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ABSTRACT

Recent advances in multimodal large language models (MLLMs) have demon-
strated substantial potential in video understanding. However, existing bench-
marks fail to comprehensively evaluate synergistic reasoning capabilities across
audio and visual modalities, often neglecting either one of the modalities or in-
tegrating them in a logically inconsistent manner. To bridge this gap, we intro-
duce OmniVideoBench, a large-scale and rigorously designed benchmark ded-
icated to assessing synergistic audio–visual understanding, with a strong em-
phasis on modality complementarity and logical consistency. Specifically, Om-
niVideoBench comprises 1000 high-quality question–answer(QA) pairs, each an-
notated with step-by-step reasoning traces, derived from 628 diverse videos rang-
ing from several seconds to 30 minutes, and manually verified to guarantee com-
plete correctness and uniqueness. Moreover, OmniVideoBench encompasses 13
carefully designed question types, covering temporal reasoning, spatial localiza-
tion, counting, causal inference, summarization, and beyond, thereby capturing
the essential challenges of video understanding. Evaluation of multiple MLLMs
on OmniVideoBench reveals a pronounced gap between model performance and
human reasoning, with open-source models lagging significantly behind their
closed-source counterparts, underscoring the inherent difficulty of genuine au-
dio–visual reasoning. We will release OmniVideoBench to foster the development
of MLLMs with stronger and more generalizable reasoning capabilities.

1 INTRODUCTION

Multimodal large language models (MLLMs) have recently made impressive progress in bridging
vision, language, and audio (Yin et al., 2024; Song et al., 2025; Cheng et al., 2025). While early
benchmarks primarily focused on image–text alignment or visual reasoning (Xu et al., 2025c; Chen
et al., 2024c; Yue et al., 2024a), the integration of video and audio presents a quite different chal-
lenge: models must jointly process long temporal sequences, dynamic scene transitions, and com-
plementary acoustic cues. Despite rapid advances, evaluation of MLLMs on audio–visual reasoning
remains underdeveloped. Existing benchmarks (Li et al., 2024a; Hong et al., 2025) often (i) focus
on short video clips that underrepresent long-term temporal dependencies, (ii) emphasize a single
modality (e.g., vision) while treating audio as auxiliary or optional. As a result, current evalua-
tions fail to capture the challenges inherent to comprehensive video understanding, where audio and
vision must be integrated consistently and logically to support robust inference.

To address these limitations, we introduce OmniVideoBench, a high-quality benchmark designed
for evaluating audio–visual reasoning abilities in MLLMs. Specifically, first, we collect 628 diverse
videos spanning up to 30 minutes across 8 major categories and 68 subcategories, covering realistic
contexts such as news, sports, documentaries, vlogs, and ego-centric recordings. Then, we construct
1,000 high-quality question–answer pairs based on these videos, and each pair is annotated with
step-by-step reasoning chains as shown in Figure 1, where these reasoning steps explicitly indicate
modality and evidence information. This design not only strengthens the reliability of the evaluation
but also provides a unique signal for analyzing how models reason, rather than just the final answers.

Based on our OmniVideoBench, we conduct extensive evaluations of both closed-source and open-
source MLLMs, and several insightful findings are as follows:
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Where is the 'NO ONE FIGHT 
ALONE' poster relative to the 
person who deployed Culein-Anbar ?

A. On the left wall.
B.  On the back wall.
C.  On the right wall.
D.  On the front wall.

Answer: B

Gemini-2.0-Flash: A

Reasoning Steps

① V: Find the he 'NO ONE FIGHT ALONE' poster.

② A: Find who located Culein-Anbar down.

“…I deployed 
Culein-Anbar at 
the last second…”

③ V: Confirm the 
positional relationship 
between the two from 
a global perspective.  

What will the young man do if Steven 
don't prevent him?

A. Tell the secret of cookie.
B. Get some cookie to eat.
C. Tell everyone he ate cookie.
D. Give his girlfriend a surprise.

Answer: D

Gemini-2.0-Flash: A

Reasoning Steps

“…Now, STEVEN, you stay 
out of ehose cookies…”

① A: Find who is Steven.

“…Can I just talk to 
you in the kichen for 
a second…”

② A: Steven prevents the young man.

③ V: The ring box 
and his serious 
expression indicate 
that he wants to 
surprise his girlfriend.

Figure 1: Examples in OmniVideoBench (“V” presents vision and “A” presents audio), and we
present the atomic reasoning traces for these examples.

• OmniVideoBench poses significant challenges for Omni-Modal Language Models. Cur-
rent MLLMs have not achieved a passing score (<60%) on OmniVideoBench. The best-
performing model, Gemini-2.0-Pro, only achieves an accuracy of 58.90%. Except for the
newly proposed Qwen3-Omni, the performance of open-source models is close to random.

• Omni-understanding abilities on long videos have significant improvement room. Al-
though some leading models (such as Gemini-2.5-pro) demonstrate relatively robust perfor-
mance on long videos, other models (e.g., Gemini-2.0-Flash, Qwen3-Omni-30B-A3B) still
struggle on long video understanding.

• Performance varies a lot for videos with different audio signals. Gemini-2.5-Pro only
achieves 38.46% accuracy on videos with music signal, while the results on sound and speech
are 57.72% and 61.66%, respectively.

• Performance on different task types differs a lot. For example, Gemini-2.5-Pro achieves
accuracy below 50% on the background and music understanding task, which requires low-
semantic acoustic cues (e.g., musical style, tempo changes), and the accuracy results on the
relationship reasoning and summarization tasks are more than 80%.

2 OMNIVIDEOBENCH

2.1 OVERVIEW

OmniVideoBench is a benchmark for evaluating the audio-visual collaborative reasoning of
MLLMs. The main task in the evaluation requires a model to process a video, its audio, and as-
sociated text to generate a textual answer supported by explicit reasoning steps. This process as-
sesses the model’s ability to synthesize information across modalities, from recognizing objects to
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⑥ Manual 
Refinement

② Manual 
Annotation

③ VLM Filtering

④ LLM 
Filtering

⑤ Manual
Modification

Reasoning
Steps

QA

Final Data

Video Input Audio Input Text InputInitial QA
Using a single modality

Invalid QA pairs1

(1) Collection & Annotation (2) Filtering

3

2

1

2

3

(3) Refinement

① Collection

Common-sense QA

Figure 2: The complete pipeline of data collection, annotation, and refinement, where filtering and
refinement serve as two key processes for quality assurance.

comprehending complex scene dynamics and context. This section details the benchmark’s design
principles, annotation protocols, and dataset statistics.

