDS; Gao et al., 2016] or non-linear dynamics modelled by
RNNs [LFADS; Pandarinath et al., 2018]. Hurwitz et al. (2021) provide a detailed summary of
additional algorithms.

Nonlinear ICA The field of Nonlinear ICA has recently provided identifiability results for identifying
latent variables, usually employing auxiliary variables such as class labels or time information
(Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019; Khemakhem et al., 2020; Sorrenson
et al., 2020). In the case of time series data, Time Contrastive Learning (TCL) (Hyvarinen & Morioka,
2016) uses a contrastive loss to predict the segment-ID of multivariate time-series which was shown
to perform Non-linear ICA. Permutation Contrastive Learning (PCL) (Hyvarinen & Morioka, 2017)
permutes the time series and aims to distinguish positive and negative pairs.

Temporal causal representation learning.
GCbH-1

In Nonlinear ICA, the factors are assumed to be in-
dependent, subject to some indeterminacy in the original latent variables. However, this approach
encounters challenges when the latent variables have time-delayed causal relationships. Approaches
like LEAP (Sorrenson et al., 2020) and TDLR (Yao et al., 2021) address these challenges in both
stationary and non-stationary environments, even when the transition function’s parametric form
is unknown. CaRING (Yao et al., 2022) extends these results to cases where the mixing function
is non-invertible. Lastly, CITRIS (Lippe et al., 2022) introduces intervention target information to
enhance the identification of latent causal factors. In this work, we do not aim to estimate the temporal
causal graph. Instead, we focus on estimating the dynamics model f using an interpretable and
explicitly parameterized dynamics model (e.g. ∇-SLDS) which can later be analyzed for applications
such as scientific discovery.

Switching Linear Dynamical Systems. Several papers propose methods to infer SLDSs (Ackerson
& Fu, 1970; Chang & Athans, 1978; Ghahramani & Hinton, 2000), leading to a variety of extensions
and variants. For example, Recurrent SLDSs (Linderman et al., 2017; Dai et al., 2022) address state-
dependent switching by changing the switch transition distribution to p(yt|yt−1, xt−1), allowing for
more flexible dependencies on previous states. Another extension, Explicit duration SLDS introduces
additional latent variables to model the distribution of switch durations explicitly (Chiappa et al.,
2014). Some approaches relax the assumption of linear dynamics, such as in the case of SNLDS
and RSSSM, where the dynamics model is assumed to be nonlinear (Dong et al., 2020; Chow &
Zhang, 2013). In the context of Nonlinear Independent Component Analysis (ICA), recent extensions
include structured data generating processes (e.g., SNICA; Hälvä et al., 2021) which were shown to
be useful for the inference of switching dynamics. In this vein, Balsells-Rodas et al. (2023) proposed
additional identifiability theory for the switching case. Other approaches, based on Neural Ordinary
Differential Equations (Neural ODEs) (Chen et al., 2020a; Shi & Morris, 2021), or methods aimed at
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discovering switching dynamics within recurrent neural networks (RNNs) (Smith et al., 2021), also
present interesting avenues for modeling switching dynamics.

Deep state-space models. Recently, (deep) state-space models (SSMs) such as S4 or Mamba (Gu
et al., 2021; Gu & Dao, 2023) have emerged as a promising architecture. These models are particularly
well-suited for capturing long-range dependencies, making them an attractive choice for sequence
modeling tasks.

Symbolic Regression. An alternative approach to modeling dynamical systems is the use of sym-
bolic regression, which aims to directly infer explicit symbolic mathematical expressions governing
the underlying dynamical laws. Examples include Sparse Identification of Nonlinear Dynamics
[SINdy,(Brunton et al., 2016)], as well as more recent transformer-based models (Kamienny et al.,
2022; d’Ascoli et al., 2023), which have demonstrated promise in discovering interpretable represen-
tations of dynamical systems.
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D VON MISES–FISHER (VMF) CONDITIONAL DISTRIBUTIONS

In the main paper, we have shown experimental results that verify Theorem 1 in the case of Normal
distributed positive conditional distribution and using the Euclidean distance. This approach has
allowed for modeling latents and their dynamics in Euclidean space, which we argue is the most
practical setting to apply DYNCL in. However, self-supervised learning methods and especially
contrastive learning have commonly been applied to produce representations on the hypersphere
and using the dot-product distance (Oord et al., 2018; Schneider et al., 2023; Wang & Isola, 2020;
Zimmermann et al., 2021; Chen et al., 2020b).

Here we validate empirically that Theorem 1 equally holds under the assumption of vMF conditional
distributions and using the dot-product distance ϕ(x,y) = x⊤y as part of the loss. We run exper-
iments as in Table 1 for the case where the true dynamics model f is a linear dynamical system.
Additionally, we vary the setting similar to Figure 4 to show increasing ∆t (angular velocity).

We compare:

• DYNCL (ours) – with linear dynamics: f̂(x) = Âx.

• GTD – the ground-truth dynamics model (LDS) f̂(x) = Ax.

