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ABSTRACT

In the era of data explosion, online machine learning in which learning models
are updated in real-time has become essential due to the growth of data in prac-
tice. In particular, it is more challenging to collect and annotate new massive data
accurately and timely compared to traditional offline supervised training settings.
Although this online training framework has been shown to be practically benefi-
cial, there has been a lack of theoretical guarantees for the learning performance,
especially for the case with noisy labels. This paper aims to investigate a learning
theory for both original deep online training and online training with noisy labels.
We first introduce a theoretical bound of the gaps of empirical risks and gaps of
generalization risks in micro-batch online training when learning with both clean
and noisy labels. Those bounds will efficiently help guide the online training
scheme when receiving new data. We next analyze the impact of micro-batch size
on the learning performance of models with noisy labels through our experimental
results on CIFAR10, and CIFAR100 datasets using different noise, which consis-
tently demonstrates the merit of the bounds above in the online training setting.

1 INTRODUCTION

1.1 MOTIVATION

Deep learning has shown dominant performance in many domains compared to other traditional ma-
chine learning approaches. One of the key limitations of training a deep model is that it usually relies
on the availability of a significant amount of data before training. Designing effective deep learning
approaches, in which the model is trained over time as the number of data samples is continuously
increased is critical since that will increase the use of deep learning in many real-life applications.
To handle the ever-riching streams of data involved when solving real-time applications, one of the
most successful approaches is online learning. Despite the abundance of these systems in deploy-
ment, the practice of online learning itself heavily lacks the rigorous theoretical studies that could
serve as the foundation for both research and engineering innovations.

The online learning scheme considered in this paper should not be confused with continual learn-
ing (Van de Ven & Tolias, 2019), a related, but different research direction that enjoys a more active
body of research. As illustrated in Figure 1, the goal of online learning is to progressively update
a learning model using the continuous stream of data coming from the business interface (e.g., user
activities, user reviews, etc.,) to solve a fixed specific task. Continual learning, on the other hand,
aims to use a single deep neural network for solving a sequence of different tasks, or a task with
either a sequence of different data domains or different problem requirements (e.g., different sets of
classes) (Van de Ven & Tolias, 2019). Another distinguishing characteristic of these two fields is
that while online learning cannot possibly access the “full training set” due to the nature of real-time
problems, continual learning is free from this constraint and can be seen as repurposing the model
from one training set to another.

In practice, the online learning framework can be further categorized into two main approaches,
namely “streaming online learning” and “micro-batch online learning”. The former considers up-
dating the model as soon as a new data point has arrived, while the latter employs data buffers as
training micro-batches and only updates the model by these micro-batches (Hoi et al., 2018). Lastly,
one essential goal of streaming online learning is to perform training and inference simultaneously

1



Under review as a conference paper at ICLR 2023

in real-time systems, while micro-batch online learning can tolerate a delay period and separate the
training and inference routines for the sake of accumulated performance.
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Figure 1: Differences between three learning settings: (a) Continual learning (b) Stream online
learning (c) Micro-batch online learning

In this paper, we focus on the micro-batch online learning setting due to its suitability for many real-
life applications. The main goal of our paper is to introduce a theoretical guarantee for the learning
performance of that online training framework. Furthermore, we extend our theoretical results to
the case of online learning with noisy labels. This data issue can naturally happen in many practical
settings due to the fact that when collecting real-time and crowd-sourcing data from users, labels are
inherently noisy with incorrect annotations. The learning performance of a model has been shown
to be negatively affected by noisy labels (Ghosh et al., 2015; 2017). It is worth noting that our paper
can be positioned as a theoretical extension of (Cesa-Bianchi et al., 2004) for micro-batch online
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learning with deep neural networks, adding to the current short list of micro-batch online learning
research.

1.2 CONTRIBUTIONS AND ORGANIZATION

Contribution: The contributions of our work are threefold:

(i) We investigate the learning theory for deep online training settings. In particular, our work
provides the first lower bound for the difference between gaps of empirical risks and gaps of
truth risks in micro-batch online learning, which could be used as a guideline for machine
learning practitioners on when they should retrain their model with new labeled data

(ii) We extent the theoretical results above for the online training under noisy labels setting.
Interestingly, we obtain similar analyses for that framework.

(iii) We provide experimental results on two benchmark datasets in machine learning to demon-
strate the effects of online batch size in micro-batch online training problems with several
noise levels.

Organization: The remainder of the paper is organized as follows. We provide some related work
in Section 2. In Section 3, we derive detailed settings of micro-batch online learning, noisy learn-
ing, and theorems about the gap between generalization risks and empirical risks of online training
problems. Section 4 benchmarks the performance of the training model with different online batch
sizes by extensive experiments on some datasets including CIFAR10 (Krizhevsky et al., 2009), and
CIFAR100 (Krizhevsky et al., 2009), and followed by discussions. Finally, we draw conclusions
from this work in Section 5.