2.2 VIDEO COLLECTION

OmniVideoBench is composed of real-world videos sourced from YouTube1 and Bilibili2. These
videos feature rich audiovisual content; therefore, comprehensive understanding necessitates the
accurate processing and integration of both audio and visual modalities for reasoning.

Regarding video richness, we primarily focus on two dimensions: type and duration. For type di-
versity, we categorize videos into eight broad classes: Vlog, News, Cartoon, Sports, Documentary,
TV, Ego, and Others. Each class is further subdivided into nearly seventy fine-grained subcate-
gories, which facilitates video retrieval and ensures broad coverage. Video categories are unevenly
distributed. News and documentary videos have dense audio that nearly covers visual content, mak-
ing them unsuitable for audio-visual reasoning tasks; thus, we manually controlled the video type
distribution. For duration diversity, we restrict video lengths to the range of several seconds to 30
minutes, so as to evaluate reasoning across varying temporal scales.

Building upon this foundation, we established a set of rigorous video collection criteria that not
only ensure the quality of the videos themselves, like resolution, but also guarantee the richness and
diversity of their audio and visual content. To further avoid data overlap with existing training sets
(e.g., popular TV shows), we restrict the selection to recent publications. The detailed collection
principles are provided in Appendix B.

2.3 DATA ANNOTATION

After collecting high-quality videos, we carried out manual annotation. Compared with automated
annotation, automated methods cap the evaluation ceiling by the capabilities of the annotating
model, whereas manual annotation produces questions that are closer to real-world needs.

In Figure 2, we first designed multiple-choice questions consisting of the question stem, the cor-
rect answer, and several distractors, to facilitate convenient evaluation of model performance. At
this stage, we obtained approximately 2,500 QA pairs. We categorize the tasks into 13 types: Fine-
grained Perception, Spatial Reasoning, Attribute Comparison, Background & Music Understanding,
Counting, Temporal Understanding, Summarization, Sentiment Analysis, Causal Reasoning, Rela-
tionship Reasoning, Reference Reasoning, Ego Reasoning, and Hypothetical Reasoning. In this
design, each question is required to rely on audio-visual reasoning, and the answer must be both
correct and unique with no alternative plausible interpretations in the video. Moreover, we require
that questions should not depend on video resolution or frame rate. Cases where the target object is
extremely small, blurred, and barely recognizable to the human eye, or where the relevant event oc-
curs only within an instant, are excluded.In addition, we established the following rules to minimize
the interference caused by extraneous textual information.

1https://www.youtube.com/
2https://www.bilibili.com/
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• Questions should avoid redundant information. We minimize unnecessary details in the
question text, such as the gender, clothing, or exact speech of characters, as long as doing
so does not affect the correctness or uniqueness of the answer. This serves two purposes:
reducing textual cues the model could exploit and increasing question difficulty to better test
its audio-visual understanding.

• The length of answers is capped. To prevent the answer text itself from providing excessive
cues to the model, which could reduce the extent to which the evaluation reflects its under-
standing and reasoning over audio and visual modalities, we impose a limit on answer length.
This constraint ensures that the results more faithfully capture the model’s multimodal com-
prehension and reasoning capabilities.

• The format of options must be consistent. Here, “format” refers to aspects such as length,
tone, style, and variation patterns. If these features are inconsistent, they may provide the
model with unintended cues for reasoning. For instance, when three options are consider-
ably longer than the remaining one, when three options adopt a casual tone while the other is
markedly formal, such discrepancies undermine the assumption that each option should have
an equal probability of being chosen, thereby compromising the fairness of the evaluation.

• Negative options must be relevant to the question. We require that all distractors appear
in the video and maintain relevance to the question. Without this constraint, the model could
easily eliminate distrastors, greatly reducing the need for reasoning.

• Options should maintain a consistent semantic distance. We formalize semantic distance
as the number of differing semantic units between options. Let an option oi be represented as
a set of semantic units Si. The semantic distance between two options oi and oj is defined as:

d(oi, oj) = |Si△Sj | (1)

where △ denotes the symmetric difference, capturing the distinct semantic units between two
options. To prevent models from exploiting unbalanced textual cues rather than performing
genuine audio-visual reasoning, we require that all distractors have consistent distances from
one another and from the correct option.

2.4 QUALITY ASSURANCE

We employed an advanced MLLM (i.e., Gemini 2.0 Flash), with strong audiovisual perception and
comprehension capabilities, as well as long-context processing ability, to filter out questions that
could be resolved using only a single modality. If the model successfully selected the correct an-
swer with a plausible explanation while relying solely on unimodal information, the corresponding
question was removed. After this filtering stage, approximately 1,500 questions were retained.

Subsequently, we employed a large language model, DeepSeek-V3.1 (Liu et al., 2024a), with strong
reasoning capabilities to filter out questions that could be answered solely based on textual informa-
tion. Such cases primarily fall into two categories: first, questions that involve classical, well-known,
or universally shared knowledge or objects, which can be answered without reference to the video
content; and second, questions where the phrasing of the question, options, or answers provides
unintended textual cues. For the former, we directly discarded the questions. For the latter, our an-
notators reviewed the reasoning process generated by the model and revised the textual formulations
to eliminate such biases. After this stage of refinement, 1103 questions were retained.

Another group of annotators conducts the final refinement stage, thoroughly reviewing all questions
to identify and remove those with incorrect, non-unique, or mismatched answers. After this valida-
tion, annotators enriched each question with step-by-step reasoning chains, where each step consists
of three elements: modality, evidence, and inference. The modality specifies whether the step relies
on audio or visual information; the evidence denotes the specific information extracted from the
video; and the inference describes the reasoning derived from that information. We required each
step to be atomic, meaning that it should involve only one modality and capture a minimal unit of
evidence, such as a spoken sentence, an action, or the appearance of a character. This design ensures
that the reasoning process is both detailed and comprehensive. Through this process, we obtained
1000 high-quality QA pairs with explicit step-by-step reasoning chains, forming a robust dataset for
multimodal audio-visual reasoning.
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Table 1: Dataset statistics divided into video-level and annotation-level information.