• No dynamics – the baseline setting we use throughout the paper f̂(x) = x.
• Asymmetric – a variation on the baseline setting that uses asymmetric encoders (one for

reference, one for positive or negative) which would be a possible fix of Corollary 1. We can
obtain this setting by skipping the explicit dynamics modeling, and defining two encoders
h1,h2 which relate as follows: h ◦ f := h1, h := h2.

GTD / DynCL / Asymetric

No dynamics

GTD / DynCL

Asymetric

No dynamicsσ = 0.01 σ = 0.1

Figure 9:
KF3j-8

Our findings from Table 1 hold equally under vMF noise distribution when using LDS ground truth
dynamics. We show empirical identifiability of the latents in terms of R2 under varying a) angles of the rotation
dynamics i.e. angular velocity ∆t (x-axis) and b) the magnitude of the dynamics noise σ (panels, left: low noise,
right: high noise)

Similar to our results for the Euclidean case (Table 1), in Figure 9 we show results that experimentally
verify Theorem 1 for latent dynamics on hypersphere and using vMF as conditional distribution.
Both for low (left panel) and high (right panel) variance of the conditional distribution we can see
that DYNCL effectively identifies the ground truth latents on par with the oracle (GTD) model
performance. On the other hand, the baseline, standard time contrastive learning without dynamics,
can not identify the ground truth latents with underlying linear dynamics as predicted by Corollary 1.
This prediction is only violated in the case where the variance of the noise distribution is high enough,
such that the noise dominates the changes introduced by the actual dynamics. This is the case for
dynamics with rotations up to 4 degrees for σ = 0.01 and angles up to 10 degrees for σ = 0.1.
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E ADDITIONAL PLOTS FOR SLDS

σ = 0.0001 σ = 0.01

Figure 10: Visualizations of 6D linear dynamical systems at σ = 0.0001 (left) and σ = 0.01 for 10 degree
rotations. These systems are used in our SLDS experiments.
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F GENERALIZATION - TRAIN- VS TESTSET

In the main paper, all metrics are evaluated using the full training dataset of the respective experiment.
We argue that this is sufficient for showing the efficacy of our model and verifying claims from the
theory in section 3 because a) in self-supervised learning, the model learns generalizable representa-
tions through pretext tasks, making overfitting less of a concern; b) the metrics we are interested in
are about uncovering the true underlying latent representation and dynamics of the available training
data, not of new data; and c) most importantly, we ensured that the training dataset is large enough to
approximate the full data distribution.

Nonetheless, here we show a series of control experiments to re-evaluate models on new and unseen
data. We do so by following the same data generating process of the given experiment (same dynamics
model and mixing function) and sample completely new trials (10% of the number of trials of the
training dataset). Every new trial starts at a random new starting point, with a randomly sampled new
mode sequence and regenerated with different seeds for the dynamics noise.

First, we re-evaluated every experiment of Figure 6 on the test dataset generated as described above
and show these results in Figure 11. Comparing those results to the train dataset version of Figure 6
shows that there is almost no difference in the performance (with regard to identifiability and systems
identification). The difference are so small, that visually comparing the results almost becomes
impractical, so we additionally provide the exact numbers of the first panel (variations on the number
of samples per trial) in Table 2.

Finally, to qualitatively and quantitatively show the difference between the train and test datasets
we provide a) depictions of the ground truth latents of 5 random test trials and their closest possible
matching trial from the training set in Figure 12 and b) a distribution of the distances (in terms of R2

between the data from the test and train trials) between all test trials of one of a random test set and
their closest trial from the training dataset in Figure 13.

w/o dynamics

ours
ground truth

Figure 11: Same as Figure 6 (Variations and ablations for SLDS), but re-evaluated on a newly generated test
data with different starting points.

Table 2: A detailed view on the #samples panel from Figure 6 and 11 showing the difference between train and
test set evaluation.

DYNCL (ours) CL w/o dynamics CL w/ ground truth dynamics
R2 (train) R2 (test) R2 (train) R2 (test) R2 (train) R2 (test)

# samples

10 0.991 ± 0.00137 0.989 ± 0.00172 0.923 ± 0.03703 0.917 ± 0.04000 0.954 ± 0.00397 0.952 ± 0.00442
100 0.995 ± 0.00106 0.994 ± 0.00108 0.786 ± 0.06794 0.791 ± 0.06931 0.990 ± 0.00107 0.990 ± 0.00099
1000 0.995 ± 0.00074 0.995 ± 0.00078 0.765 ± 0.06671 0.770 ± 0.06973 0.990 ± 0.00507 0.990 ± 0.00511
10000 0.996 ± 0.00046 0.996 ± 0.00044 0.694 ± 0.06937 0.801 ± 0.10568 0.991 ± 0.00509 0.991 ± 0.00425
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Figure 12: Ground truth latents from five random trials of the testsets for Figure 11 and their closest match
within the corresponding trainset. The closest match is evaluated by computing the R2-Score between a given
trial from the testset and every possible trial.