2 RELATED WORK

2.1 ONLINE LEARNING

Online algorithms for machine learning attracted great research interest in the past (Cesa-Bianchi &
Lugosi, 2006; Shalev-Shwartz, 2007; Hoi et al., 2018) with studies ranging from theoretical bounds
(Cesa-Bianchi et al., 2004; Ben-David et al., 2009), to online convex optimization theory (Bot-
tou, 1998; Crammer et al., 2006; Zinkevich, 2003; Duchi et al., 2011), to shallow neural networks
(Polikar et al., 2001; Elwell & Polikar, 2011) and kernel-based online learning (Cauwenberghs &
Poggio, 2000; Kivinen et al., 2004; Read et al., 2012). However, the similar achievement for online
learning with the modern deep learning approach is underdeveloped.

Most of the traditional online machine learning literature only concerns the instance-by-instance
learning paradigm, which resembles modern streaming online learning, due to computational re-
source inadequacy. Among the representative works, Cesa-Bianchi et al. (2004) derive a proba-
bly approximately correct (PAC) generalization bound for learning by a sequence of data points
that depends on the number of instances observed so far. Ben-David et al. (2009) study the learn-
ability theory of hypotheses classes in online learning, which yields several online regret bounds.
Bottou (1998) develops an online convex optimization framework for classical neural networks,
while Zinkevich (2003) introduces Greedy Projection for online optimization with general convex
functions. Along this line, Crammer et al. (2006) also propose Passive-Aggressive – a family of
margin-based streaming online learning algorithms, before Duchi et al. (2011) present a family of
subgradient methods adaptive to the evolving characteristics of newly arrived data.

A few classical research approaches, which go beyond linear classifiers include Learn++ and its
variants (Polikar et al., 2001; Elwell & Polikar, 2011), which consider ensembles of multilayer
perceptrons, and online kernel-based methods (Cauwenberghs & Poggio, 2000; Kivinen et al., 2004;
Read et al., 2012). Some of these kernel-based methods are the first works that consider micro-batch
online learning (Cauwenberghs & Poggio, 2000; Read et al., 2012), which requires the capacity
of modern memory hardware but is substantially easier to adapt from offline learning in practice.
Several recent works with micro-batch considerations are (Dekel et al., 2012) which analyzes the
regret bounds of micro-batch online learning in the sequential setting before developing a parallel
speed-up approach, and (Zhou et al., 2012) which aims to develop a micro-batch online learning
algorithm for denoising autoencoders.
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2.2 LEARNING WITH NOISY LABELS

To handle the learning issues with noisy labels, some considerable solutions have been proposed
which can be categorized into two main approaches. The first approach relies on the robustness of
loss functions or training processes, in which they are modified to improve the performance of the
model in noisy label settings. For example, it has been shown that smooth losses such as hinge
loss, squared loss, exponential loss, and log-loss can be more easily affected by label noise than
hard losses (Patrini et al., 2016; Manwani & Sastry, 2013). The second approach is called “filter
framework” and the algorithms consist of two separated parts. First, the label noise detection part
detects the incorrect labels in the training dataset. Then, the cleaned samples will be used by the
processing part to train a model.
The algorithms in each part are very diverse, and these exiting algorithm in this type is just the com-
bination of two individual methods in each part, which also is the most beneficial advantage of this
framework because it leverages the strengths of each part. Other interesting approaches are outlier
detection-based algorithms (Sun et al., 2007; Zhao et al., 2019) and additional expert’s knowledge-
based approach (Nguyen et al., 2021). A more complex algorithm is to weigh the samples in the
training set, which comes from the fact that the effect of each sample on the model can be different.
Ren et al. (2018) and Shen & Sanghavi (2019) down-weigh the data samples that are likely noisy
and train the model from the weighted dataset. However, there is a lack of paper working on dealing
with the noisy label in online training, where the number of newly arrived samples is small.

(Kim et al., 2021) is the first paper mentioning the continual noisy learning problem. The main idea
of the proposed method in that paper is based on a combination of using self-supervised learning
and queue to store cleaned data. Although that approach has been shown to work well in practice,
one of its key drawbacks is the lack of deep investigation of model learning behaviors. To the best of
our knowledge, our paper is the first work that aims to provide theoretical and experimental results
of insightful relations and boundaries for risks for online noisy learning. Our results can be used to
guide both machine learning researchers and engineers through making decisions related to various
settings in online training such as training frequency, sizes of online micro-batches, and many others.