Video Statistics Annotation Statistics
#Major Categories 8 #Task Types 13
#Subcategories 68 Avg. Question Len. 14.68 words
Avg. Duration 384.24 s Avg. Answer Len. 4.92 words
Min. Resolution 480p Avg. Reasoning Steps 5.68
Max. Resolution 1080p Audio Types (Sp:So:Mu) 762:147:91

(a) Video Categories (b) QA Task Distribution (d) Audio Type Distribution

(c) Duration Distribution

News
15

Documentary
26

Figure 3: (a) OmniVideoBench covers 8 major categories and 68 subcategories. (b) Om-
niVideoBench comprises 13 task types. The above part shows the video duration distribution across
different tasks, while the durations are categorized into four groups: “Short” for less than 1 minute,
“Medium” for 1–5 minutes, “Long” for 5–10 minutes, and “Ultralong” for more than 10 minutes.
The lower part illustrates the distribution of three types of audio (i.e., Speech, Sound and Music).
(c) Distribution of video durations across four time intervals. (d) Distribution of three audio types.

Benchmark Modality Qwen2.5-Omni Multiple
Domains

Video
Type

Audio
Type

Video
Duration

Answer
Type

AVQA (Yang et al., 2022) V+A / ✗ R So 10 MC
Music-AVQA (Li et al., 2022) V+A / ✗ R+S Mu 60 CLS
AVTRUSTBENCH (Chowdhury et al., 2025) V+A / ✓ R+S Sp+So+Mu 10\60 MC
MMAU (Sakshi et al., 2024) A 71.0 ✓ / Sp+So+Mu / MC
DAVE (Radevski et al., 2025) V+A 31.0 ✓ R+S So ≤ 60 MC
AV-Odyssey (Gong et al., 2024) I+A / ✓ R Sp+So+Mu / MC
AVHBench (Judgement) (Sung-Bin et al., 2024) V+A 74.7 ✓ R+S So 10 CLS
OmniBench (Li et al., 2024c) I+A 56.1 ✓ R Sp+So+Mu / MC
Daily-Omni (Zhou et al., 2025) V+A 47.5 ✗ R Sp+So+Mu 30\60 MC
WorldSense (Hong et al., 2025) V+A 48.3 ✓ R Sp+So+Mu 15–656 MC

OmniVideoBench (Ours) V+A 29.3 ✓ R Sp+So+Mu 4–1955 MC

Table 2: Comparisons between different benchmarks and datasets. V, I, A for modality represent
video, image and audio. Qwen2.5-Omni represents the performance of Qwen2.5-Omni-7B on these
benchmarks. Multiple Domains signifies whether the video includes diverse domains. R and S in
Video Type denote real-world and synthetic data. Sp, So, and Mu represent Speech, Sound, and
Music for Audio Type, respectively. Video Duration represents the duration in seconds. MC, CLS
for Answer Type indicate Multiple Choice and Classification from fixed vocabulary, respectively.

2.5 DATASET STATISTICS

As shown in Table 1, our OmniVideoBench dataset consists of 628 real-world videos with audio
tracks, spanning 8 major categories and 68 subcategories. The videos are of high quality and diverse
in content, with an average duration of 384.6 seconds, an average resolution of 480p, about 2k
ASR-transcribed tokens per video, and roughly three speakers per video. On the annotation side,
OmniVideoBench contains 1000 audio–visual reasoning QA pairs across 13 task types, with an
average question length of 14.68 words and an average answer length of 4.92 words. Each QA pair
is annotated with step-by-step reasoning chains averaging 5.68 steps. The reasoning process covers

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

both modalities, with 54% of steps grounded in vision and 46% in audio. There are 762, 147, 91
QA pairs related to Speech, Sound and Music, respectively, highlighting the complementarity of
modalities in multi-step reasoning. Moreover, we provide more detailed statistics in Figure 3.

2.6 DATASET COMPARISON

0

20

40

60

80
OmniVideoBench

Daily-Omni

A
cc

ur
ac

y 
(%

)

Figure 4: Performance comparison of
selected models on OmniVideoBench
and Daily-Omni. “Red line” denotes
random guessing.

As shown in Table 2, we compare OmniVideoBench
with representative audio-video benchmarks. While AV-
Odyssey (Gong et al., 2024) and OmniBench (Li et al.,
2024c) operate on single images, OmniVideoBench tar-
gets substantially more challenging videos with dura-
tions ranging from a few seconds to 30 minutes. Recent
benchmarks such as AVTrustBench (Chowdhury et al.,
2025), DAVE (Radevski et al., 2025), and MMAU (Sak-
shi et al., 2024) begin emphasizing audio–video coor-
dination, but typically focus on specific capabilities or
short clips. AVHBench (Sung-Bin et al., 2024) also eval-
uates audiovisual consistency, yet its tasks remain cen-
tered on shorter videos and hallucination detection. Om-
niVideoBench, by contrast, expands the scope to diverse
video types, broader temporal spans, and fine-grained
cross-modal reasoning, capturing richer dependencies be-
tween audio and vision. Compared to Daily-Omni (Zhou
et al., 2025) and WorldSense (Hong et al., 2025), which also utilize multi-domain videos, Om-
niVideoBench places greater emphasis on explicit audiovisual collaboration. For instance, dis-
abling audio causes Gemini-2.0-Flash’s performance to plummet to the near-random level, indi-
cating that visual-only cues are insufficient. Furthermore, Figure 4 shows that widely used models
such as Qwen2.5-Omni-7B perform closer to random guessing on our benchmark, indicating that
OmniVideoBench presents significantly greater challenges than existing multimodal datasets.

3 EXPERIMENTS

3.1 BASELINE MODELS

We evaluate open-source MLLMs (i.e., Qwen3-Omni series (Xu et al., 2025b), Qwen2.5-Omni
series (Xu et al., 2025a), Baichuan-Omni-1.5 (Li et al., 2025), HumanOmni (Zhao et al., 2025),
MiniCPM-o (Yao et al., 2024), VideoLLaMA2 (Cheng et al., 2024)), and various closed-source
MLLMs (i.e., Gemini-2.5-Pro, Gemini-2.5-Flash (Comanici et al., 2025), and Gemini-2.0-Flash).
We also evaluate the Qwen2.5-VL series (Bai et al., 2025) and DeepSeek-V3.1 (Liu et al., 2024a).