Figure 13: Histogram of all R2-Scores between every trial from the testset and its closest possible match from
the trainset as shown in Figure 12.
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G VARIATIONS AND ADDITIONAL BASELINES FOR THE DYNR2 METRIC

G.1 METHOD

As an addition to Table 1, we analyse the DynR2 in more detail. In Table 3 we show variants for the
metric. Firstly, we modify the number of forward prediction steps,

fn(x) := (f ◦ · · · ◦ f︸ ︷︷ ︸
n times

)(x) (62)

and respectively for f̂n in relation to f̂ . We then consider two variants of Eq. 12. Firstly, we perform
multiple forward predictions (n > 1) and compare the resulting embeddings:

r2 score(f̂n(x̂),L1f
n(L2x̂+ b2) + b1). (63)

A rationale for this metric is that the prediction task becomes increasingly difficult with an increasing
number of time steps, and errors accumulate faster.

Secondly, as an additional control, we replace f̂ with the identity, and compute

r2 score(x̂,L1f
n(L2x̂+ b2) + b1). (64)

This metric can be regarded as a naiive baseline/control for comparing performance of the dynamics
model. If the dynR2 is not significantly larger than this value, we cannot conclude to have obtained
meaningful dynamics.

For the lower part of Table 1, we report the resulting metrics in Table 3, setting the number of forward
steps n to 1 or 10, and using either the original metric (Eq. 62), or the control (Eq. 63).

G.2 RESULTS

For the SLDS system, we can corroborate our results further: the baseline model obtains a dynR2

of around 85% for single step prediction, both for the original and control metric. Our ∇-SLDS
model and the ground truth dynamical model obtain over 99.9% well above the level of the control
metric which remains at around 95%. The high value of the control metric is due to the small change
introduced by a single timestep, and should be considered when using and interpreting the metric. If
more steps are performed, the performance of the ∇-SLDS model drops to about 95.5% vs. chance
level for the control metric, again highlighting the high performance of our model, but also the room
for improvement, as the oracle model stays at above 99% as expected.

For the Lorenz system, we do not see a substantial difference between original dynR2metric and
dynR2 control for any of the considered algorithms. Yet, as noted in the main paper,∇-SLDS is the
only dynamics model that gets a high R2 of 94.08%, vs. the lower 81.20% for a single LDS model,
or 40.99% for the baseline model. In other words, while DYNCL with the ∇-SLDS dynamics model
falls short of identifying the true underlying dynamics for this non-linear chaotic system, without
DYNCL we wouldn’t even identify the latents. We leave optimizing the parameterization of the
dynamics model to identify non-linear chaotic systems for future work.

Table 3: Extended metrics for dynamics models including additional variations on the dynR2 metric where
Control is replacing f̂ with the identity and 10 Steps is applying f̂ (and f ) 10 times, i.e., predicting 10 steps
forward instead of only one step as is done in the Original version.

data model % dynR2, n=1 step % dynR2, n=10 steps
f p(ε) f̂ identifiable Original Control Original Control

SLDS Normal identity ✗ 85.47 ± 8.07 84.54 ± 7.31 2.78 ± 9.34 -58.62 ± 7.22
SLDS Normal ∇-SLDS (✓) 99.93 ± 0.01 95.15 ± 0.68 95.53 ± 0.47 -124.65 ± 6.97
SLDS Normal GT (✓) 99.97 ± 0.00 94.94 ± 0.68 99.36 ± 0.18 -129.32 ± 6.95

Lorenz Normal identity ✗ 27.02 ± 8.72 27.17 ± 8.74 22.87 ± 7.13 24.85 ± 7.14
Lorenz Normal LDS ✗ 80.30 ± 14.13 82.98 ± 12.64 -13.07 ± 41.03 42.08 ± 26.14
Lorenz Normal ∇-SLDS (✓) 93.91 ± 5.32 93.70 ± 5.11 34.48 ± 6.47 55.75 ± 6.01
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H APPLICATION TO REAL-WORLD DATA
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all-7

(a), Allen visual coding dataset using neuropixel or 2P data (Siegle et al., 2021). (c) quantitative
comparison of DYNCL (linear dynamics) and CEBRA-time (identity-dynamics) in terms of the consistency
between training runs, for neuropixels (left) and 2P datasets (right). (b), example embeddings for contrastive
learning with DYNCL (top) vs. CEBRA-time (bottom), for neuropixels (left) and 2P datasets (right).

all-7
Here we evaluate DynCL using a real-world dataset obtained from the Allen Institute (Siegle et al.,
2021). Neural activity was recorded from awake, head-fixed mice as they viewed visual stimuli
including three movies (Figure 14a) on a continuous loop. The recordings were collected using either
Neuropixels silicon probes or calcium imaging (2P). Our analysis focuses on paired data from 10
repetitions of “Natural Movie 1” comprised of 900 frames (Fig 14a). This exact dataset was also used
by Schneider et al. (2023).

H.1 METHODS

We trained CEBRA-time (Schneider et al., 2023) and DYNCL with an LDS dynamics model across
various latent dimensionalities (8, 16, 32, 64, and 128) for both the Neuropixels and calcium imaging
(2P) data. For each dimensionality, we run 5 independent models. For both CEBRA-time and DynCL,
we parameterize the encoder model with an MLP with 3 hidden layers, each with 128 units. To
evaluate the models we compute the consistency metric used by Schneider et al. (2023) between the
five runs for each dimensionality as a proxy for identifiability, and visualize the embeddings for each
model for qualitative comparison.