3.2 HUMAN PERFORMANCE

It is worth noting that we also report the human test performance as human-level boundaries. We
invited 10 qualified annotators, including 8 graduate students experienced in multimodal research
and 2 experts trained in music-related analysis. Before the evaluation, 50 questions were randomly
selected for 10 testers to answer simultaneously. The fact that the difference in results was no
more than 5 questions indicates that the manual evaluation has minimal deviation and is viable. We
consolidated questions requiring musical knowledge and assigned them to two music experts. The
remaining questions were divided to ensure roughly equal distribution of speech and sound audio
samples per set, which were then evenly assigned to high-level personnel such as graduate students
to obtain persuasive results. Manual responses had no time constraints, yielding a final accuracy rate
of 82.69%. This demonstrates that existing models still fall significantly short of human capabilities.
We appreciate your suggestion and have included the human baseline results in the revised version

3.3 MAIN RESULTS

In Table 3, we present evaluation results on OmniVideoBench and have the following observations:
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Table 3: Results of different models. The table reports accuracy on videos across three audio types
and four duration ranges. Boldface highlights the best performance within each column.

Models Audio Type Video Duration Avg.
Music Sound Speech < 1 min 1-5 mins 5-10 mins > 10 mins

Omni-Modal Language Models (With Visual and Audio)

Gemini-2.5-Pro 38.46 57.72 61.66 57.83 64.43 55.02 55.94 58.90
Gemini-2.5-Flash 39.56 57.04 53.17 55.42 55.10 47.37 52.11 52.40
Gemini-2.0-Flash 29.67 40.27 43.21 49.40 43.15 41.05 34.87 41.50

Qwen3-Omni-30B-A3B 37.36 34.67 39.26 45.78 37.03 38.86 35.11 38.40
Baichuan-Omni-1.5 24.18 31.33 31.36 28.92 31.78 28.38 32.44 30.70
HumanOmni-7B 20.87 31.08 31.61 36.57 29.36 29.60 29.25 30.50
MiniCPM-o 27.47 28.57 30.24 31.43 28.49 34.53 26.15 29.70
Qwen2.5-Omni-7B 23.07 25.33 30.70 41.57 27.41 25.33 26.72 29.30
VideoLLaMA2-7B 26.37 30.67 29.25 32.00 28.20 29.60 28.29 29.20

Omni-Modal Language Models (Visual Only)

Gemini-2.0-Flash 25.27 36.67 30.99 33.73 35.86 32.75 22.48 31.30

Qwen2.5-Omni-7B 27.47 26.67 26.22 28.31 27.11 24.45 25.95 26.40

Visual Language Models (Visual Only)

Qwen2.5-VL-32B 32.97 32.00 31.49 38.55 31.20 29.26 30.53 31.80
Qwen2.5-VL-7B 29.67 31.33 29.51 25.90 30.03 31.88 30.15 29.80
Qwen2.5-VL-72B 26.37 29.33 29.91 33.13 30.03 31.88 24.43 29.50

Baseline LLMs

DeepSeek-V3.1 28.57 26.17 27.28 30.91 27.57 25.00 26.44 27.60

• Open-source models still lag significantly behind closed-source models. Gemini-2.5-Pro
achieves the best performance across most tasks. This underscores the urgent need for current
open-source models to improve in multiple areas, including fine-grained perception, cross-
modal reasoning, and speech awareness.

• MLLMs show a performance degradation when dealing with music-related audio. We ob-
serve that models exhibit lower accuracy in responding to music-dominated videos compared
to those containing human voices or ambient sounds, a phenomenon particularly pronounced
in open-source models. Unlike human voices conveying explicit semantic content or ambi-
ent sounds often corresponding to specific visual events, music primarily encodes abstract
emotional and atmospheric information. Current MLLMs demonstrate limited capability to
translate such implicit cues into effective reasoning, indicating that cross-modal alignment for
emotional and atmospheric understanding remains an urgent challenge to be addressed.

• Current MLLMs still have room for improvement in long videos. Although some leading
models like Gemini-2.5-Pro demonstrate relatively robust performance on long videos, most
MLLMs (e.g., Gemini-2.0-Flash, Qwen3-Omni) still struggle in long videos, which highlights
the widespread challenge in understanding long videos.

3.4 FURTHER ANALYSIS

Performance of Models on Tasks across Different Types. Figure 5 presents a fine-grained com-
parison of model accuracy on the 13 reasoning categories in OmniVideoBench. Several consistent
patterns emerge. (1). Closed-source MLLMs demonstrate superior performance across nearly all
task types. Gemini-2.5-Pro achieves the highest accuracy on 11 out of 13 tasks, demonstrating par-
ticularly strong performance in Relationship Reasoning, Spatial Reasoning, Referential Reasoning,
and Cause and Effect Reasoning. These tasks require long-term sequence integration and multi-step
cross-modal reasoning, highlighting Gemini’s strengths in long-context modeling and multimodal
fusion. (2). MLLMs’ understanding of audio remains limited to relatively superficial surface-level
information. Whether open-source or closed-source models, Background and Music Understand-
ing remains the most challenging task, with even Gemini-2.5-Pro achieving accuracy below 50%.
This is probably because such tasks require linking low-semantic acoustic cues (e.g., musical style,
tempo changes) with high-level reasoning, while current models struggle to master the capability.
In contrast, Relationship Reasoning and Summarization are relatively easier. This may be because

7
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Figure 5: Performance Comparison of some Open-Source and Closed-Source Omni Models on 13
Tasks in OmniVideoBench. Here, “Attr”: Attribute Comparison, “Bac&Mu”: Background and
Music Understanding, “Caus”: Cause and Effect Reasoning, “Coun”: Counting, “Ego”: Ego Rea-
soning, “Fine”: Fine-grained Perception, “Hypo”: Hypothetical Reasoning, “Ref”: Referential
Reasoning, “Rela”: Relationship Reasoning, “Senti”: Sentiment Analysis, “Spati”: Spatial Rea-
soning, “Summ”: Summarization, “Tempo”: Temporal Sequencing Understanding.

they rely more on recognizing language within audio and visual observation capabilities, and less
on cross-modal abstraction abilities.

Effect of ASR Transcripts for Visual Only MLLMs. To further investigate the role of audio in-
formation in MLLMs’ reasoning performance, we evaluate several models using both the automatic
speech recognition (ASR) transcripts generated by the Voxtral-Mini-3B model (Liu et al., 2025a)
and silent video frames as inputs. The results are shown in Figure 6. The observations are as fol-
lows: (1). Open-source models demonstrate weaker integration capabilities for audio information
compared to their understanding of textual information. In Figure 6a, all tested models demonstrate
significantly improved accuracy after extracting ASR text information compared to receiving only
visual inputs. However, the Qwen2.5-Omni-7B model, which processes both visual and audio inputs
simultaneously, performed even worse than the Qwen2.5-VL-7B model with equivalent parameters.
This highlights a common challenge faced by most open-source Omni-Modal Language Models: in-
sufficient cross-modal reasoning capabilities for audio-visual information. (2). In cross-modal video
reasoning, audio comprehension capabilities remain irreplaceable by ASR. In Figure 6b, although
ASR can help MLLMs achieve decent performance on certain tasks requiring speech recognition ca-
pabilities, its effectiveness is extremely limited for tasks demanding deeper and more abstract audio
comprehension such as the videos whose audio type is Music or Sound.

Effect of Different Numbers of Frames. We conduct experiments on Qwen2.5-Omni-7B and
Qwen3-Omni-30B-A3B with total frame counts fixed at 32, 64, 128, and 256, respectively, and
observe that both models benefit from more frequent time sampling. In Figure 7a, as the total frame
counts increase, accuracy steadily improves, likely because richer temporal coverage provides more
complete motion cues and reduces the risk of missing key events. As shown in Figure 7b, this
improvement becomes more pronounced for longer videos. The consistent gains across different
video durations further indicate that dense frame sampling not only captures fine-grained visual
dynamics but also strengthens cross-modal alignment. This highlights the importance of dense
temporal information and long-context processing for achieving robust audiovisual reasoning.
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Figure 6: Accuracy comparison of MLLMs with and without ASR transcripts on OmniVideoBench.
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Figure 7: Performance of selected models when inputting videos with different numbers of frames.

Table 4: Comparison of performance on Open-ended
Question Answering (QA) and Multiple- Choice Ques-
tions (MCQ) across various models.

Models Open-ended QA MCQ
Gemini-2.0-Flash 27.06 41.50
Qwen2.5-Omni-7B 17.25 29.30

Open-ended QA vs. MCQ. To inves-
tigate whether the multiple-choice ques-
tion (MCQ) format overstates model per-
formance, we additionally evaluated sev-
eral representative models on open-ended
question-answering (QA) tasks, where no
predefined answer options are provided.
In this setting, models must directly gen-
erate textual responses, eliminating both
the possibility of random guessing and any
lexical cues potentially present in candidate options. In Table 4, the accuracy of all models drops
significantly compared to their performance on multiple-choice questions. For instance, the Gemini-
2.5-Pro, which leads in MCQ benchmarks, experiences a relative accuracy decline exceeding 14
percent in open-ended scenarios, while open-source models exhibit even steeper drops.

4 RELATED WORKS

Omni-Understanding MLLMs. The development of MLLMs (Chen et al., 2022; Awadalla et al.,
2023; Liu et al., 2023) began with a foundational focus on integrating the two primary modalities
of vision and language. A recent paradigm shift aims to develop Omni-modal MLLMs capable
of processing and generating information across an arbitrary combination of modalities (“Any-to-
Any”). This approach positions the LLM as a central cognitive engine, unifying diverse data types
like audio, video, and text within its semantic space. This has driven a move from integrating
pre-trained unimodal components towards developing “natively multimodal” architectures trained
from the ground up, as exemplified by models like GPT-4o (Hurst et al., 2024). This ambition is
showcased by state-of-the-art models (Xu et al., 2025a; Zhao et al., 2025; Li et al., 2024b; 2025; Yao
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et al., 2024; Sun et al., 2025; Liu et al., 2025b), which pioneer end-to-end streaming capabilities for
simultaneously processing video and audio to generate text and speech. At the forefront of this
paradigm, proprietary models like Gemini series (Team, 2024; Comanici et al., 2025) demonstrate
pinnacle performance, powered by a natively multimodal design and a massive context window that
together unlock superior understanding of complex, interwoven data streams.

MLLM Benchmarks. The landscape of MLLM evaluation has matured significantly, evolving from
foundational perception benchmarks (Fu et al., 2023; Liu et al., 2024b; Li et al., 2024a; Yu et al.,
2024a;b; Chen et al., 2024a; Jiang et al., 2025) to more sophisticated frameworks. Recent efforts
probe deeper cognitive abilities, with MLLM-Bench (Ge et al., 2025) assessing a hierarchy of cog-
nitive skills. MMMU (Yue et al., 2023) and MMMU-Pro (Yue et al., 2024b) challenging models
with expert-level, multi-disciplinary reasoning under stricter protocols like vision-only inputs. Si-
multaneously, evaluation has specialized into high-stakes domains such as finance (Gan et al., 2024)
and medicine (Chen et al., 2024b). For video, some benchmarks (Wang et al., 2019; Li et al., 2021;
2023; Fang et al., 2024; Wu et al., 2024; Fu et al., 2024) now focus on the critical challenge of
long-context temporal understanding, revealing key limitations in current models.

5 CONCLUSION

We presented OmniVideoBench, a large-scale benchmark for evaluating audio–visual collaborative
reasoning in MLLMs, with diverse videos, carefully verified QA pairs, and explicit reasoning an-
notations. Experiments show that both open- and closed-source models still struggle with modality
complementarity, long-form temporal reasoning, and music understanding, underscoring a large gap
from human-level performance. We hope this benchmark will drive future research toward more ro-
bust and generalizable multimodal reasoning systems.
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ETHICAL STATEMENTS

This work fully adheres to the ICLR Code of Ethics in all aspects of research conduct. The processes
of data collection, usage, annotation, and benchmark construction strictly comply with ethical stan-
dards regarding privacy, consent, and responsible AI practices. Videos in OmniVideoBench are
strictly limited to academic research purposes. Any form of commercial use is prohibited. All video
copyrights remain the property of their original owners. To the best of our knowledge, this study
does not involve any data, methodologies, or applications that raise ethical concerns. The authors
confirm that they have reviewed and followed the ICLR Code of Ethics throughout the entirety of
this research.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we have made the following comprehensive efforts. We
provide detailed descriptions of the video collection, filtering, annotation, and reasoning-chain con-
struction pipeline in Sec. 2 and Appendix B. We also present complete statistics of the dataset
and explicit definitions of task types, reasoning modalities, and evaluation metrics in Sec. 2.1 and
Appendix A. Furthermore, the prompts used in the experiments are documented in detail in Ap-
pendix C. Extensive replication experiments demonstrate only minor variations across runs, con-
firming the stability and full reproducibility of the reported results. We promise to release the exper-
imental code for evaluation in the future to facilitate verification and benchmarking.
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A FULL VIDEO CATEGORY TAXONOMY

Table 5 shows that videos in OmniVideoBench span 8 major categories and 68 subcategories.