H.2 RESULTS

The consistency between multiple training runs is a measure of model robustness and identifiability
across different latent dimensionalities. Our analysis reveals that DYNCL consistently outperforms
CEBRA-time in terms of run-to-run consistency across both neural recording modalities (Figure
14b). For neuropixel data, DYNCL’s consistency plateaus at 16 dimensions without substantial
improvements at higher dimensions, while CEBRA-time also pleateaus at 16 dimensions but jumps
in performance to reach comparable consistency levels to DYNCL only at 128 dimensions. This early
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plateauing suggests that the underlying neural representation could have lower intrinsic dimensionality
than suggested by the CEBRA-time result. In the calcium imaging data, the performance gap between
the methods is larger striking – DYNCL achieves high consistency scores of up to 90% while CEBRA-
time’s consistency peaks at 70%. We can also observe that for both models the consistency increases
with dimensionality up to 64 dimensions after which it stagnates or even decreases (Figure 14b).

Visual inspection of the embeddings (Figure 14c) shows more compact embeddings for DYNCL, with
a clearer temporal structure. The CEBRA-time model without explicit dynamics appears more noisy
(except for 16-dimensional Neuropixel embeddings). In the neuropixel data, DYNCL’s embeddings at
both 16 and 128 dimensions display similar structure and consistency across different dimensionality
runs, aligning with the consistency plateauing observed in Figure 14b.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

I NON-INJECTIVE MIXING FUNCTIONS

4X1L-7
Our identifiability guarantees (Theorem 1, Def. 5) require an injective mixing function g(xt) = yt.
On the first glance, this clashes with common requirements in system identification under partial
observability. Specifically, let us consider a system of the form:

xt+1 = f(xt) + εt = Axt + εt

yt = Cxt = g(xt),
(65)

where xt ∈ Rn, yt ∈ Rm, C ∈ Rm×n with n > m is a non-square matrix that projects the
states of the dynamical system into a lower dimensional space. Similarly, we may have n ≤ m
with rank(C) < n. In those cases, C and hence g is non-invertible, and naively, the injectivity
assumptions of Def. 5 would fail to hold.

However, in practice this issue can be tackled through the use of a time-delay embedding. Specifically,
we consider the following reformulation of the system:

ỹit :=


yt−τ

yt−τ+1

yt−τ+2

...
yt

 =


C
CA
CA2

...
CAτ


︸ ︷︷ ︸

O

xt−τ +


0
ν1
t

ν2
t
...
ντt

 (66)

where ντt := C

τ−1∑
i=0

Aiεt−i. (67)

For a sufficiently large time lag τ , the linear map g̃(xt−τ ) = Oxt−τ = ỹit will become injective
again. This is the case if O is full rank which holds if A is full rank, since f is bijective and therefore
A is a full rank square matrix. For example, if C had rank m, then using at least τ = n

m time steps
would make g̃ injective and our theoretical guarantees from Theorem 1 would hold, up to the offset
introduced by the noise ν.

In practice, the change in latent space between different time-steps might be small (especially when
the time resolution of the system is very high). A practical way to avoid feeding increasingly large
inputs, is to not feed in all time-lags 0 . . . τ into the construction of O, but to subselect k time lags
τ1, . . . , τk, with τ1 = 0 and τk = τ , and instead consider the system

ỹit :=


yt−τ

yt−τ+τ2
...

yt−τ+τk−1

yt−τn

 =


C

CAτ2

...
CAτk−1

CAτ


︸ ︷︷ ︸

O

xt−τ1 +


0
ν1
t

ν2
t
...
ντt

 (68)

This system allows to have a sufficiently large context window (from t− i1 to t) to ensure injectivity,
while keeping the input dimensionality of the model fixed. Note, when we set τi = i− 1 for each i,
we recover Eq. 66.

Regarding the noise vector ν, Hälvä et al. (2021) recently showed that noisy and noise-free demixing
problems can be mapped onto each other. While a full rigorous proof in conjunction with our
Theorem 1 is beyond the scope of this work, invoking Theorem 1 of Hälvä et al. (2021) to account
for ν is a promising avenue. Importantly, our empirical validation later on already shows that the
model is in practice indeed functioning even in the presence of the noise distribution.

I.1 EXPERIMENTAL VALIDATION

We validate our theoretical considerations by two sets of experiments as closely related to the LDS
setting from Table 1 as possible. We use two types of mixing functions:

g(x) = C1C2xt (69)

g(x) = C2g
′(C1xt) (70)
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Figure 15: Non-injective mixing functions can be successfully handled by a time-lag embedding.
a, in the first setting, we pass observations from τ consecutive timesteps into our feature encoder.
b, empirical identifiability of the latent space (R2) for baseline (no dynamics) vs. DynCL (linear
dynamics) as we increase n for a linear and c non-linear mixing function. d, to achieve injective
mixing functions through time-lag embeddings, we here include the full 100-step length window, but
only pass k equidistantly spaced points within this window of length τ . e, empirical identifiability
for baseline (no dynamics) vs. DynCL (linear dynamics) as we increase the number of points in the
context for a fixed τ = 100-step window and f for nonlinear mixing.

where C1 ∈ Rm×r, C2 ∈ Rr×n are randomly sampled, g : Rr → Rr is a random injective and
nonlinear function and m is the observable dimension, n is the latent dimension and r is the matrix
rank. In line with the LDS experiments from Table 1, we set n = 6 and m = 50. The mixing
functions from Eq. 69 & 70 are then applied to the latents, including the parameter r ∈ {1, 2, 3} to
restrict the rank and thereby dimensionality of the mixing functions to r.

We run experiments for different numbers of time steps that get passed to the encoder h. In the
first setting, we use k consecutive timesteps. In this setting, we expect that more time-steps than
the theoretical minimum n/m are required, because the variation between consecutive timesteps
is limited. To corroborate this hypothesis, we run a second variant where the length of the context
window is fixed, and k equidistantly placed points are selected to be fed in the encoder.

As in Table 1, we repeat each experiment 9 times with different dataset and model seeds and report
the 95% confidence interval.

I.2 RESULTS

Generally, we can see from Figure 15 that we can successfully verify our theoretical considerations
about weakening the injectivity constraint.

To begin with, we confirm that the default parametrization of DYNCL with only a single time step
i = 1 cannot solve the demixing problem. Next, for the theoretical minimum of time steps (i = 6 for
rank 1, i = 3 for rank 2, i = 2 for rank 3) we can already observe a considerable improvement of the
empirical identifiability for DYNCL in terms of the R2 Score: 16%→ 66% for rank 1, 30%→ 78%
for rank 2, 43% → 88% for rank 3 (Fig. 15b). As mentioned above, the minimal amount of time
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steps required for the identifiability guarantees only hold for νt = 0 which is not the case in these
experiments. As we increase the number of time points to 100, we can see that DYNCL approaches
close to perfect R2 Scores: For linear mixing, we get the best results for i = 100 with 99% R2 for
ranks 1, 2, and 3. While for nonlinear mixing, averaged across seeds, we get up to 86% for rank 1
and i = 100, 97% for rank 2 and i = 20, and 94% for i = 20. In contrast, the baseline without a
dynamics model, does not benefit at all from the additional time steps.

To further test our intuition about recovering injectivity, we include an experiment where the full
100-step length window is used, but only n equidistantly spaced timesteps are passed. In this setup,
we much quicker recover acceptable identifability scores for the linear (Fig. 15e) and non-linear
mixing settings (Fig. 15f).
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J DYNAMICAL SYSTEMS WITH CONTROL SIGNAL

all-15
We have initially introduced the problem formulation of this paper (Equation 1) as identifying the
latent variables xt and the governing latent dynamics f from the observations yt for:

xt+1 = f(xt) +But + εt

yt = g(xt) + νt.
(71)

with control signal u, its control or actuator matrix B, system noise ε and observation noise ν.

However, so far we have only explicitly considered autonomous latent dynamics (see Def. 5), which
by definition did not include a control input ut. In this section, we show that the DYNCL framework
works equally well in the presence of a control input and verify this empirically.

Being able to include a control signal is crucial for many applications and common practice in
systems identification literature. Without adding ut to the model, the task of identifying dynamics
gets substantially harder as the effects of the control signal become entangled with the intrinsic
dynamics of the system. Additionally, only identifying the combined dynamics without factoring
out the effect of ut would make the framework less useful as it would not allow predictions in the
presence of new/different control inputs.

J.1 EMPIRICAL VERIFICATION

We extend our existing experiments for linear dynamical systems (LDS) by including a control signal
ut in the data generating process:

xt+1 = Axt +But + εt (72)

We train and evaluate four model variants:

• Baseline: Identity dynamics model, using the control input with with a trainable B. The
dynamics model is fit post-hoc,

• DYNCL: with a LDS dynamics model where B = 0,

• DYNCL w/ control: with a LDS dynamics model and trainable B.

We choose the control signal ut to be generated from:

• Step function: A composition of a negative and positive step function, starting at random
time-steps and random magnitudes.

• Linear Dynamical System: ut+1 = Auut + εt, similar to the LDS system used before for
latent dynamics.