Table 5: Full taxonomy of the video dataset.

Main Category Subcategories
Vlog Cooking & Cuisine; Travel & Outdoor; Art; Animals; Daily Life at

Home; DIY & Handcraft; Gardening; Fitness; Sports; Interviews;
Party Games; Makeup & Beauty; Fashion & Styling; Hiking &
Trekking

News Politics; Economy; Society; Technology; Education; Healthcare; Mil-
itary; Law & Justice; Sports; Culture; Entertainment; Weather; Disas-
ter; Transportation

Cartoon 2D Animation; 3D Animation

Sports Basketball; Football (Soccer); Volleyball; Badminton; Table Tennis;
Swimming; Figure Skating; Skiing; Gymnastics; Wrestling & Judo;
Track & Field; Esports; Others

Documentary Nature & Wildlife; History & Archaeology; Society & Humanity; Pol-
itics & Military; Science & Engineering; Medicine & Health; Crime
& Law; Art & Culture; Education & Growth; Economy; Environment
& Climate; Food & Culinary Culture; Religion & Belief

TV Short; Dramas & Web Series; Variety; Stage Plays; Dance; Mime;
Movies

Others Live; Advertisement; Course Replay; Short Video

Ego First-person: People; First-person:Pets

B DETAILED PRINCIPLES OF VIDEO COLLECTION

To ensure an objective and reliable evaluation of MLLMs, the videos included in the benchmark
must satisfy multiple requirements, ensuring diversity in both type and duration. The content should
provide rich information across audio and visual modalities, while maintaining complementarity
between the two. In other words, the benchmark avoids cases where the visual content can be fully
inferred from the audio alone, or where the audio is redundant given the visual stream. Furthermore,
since many existing video training datasets overlap with the sources of our benchmark—for ex-
ample, clips from Friends—evaluation may otherwise reduce to simple “answer memorization.” To
mitigate this unfairness, we additionally consider the publication year of videos when constructing
the dataset. The detailed principles for video collection are as follows:

• Video publication date. Given that most existing training datasets are constructed from
YouTube videos, similar to ours, or contain overlapping content such as identical TV shows,
we restrict our selection to videos published after June 2024. We use the most recent videos
possible to mitigate unfairness and potential overestimation issues arising from the model
having already been exposed to similar content during training.

• Rich dynamic visual information. The distinguishing feature of videos compared to im-
ages lies in their rich dynamic visual information. A prerequisite for evaluating a model’s
ability to understand visual information in videos is that the videos themselves contain suf-
ficient dynamic content to be captured and analyzed. Consequently, videos lacking diverse
dynamic visual information are excluded, such as those consisting of only several static
scenes or perspectives throughout, or those that remain largely static with minimal motion
confined to a small corner of the frame.

• Effective audio information. In some videos, the audio is completely unrelated to the
visual content, such as when only an independent background track is added. We consider
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such audio to be invalid. To fairly evaluate the model’s capability in audio-visual collabo-
rative reasoning, the audio—whether speech, environmental sound, or music—must align
with the visual content.

• Absence of subtitle. We excluded videos with embedded subtitles, as such practices con-
vey most of the audio information visually, enabling models to “cheat” through vision
alone. Likewise, videos containing large text overlays were regarded as undesirable, since
these overlays often directly reveal information about characters’ speech, mental states, or
ongoing events, thereby undermining the assessment of the model’s genuine understanding
and reasoning abilities.

• Video resolution. To ensure video quality, we require a minimum resolution of 480p, and
the visual content must be free from issues such as distortion or blurriness that would hinder
comprehension.

C PROMPTS USED IN THIS WORK

C.1 PROMPT FOR OVERALL EVALUATION

# Instruction: You are given a video. Based on the content of the video, answer the follow-
ing question:
# Question: {Question}
# Options:
A: {Option A} B: {Option B} C: {Option C} D: {Option D}
# Task:
Answer with the option’s letter directly(e.g., A, B, C, or D).
If your access to the video content is limited, at least one option that is more likely than the
others must be chosen.
Mustn’t give any other reason for can not choose!

C.2 PROMPT TO SELECT QUESTIONS THAT CAN BE ANSWERED WITHOUT RELYING ON
OPTIONS

# Role: You are an impartial judge.
# Instruction: Your task is NOT to answer the question, but to determine whether the ques-
tion is inherently DEPENDENT on the multiple-choice options in order to be answered.
# Task:
We aim to convert this multiple-choice question into an open-ended question.
The video content is NOT provided here, but you should assume you have fully watched the
video and know everything about it.
Your job is ONLY to decide whether the question itself *requires* the options to be an-
swerable.
# Guidelines:

- If the question can still be reasonably answered **without needing the options**
(even if the exact wording might change slightly), return “No”.

- If the question cannot be answered at all without the options (e.g., it explicitly asks
“Which of the following. . . ” ), return “Yes”.

# Question: {Question}
# Answer: {Answer}
Respond ONLY with “Yes” or “No”.

17
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C.3 PROMPT FOR MULTIPLE-CHOICE QUESTIONS WITH STEP-BY-STEP REASONING

# Instruction: You are given a video. Based on the content of the video, answer the follow-
ing question:
# Question: {Question}
# Options:
A: {Option A} B: {Option B} C: {Option C} D: {Option D}
# Task:
Note that you should first reason step by step, and then you should give your final choice in
A, B, C, or D.
Your answer format should be as follows:
Step X: [Reasoning step X]
The final choice is:
\bbox{{Answer with the option’s letter directly(A, B, C, or D).}}.

D CASE STUDY

Table 6: Error Distribution Across Models

Error Category Gemini2.0-Flash Qwen3.0-Omni Qwen2.5-Omni

Audio Understanding 17.77% 25.6% 29.2%
Temporal Reasoning 6.15% 39.9% 28.2%
Multimodal Fusion 61.03% 23.0% 25.6%
Visual Understanding 12.03% 8.3% 9.9%
Counting 1.9% 2.0% 4.7%
Spatial Understanding 1.12% 1.2% 2.4%

D.Because Superman made too much noise while eating.