J.2 EXPERIMENT DETAILS

We generate three datasets with linear dynamics using a) no control, b) control following another
LDS, and c) control following a step function. Each dataset consists of 1000 trials, each trial is
1000 time steps long. The latent linear dynamics have intrinsic rotational dynamics with rotation
angles θi ∼ Uniform[0, 10] and control matrix B ∼ N (µ = 0.01,Σ = I · 0.01). The system
noise ε follows a standard normal with σε = 0.001. The mixing function g is the same nonlinear
mixing function with 4 layers as for Table 1. We use 5-dimensional latents and have 50-dimensional
observations. For the control following another LDS, we use the same sampling strategy for the
parameters as for the latent dynamics. For the control following a step function, we pick two points
T1, T2 such that the T2 − T1 = 200 and that the step is centered within the trial including some
random offset. We use different controls ut for every trial. We extend DYNCL with a parametrization
of the linear dynamics model that follows Eq. 72 and includes the control ut and trainable control
matrix B. We use the same dynamics model for the baseline. However there, this only affects the
post hoc dynamics fitting. We also train DYNCL with a LDS model that does not include the control
input. We train every model for 20k steps and besides that, we use the same hyperparameters as for
training the LDS models in Table 1.
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Table 4: Empirical identifiability results when including both system noise and a deterministic control
signal u. The ground truth dynamics f are chosen as an LDS, and the intrinsic dynamics model
f̂ is either an LDS, or the identity (baseline); Bu indicates whether the dynamics model includes
the control or not; pε(ε) is Normal (small σ). Mean ± std. are across 3 datasets and 3 experiment
repeats.

Data Model Results
Control (u) f̂ B̂u %R2 ↑ %dynR2 ↑ LDS ↓
Step (1D) identity ✓ 91.80 ± 1.15 87.27 ± 10.6 0.41 ± 0.02

LDS ✗ 98.36 ± 0.66 99.16 ± 1.00 0.06 ± 0.06
LDS ✓ 98.70 ± 0.44 99.53 ± 0.27 0.05 ± 0.04

LDS (5D) identity ✓ 74.17 ± 13.8 76.47 ± 7.51 0.36 ± 0.04
LDS ✗ 98.26 ± 0.17 99.87 ± 0.04 0.05 ± 0.01
LDS ✓ 98.10 ± 0.35 99.85 ± 0.08 0.05 ± 0.01

Figure 16: Visualization of dynamics inference in the presence of a control signal u. a LDS dynamics
are complemented by a b 1D step function signal, which c is projected to 5D using a random matrix
B (not shown). The ground truth dynamics then show signatures of the autonomous dynamics when
u = 0 (gray box), and move through latent space as we apply the step function. d, DynCL uses a
dynamics model and the control input u; e, the baseline uses only the control input u. The three rows
show different dynamical systems, each plot is one trial with 1000 steps.

J.3 RESULTS

As shown in Table 4, when applying a step function for the control signal, DynCL is able to identify
both the latent space (98.7% R2) and the dynamics (99.5% dynR2/0.05 LDS error). This result holds
even when the control signal u is not used for training the model. However, a baseline with identity
dynamics is not able to identify the dynamical system with an order of magnitude higher LDS error.
Yet, the latent space can be estimated reasonably well, although not perfect (91.8 % R2), most likely
because the availability of u converts the de-mixing problem into a supervised learning problem (we
have access to (u,y) pairs). This is reflected in the visualization in Figure 16: While the baseline
(identity dynamics, but using u) reasonably estimates the direction of u provided during training,
the local dynamics cannot be fitted. We highlighted a gray box denoting the phase where u = 0 to
facilitate easier comparison.

To test DynCL for more complex control signals, we also apply a full 5D LDS as the control signal u
(Table 4, LDS 5D). Both latent space estimation and dynamics estimation performs on par with the
step setting, while the baseline fails to estimate either the latent space or the dynamics.
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K COMPUTATIONAL REQUIREMENTS

As stated in the main paper, we required 120 GPU days of compute for the experiments we ran for
the paper. This does not include the initial period of prototyping and exploration that preceeded the
final sweep of experiments. To provide more transparency and more detailed breakdown, we list the
number of experiments (= model trainings) run for each table and figure in the paper.

Result Number of Experiments

Table 1 171
Figure 4 (SLDS) 162
Figure 5 & 7 (Lorenz) 675
Figure 6 (Ablation) 648
Figure 8 (KDE) 1,125
Figure 9 (SLDS with vMF) 432

Total 3,213

Table 5: Number of experiments per table/figure.

all-9
For 120 GPU days this comes out at an average of 53 minutes per experiment that made it into
the final paper. However, the actual runtime of an average DYNCL training is 15-20 minutes for
settings equivalent to the experiments in Table 1. This difference to what we report as the overall
average compute time per experiment can be attributed to several factors: (1) approximately one-third
of experiments involved KDE estimation which required 4-6x longer training times, (2) extensive
evaluation and metric computation for debugging and reporting purposes added additional overhead,
and (3) additional experimental iterations that did not make it into the final paper but contributed to
the total compute time of the final sweep.
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L ON COMPONENT-WISE VS. LINEAR IDENTIFIABILITY

In the context of non-linear ICA, the mean correlation coefficient (MCC) is frequently reported
as a measure of component-wise identifiability. In non-linear ICA, it is typically assumed that a
set of independent sources s1(t), . . . , sn(t) is passed through a mixing function to arrived at the
observable signal (cf. Hyvarinen & Morioka, 2017). In contrast, in our work the sources are not
independent, but are conditioned on the previous time-step and the passed through a dynamics model.
This is conceptually similar to the conditional independent assumption in Hyvarinen et al. (2019)
with auxiliary variable f(x), but with the distinction that at training time, we do not have u available,
only x which requires the use of a dynamics model.

Because of these distinctions in the generation of the latent space, we can generally not expect
component-wise identifiability (Theorem 1) but will instead obtain linear identifiability. Related
work in non-linear ICA likewise can only provide linear identifiability for a comparable Gaussian
case (Hyvarinen et al., 2019; Zimmermann et al., 2021; Schneider et al., 2023). However, if we
assume access to the dynamics model (but not the actual latent space), it is possible to reduce
ambiguity in the latent space, and assuring component-wise identifiability.

In Table 6 we compare MCC and %R2 across two datasets (SLDS and Lorenz) to extend Table 1
of the main paper. As expected, we observe a non-perfect MCC score for all models except for the
SLDS model which is provided with the ground-truth dynamics. Due to Eq 29 this strenghten the
guarantee to component-wise identifiabilily, yielding an MCC of close to 100%.

Data f Model f̂ MCC %R2

SLDS identity 0.59± 0.06 76.80± 7.40
SLDS SLDS 0.70± 0.05 99.52± 0.05
SLDS GT 1.00± 0.00 99.20± 0.10

Lorenz identity 0.34± 0.07 41.00± 8.57
Lorenz LDS 0.68± 0.14 81.20± 16.9
Lorenz SLDS 0.78± 0.13 94.08± 2.75

Table 6: SLDS and Lorenz dataset from Table 1 with the addition of the MCC metric.
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M COMPARISON TO ADDITIONAL TIME-SERIES MODELS

The baseline employed in all experiments in the main paper is a CEBRA-time (Schneider et al.,
2023) model which was originally designed for time-series inference. This model is equivalent to
running DynCL without a dynamics model. Other popular contrastive learning methods include
time-contrastive learning (TCL; Hyvarinen & Morioka, 2016), permutation contrastive learning (PCL;
Hyvarinen & Morioka, 2017). More recently, VAE models designed for time-series analysis and
dynamics learning were proposed, such as Temporally Disentangled Representation Learning (TDRL;
Yao et al., 2022).

Naturally, these methods propose different data generating processes, and the empirical performance
of DynCL as well as these comparison methods will strongly depend on whether these assumptions
are met. For instance, TCL requires non-stationary independent sources, PCL requires stationary
independent sources, and TDRL uses non-parametric transition models with non-Gaussian noise.
Hence, in general, it is not possible to fairly compare all these methods as they have different regimes
of operation. We nevertheless include a comparison to these methods to DynCL for dynamics
inference.

M.1 IMPLEMENTATION

The codebase for our comparisons is available here: https://anonymous.4open.science/
r/dyncl-tdrl-baselines. This codebase can be diffed against the original code to highlight
the minimal code changes performed for running the benchmarking suite.

M.2 VERIFYING BASELINES

Yao et al. (2022) published a benchmarking setup for these algorithms3. We leverage this codebase to
run verified baseline algorithms on our SLDS dataset. First, we first ensure that we can reproduce
the results from Yao et al. (2022). We report the results in Table 7 for the “changing” experimental
setting.

We perform 5 runs with different seeds for the exact hyperparameter configurations reported in the
TDRL codebase. Remaining differences in the in numbers might be attributed to discrepancies
between the paper and the code distribution or the choice of different random seeds, as we observed
large variances in some of the models. We label these models with ”-B” to indicate the base
configuration provided by the public code base. We report the full results in Table 7.

MCC
Model Reproduced Reported

PCL-B 0.535± 0.030 0.599± 0.041
TCL-B 0.367± 0.018 0.399± 0.021

TDRL-B 0.910± 0.067 0.958± 0.017

Table 7: Verification on “changing” experiment Setting from Yao et al. (2022)

M.3 EXPERIMENT DETAILS

Both TCL and TDRL make use of a categorical context variable indicating changes in the distributions
of the true latents. To make the comparison to our framework as fair as possible, we choose the SLDS
datasets to allow for a similar context variable in form of the mode/state sequence that modulates the
switching between linear dynamics. Our dataset is comprised of 5 modes, which corresponds to the
same number of categories the models from Table 7 already use.

Base models. To be able to apply the baseline models to our SLDS setting, we only change their
base configuration in two required ways: We increase the input dimension from 8 to 50 to match the
observation produced by the SLDS and reduce the latent dimension from 8 to 6.