Q: When the man and woman in the picture were discussing ice cubes, why did they notice Superman behind them?

Task: causal reasoning

"reasoning_steps": [
{
"modality": "vision",
"evidence": "they notice Superman at 
0:37.",
"inference": "get the Superman."
},
{
"modality": "vision",
"evidence": "Superman just turned 
around and took a step.",
"inference": "get the point."
},
{
"modality": "audio",
"evidence": "Superman made a sound 
when he stepped on the wooden floor.",
"inference": "Because Superman made a 
sound when he stepped on the wooden 
floor."
}],
“answer”: ” B. Because Superman made 
a sound when he stepped on the 
wooden floor.”

Based on the audio and visual 
cues in the video, we can 
determine the reason why the man 
and woman noticed Superman:
1. The man and woman are discussing 

a glass with ice cubes. The man says, 
"Yes, that's what happens when 
water gets cold.” This indicates they 
are focused on the ice cubes.

2. Immediately after the woman says, 
"No, what I'm saying is...", there is a 
loud, crashing sound.

3. The camera cuts to the man in the 
white robe, who is holding a 
sandwich. He is startled by the noise, 
drops his sandwich, and turns around 
with a shocked expression. The 
sound is clearly the noise of the 
sandwich falling and hitting the floor.

4. Therefore, the noise that made them 
notice Superman was the sound of 
him dropping his sandwich.

Model’s answer: “ D. Because Superman 
made too much noise while eating.”

Locate the correct
event.

Locate the correct
event.

Misidentifying the 
content and source 
of the audio!

Incorrect answer.

Audio Understanding 
Error

Figure 8: A case about Audio Understanding Error.
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D.Because Superman made too much noise while eating.

Q: What is the fourth animal seen in the Safari Zone?

Task: temporal understanding

"reasoning_steps": [
{
"modality": "audio",
"evidence": "At 4:50, a woman said 'We 
are going to the Safari Zone'.",
"inference": "This indicates that they 
would go to see the animals in the Safari 
Zone afterwards."},
{
"modality": "vision",
"evidence": "At 5:08, a brown bear 
appear in the scene.”, …},
{
"modality": "vision",
"evidence": "At 5:32, several siberian
tigers appears in the scene.", …},
{
"modality": "vision",
"evidence": "At 5:53, two white lions 
appear in the scene.",…},
{
"modality": "vision",
"evidence": "At 6:04, a jackal appear in 
the scene.",…},
],
“answer”: ” C. Jackal"

Based on the sequence of 
animals shown in the Safari 
Zone, we can identify the fourth 
one by observing the order of 
appearance:

1. The video shows a large bird's nest 
on the ground, which is not an 
animal.

2. The camera pans to show a group 
of elephants in an enclosure.

3. The view shifts to a lion and lioness 
resting on a grassy slope. 

4. The camera then shows a group of 
cheetahs, with one lying down and 
two standing alert.

5. Therefore, the fourth animal seen in 
the Safari Zone is the cheetah.

Model’s answer: “ D. Cheetah”

Incorrect temporal 
and sequential 
understanding！

Incorrect answer.

Temporal Reasoning 
Error

Figure 9: A case about Temporal Reasoning Error.

D.Because Superman made too much noise while eating.

Q: When a blogger presents the process of searching for a skier, which of the following is correct?

Task: summarization

"reasoning_steps": [
{
"modality": "audio",
"evidence": "The blogger said he will 
search for a skier.",
"inference": "locate this point."},
{
"modality": "vision",
"evidence": "The blogger is showing the 
search for a skier.",
"inference": "locate this point."},
{
"modality": "vision",
"evidence": "There are 10 clips searched 
overall.",
"inference": "locate this point."},
{
"modality": "vision",
"evidence": "there are 6 clips highly 
relevant with the video.",
"inference": "there are 4 videos found 
that were not highly relevant."
}
],
“answer”: ” B. There were 4 clips found 
that were not highly relevant."

Let's analyze the video content to 
determine the correct answer.

1. The scene where a blogger 
presents the process of searching 
for a skier occurs from 2:47 to 2:58.

2. Analyze the options B: The video 
shows a search for "skier" and 
displays 10 clips. 

3. The blogger does not mention that 
4 of them were not relevant. This 
option is incorrect.

Model’s answer: “C. The length of the 
second viewed clip is 8 seconds.”

Incorrect answer.

Multimodal Fusion 
Error

Locate the correct
event.

Correct number of 
whole clips.

Couldn’t reason with 
cross-modality 
information!

Figure 10: A case about Multimodal Fusion Error.

To better understand the underlying causes of model successes and failures on OmniVideoBench,
we conducted a detailed analysis using three representative models: Qwen2.5-Omni, Qwen3-Omni-
30A3B, and Gemini2.0-Flash. We aligned each model’s incorrect reasoning chain with the Om-
niVideoBench ground-truth chains using DeepSeek-V3.1 and categorized the resulting discrepan-
cies into 44 concise error types. These types were further grouped into six high-level categories:
temporal reasoning error, audio comprehension error, multimodal fusion error, visual compre-
hension error, counting error, and spatial reasoning error. A human verification study covering
50 randomly sampled errors per category confirmed a high level of agreement with the automatic

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.Because Superman made too much noise while eating.

Q: While Peggy is complaining to her friends, where is the person with hair the color of the jacket she made for 
her husband located in relation to Peggy?

Task: spatial understanding

"reasoning_steps": [
{
"modality": "vision",
"evidence": "In 1:16, the jacket appears 
in the water. The main part of the jacket 
is kind of orange and the sleeves are 
red.",
"inference": "The hair the person is either 
orange or red."},
{
"modality": "audio",
"evidence": "In 3:16, Peggy is complaing
to her friends.",
"inference": "Her friends appear."},
{
"modality": "vision",
"evidence": "In 3:46, the only person with 
the red hair is shown, sitting acoss from 
Peggy.",
"inference": "The hair color of the woman 
across from Peggy matches the color of 
the jacket.”}
],
“answer”: ” A. Across from Peggy.”

Based on the scene where Peggy
is complaining to her friends, 

we can determine the location of 
the person with hair the color of the 
jacket she made for her husband.