3Code: https://github.com/weirayao/tdrl (MIT License)
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low noise high noise
Model MCC (%) R2 (%) MCC (%) R2 (%)

TCL-B 36.07± 2.27 66.56± 3.87 37.21± 3.66 61.75± 12.56
PCL-B 68.28± 2.40 91.33± 0.85 66.86± 3.16 77.99± 3.93
PCL-L 68.02± 2.77 90.92± 1.16 69.67± 3.86 80.88± 1.38

TDRL-B 64.34± 6.01 83.85± 7.78 62.93± 5.37 80.90± 7.82
TDRL-L 63.51± 4.87 84.01± 7.98 62.65± 6.29 81.40± 6.42

CEBRA-Time 59.46± 5.84 76.80± 7.40 65.71± 4.99 98.66± 0.19
DynCL+SLDS 69.62± 4.78 99.52± 0.05 68.76± 5.05 98.95± 0.08

DynCL+GT SLDS 99.51± 0.06 99.20± 0.10 98.57± 0.16 97.82± 0.17

Table 8: Baseline results for TCL, PCL, and TDRL models on switching linear dynamics datasets.
The low noise setting is equivalent to Table 1. For the high noise setting (low ∆t), we use larger
noise and lower rotation angles, setting σε = 0.001, max(θi) = 5

Large models. Because PCL is the closest match to our existing baseline (CEBRA-time) and our
encoder architecture is equal to the baseline architecture, we introduce an additional variant “PCL-L”
(L=Large) to match the number of parameters as close as possible. We do so by increasing the hidden
dimension of the PCL encoder model from 50 to 160 and reduce the number of layers from 4 to 3,
effectively increasing the number of parameters by factor 5. Because TDRL can be considered the
most promising baseline candidate (beside CEBRA-time) based on the results from table 7, we also
double its encoder size from using hidden dimension 128 to 256, resulting in the ”TDRL-L” baseline
model.

Dataset. Leverage two versions of the SLDS dataset used in the main paper. First, we apply it to the
exact setting of the SLDS in our Table 1 to compare against our default setting with dynamics noise
σε = 0.0001 and rotation angles max(θi) = 10. Additionally, since our main baseline (CEBRA-time)
performed best on datasets with lower ∆t where the noise dominates over the dynamics, we also
compare against an SLDS dataset generated with larger dynamics noise σε = 0.001 and smaller
rotation angles max(θi) = 5 (see Figure 4b). We generate4 3 different versions of each dataset using
different random seeds and on each dataset we train 3 models with different seeds, resulting in 9
models for each baseline and for each of the two settings. We train every baseline model for 50
epochs or until the training time reaches 8 hours.

Metrics. We compute the Mean Correlation Coefficient (MCC) as well as the R2 metric used for
Table 1 during training. For the baselines run with the public code base from Yao et al. (2022), we
follow their reporting strategy and report the best MCC complemented by the the best R2 achieved at
any point during training to make the baseline appear even stronger. For our DYNCL models and our
default baseline, we report the MCC and R2 based on the last model checkpoint as in the main paper.

M.4 RESULTS

We outline results for all benchmarked algorithms in Table 8.

In the low noise setting, DynCL with the SLDS dynamics model achieves an R2 of 99.5%. The next
best baseline algorithm is the PCL base model, with a maximum R2 of 91.3%. While both DynCL
and PCL are learning by contrasting samples across time in the time series, only DynCL with the
SLDS dynamics model can fully model the ground truth dynamical process. In contrast, the score
function in PCL is setup to model variations along independent latent dimensions.

Interestingly, PCL outperforms CEBRA-Time, which is equivalent to running DynCL without a
dynamics model (76.8%). This indicates that the score method in PCL (component-wise linear
transformations) outperforms the score method in CEBRA-time on this dataset (negative squared
Euclidean distance). It would be interesting to combine the scoring method in PCL with the dynamics
model in DynCL for further improvements on non-linear dynamics settings.

4see https://anonymous.4open.science/r/dyncl-tdrl-baselines/notebooks/
slds_data_prep.ipynb

39

https://anonymous.4open.science/r/dyncl-tdrl-baselines/notebooks/slds_data_prep.ipynb
https://anonymous.4open.science/r/dyncl-tdrl-baselines/notebooks/slds_data_prep.ipynb


2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

In the high noise setting, DynCL with SLDS dynamics achieves comparable performance as CEBRA-
Time, as outlined in the main paper (99.0% vs. 98.7%). In this setting, PCL performs worse,
potentially because the score function in CEBRA-Time is better matched to the dominating Gaussian
system noise.

In all cases, MCC is not a meaningful metric, with highest scores ranging around 60–70%. An
exception is training DynCL with the underlying ground truth dynamics system, which achieves
component-wise identifiability and an MCC of 99.51%.

40


	Introduction
	Contrastive learning for time-series
	Structural identifiability of non-linear latent dynamics
	-SLDS: Towards non-linear dynamics estimation
	Experiments
	Results
	Verification of the theory for linear dynamics
	Approximation of non-linear dynamics
	Ablation studies

	Discussion
	Conclusion
	 Supplementary Material
	Proof of the main result
	Kernel density estimate correction
	Additional Related Work
	Von Mises–Fisher (vMF) conditional distributions
	Additional plots for SLDS
	Generalization - Train- vs Testset
	Variations and additional baselines for the DynR2 Metric
	Method
	Results

	Application to Real-World Data
	Methods
	Results

	Non-Injective Mixing Functions
	Experimental Validation
	Results

	Dynamical Systems with Control Signal
	Empirical Verification
	Experiment Details
	Results

	Computational Requirements
	On component-wise vs. linear identifiability
	Comparison to additional time-series models
	Implementation
	Verifying Baselines
	Experiment Details
	Results