1. Peggy is the woman with brown 
hair and glasses, sitting in the 
middle of the three women.

2. The blonde-haired woman is sitting 
on the right side of the table from 
Peggy's perspective.

3. Therefore, the person with hair the 
color of the jacket is located to the 
right of Peggy.

Model’s answer: “C. To the right of 
Peggy.”

Incorrect answer.

Visual 
Understanding Error

Locate the correct
event.

incorrect recognition 
of jacket and hair 
colors.

Figure 11: A case about Visual Understanding Error.

annotations. The quantitative comparisons appear in Table 6 and some cases are shown as figs. 8
to 11.

As shown in Figure 12, the first three categories constitute the majority of observed failures for
open-source models, indicating that the core bottlenecks of current MLLMs lie in the intersection
of temporal modeling, non-speech audio interpretation, and cross-modal integration. These capa-
bilities align closely with the design focus of OmniVideoBench, emphasizing long-range temporal
dependencies, general acoustic semantics, and robust multimodal alignment.

Figure 12: Error distribution of Gemini2.0-Flash, Qwen2.5-Omni and Qwen3-Omni.

Temporal Reasoning Error. By analyzing the distribution of error types across different tasks, as
shown in Table 7, we find that models frequently struggle with capturing long-range dependencies
and sequential relationships, especially when relevant evidence is distributed across multiple clips.
Difficulties are further amplified when visual and auditory streams are not perfectly synchronized,
requiring the model to integrate misaligned cues over extended durations. These trends suggest that
current MLLMs lack sufficiently expressive mechanisms for hierarchical temporal modeling and
consistent aggregation of temporal evidence.

Audio Understanding Error. By analyzing the distribution of error types across different au-
dio types, as shown in Table 8, we find that non-speech audio—such as music and environmental
sounds—remains a major challenge because it lacks stable symbolic anchors comparable to those

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 7: Error distribution by video duration (percentage) for Gemini2.0-Flash, Qwen2.5-Omni, and
Qwen3-Omni.

Model Video Duration Audio Understanding (%) Temporal Reasoning (%) Multimodal Fusion (%) Visual Understanding (%) Counting (%) Spatial Understanding (%)

Gemini2.0-Flash

(0,1] min 16.3 10.8 39.8 9.6 19.3 4.2
(1,5] min 14.5 10.4 39.7 9.6 18.6 7.2

(5,10] min 22.5 16.7 31.3 9.3 13.2 7.0
(10,30] min 27.1 17.2 22.9 16.0 11.5 5.3

Qwen2.5-Omni

(0,1] min 27.7 31.9 27.7 6.7 4.2 1.7
(1,5] min 23.3 36.8 24.5 10.3 3.2 2.0

(5,10] min 22.9 45.3 21.2 10.0 0.0 0.6
(10,30] min 29.3 43.9 20.0 5.4 1.0 0.5

Qwen3-Omni

(0,1] min 25.2 31.1 30.1 7.8 5.8 0.0
(1,5] min 28.0 26.8 25.9 12.1 5.9 1.3

(5,10] min 29.7 33.5 24.1 8.2 4.4 0.0
(10,30] min 33.8 25.6 25.6 10.3 3.1 1.5

in spoken language. Models often fail to map continuous acoustic features (e.g., rhythm, timbre,
intensity) to higher-level semantic interpretations involving events, emotions, or actions. Attribution
mistakes are also common, including misidentifying background music as speech or incorrectly as-
signing off-screen sounds to on-screen entities. This reflects the speech-centric nature of existing
audio encoders and insufficient grounding in general acoustic semantics.

Table 8: Error distribution by audio type (percentage) for Gemini2.0-Flash, Qwen2.5-Omni, and
Qwen3-Omni.

Model Audio Type Audio Understanding (%) Temporal Reasoning (%) Multimodal Fusion (%) Visual Understanding (%) Counting (%) Spatial Understanding (%)

Gemini2.0-Flash
Music 50.5 9.9 14.3 2.2 17.6 5.5
Sound 19.0 12.9 23.1 15.6 23.1 6.1
Speech 16.4 14.3 37.7 11.4 13.9 6.3

Qwen2.5-Omni
Music 15.9 47.8 24.6 8.7 1.4 1.4
Sound 18.7 52.3 18.7 5.6 4.7 0.0
Speech 28.0 36.6 23.6 8.8 1.6 1.4

Qwen3-Omni
Music 23.4 28.1 31.2 9.4 7.8 0.0
Sound 17.8 42.1 21.5 12.1 6.5 0.0
Speech 32.8 26.0 26.3 9.7 4.0 1.1

Multimodal Fusion Error. Multimodal fusion failures manifest primarily in two ways: (1) im-
perfect alignment between visual and auditory cues and (2) modality neglect, where the model over-
relies on a single modality while disregarding complementary or corrective information present in
another. For example, a model may rely solely on visual cues to infer an answer while failing to
incorporate crucial auditory evidence. Such issues highlight weaknesses in cross-modal attention
robustness and balanced multimodal reasoning.

Figure 13: Proportion of error types across different tasks for Gemini2.0-Flash, Qwen2.5-Omni and
Qwen3-Omni.

Counting and Spatial Understanding Error. Although models demonstrate comparatively weak
performance on Counting and Spatial Understanding tasks, only a limited portion of errors are
explicitly attributed to these categories. Further inspection, as shown in Figure 13 reveals that
most failures stem from earlier deficits in fine-grained perception and precise temporal localiza-
tion. These tasks require detecting multiple small entities, identifying subtle spatial orientations,
or localizing objects at specific moments in long video sequences. Errors in early perception or
temporal alignment therefore cascade into incorrect counting or spatial reasoning outcomes.
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E USE OF LLMS

Large language models (LLMs) were utilized in this work solely as research tools to assist with
data quality control and ancillary writing support. Specifically, we employed advanced multimodal
LLMs (e.g., Gemini-2.0-Flash and DeepSeek-V3) to help filter out questions that could be answered
using only a single modality and to identify potential textual biases during dataset refinement, as
described in Sec. 2.4. In addition, LLMs were used to perform minor language polishing of the
manuscript after the main content was written by the authors. All experimental design, dataset con-
struction, analysis, and conclusions were conceived and executed by the authors without automated
decision-making. No confidential, private, or sensitive data were provided to any external LLM
services.
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