3 METHODOLOGY

In this section, we first recap the empirical risk minimization framework and use it for the presen-
tation of online training using both clean and noisy labels. We then present our theoretical devel-
opment for the relation between the gap of true risks and the gap of empirical risks for both online
training settings above. Finally, we provide an algorithm that depicts our proposed online training
method above.

3.1 ONLINE LEARNING PROBLEM SETTING

Let us consider a supervised learning framework in which each data point is presented by a pair of
random variables (x, y), where x ∈ X ⊂ Rd is the input feature, and y ∈ Y is its corresponding
label. We assume that all the data points (x, y) are i.i.d. samples from an unknown but fixed joint
distribution p(x, y). The ultimate goal of a supervised learning framework is to find a prediction
function (or hypothesis) f : X → Y , that represents the dependence of the output y on the input x.
In the risk minimization scheme (Vapnik, 1998), that learning process is equivalent to minimizing
the generalization risk of the model f given a loss function L, namely RL(f) or R(f) for short
defined by

R(f) = RL(f) = E(x,y)∼p(x,y)[L(y, f(x)].

In practice, we can only have access to a specific (finite) training dataset D, and the induced empir-
ical risk minimization (ERM) framework will be represented by

f∗
emp = argmin

f
Remp(f),

where Remp(f) =
1

|D|
∑|D|

i=1 L(f(xi, yi)) is the empirical version of the ground truth risk R(f).

The performance of the learning process is then evaluated by the generalization error, which is
defined as the gap between R(f) and Remp, i.e., |R(f)−Remp(f)|.
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Algorithm 1 micro-batch online training process

Initialize the prediction function f0
for t = 1, 2, ...T do

Continuously receive instance {(xt
i, y

t
i)}

N
i=1 and then concatenate with available data samples

Di−1 to form training set Di

Train model ft−1 with training set Di to minimize empirical risk Remp(f) =
1

|D|
∑|D|

i=1 L(f(xi, yi))

Use current optimal function ft for inference when the number of arrived data samples is
smaller than N

end for

In an online training procedure, we denote the original data set by D0, and Nt is the number of new
data samples at the time step t, t = 1, . . . , T . In our setting, we assume that Nt = N, ∀t for
simplicity. Then the available dataset at time step t is defined as Dt = Dt−1 ∪ {(xt

i, y
t
i)}

N
i=1 ,∀t =

1, 2, ..., T . Then the learning idea is to estimate the model f that minimizes the empirical risk

Rt
emp(f) =

∑
(x,y)∈Dt

1

|Dt|
L(y, f(x)),

i.e., f∗
t = argmin

f
(Rt

emp). At the next time steps, when more N data samples have arrived, we aim

to achieve a better performance model provided by the corresponding optimal model f∗
t+1 trained

with dataset Dt+1. In other words, f∗
t+1 = argmin

f
(Rt+1

emp). The Algorithm 1 presents the pseudo-

code for micro-batch online training process.

3.2 THEORETICAL DEVELOPMENT

3.2.1 RELATIONSHIP BETWEEN THE GAP OF TRUE RISKS AND THE GAP OF EMPIRICAL RISKS
IN MICRO-BATCH ONLINE TRAINING

Theorem 1. Assuming that the loss function L is bounded, i.e., there exist two real number a, b such
that a ≤ L(y, x) ≤ b ∀(x, y). Then we have the relationship between gap of true risks and the gap
of empirical risks of two optimal models at two time steps t and t+B, (1 ≤ B ≤ T ) as follow:

P [|R(f∗
t )−R(f∗

t+B)| < 2ϵ+ |Rt
emp(f

∗
t )−Rt+B

emp(f
∗
t+B)|] >(

1− 2 exp

(
−2|Dt|ϵ2

(b− a)2

))(
1− 2 exp

(
−2|Dt+B |ϵ2

(b− a)2

))
(1)

Proof. We have L(yi, f(xi)) ∀i are independent and bounded between a and b. By applying the
Hoeffding’s inequality (Hoeffding, 1994) with independent random variables L(yi, f(xi)) with the
sum of variable is the empirical risk Rt

emp(f
∗
t ), and its expectation is the generalization risk R(f∗

t ),
we obtain

P [|Rt
emp(f

∗
t )−R(f∗

t )| < ϵ] > 1− 2 exp

(
−2|Dt|ϵ2

(b− a)2

)
, and

P [|Rt
emp(f

∗
t+B)−R(f∗

t+B)| < ϵ] > 1− 2 exp

(
−2|Dt+B |ϵ2

(b− a)2

)
for all ϵ > 0.

Hence

P [(|R(f∗
t )−Rt

emp(f
∗
t )| < ϵ) ∩ (|R(f∗

t+B)−Rt
emp(f

∗
t+B)| < ϵ)]

= P [|R(f∗
t )−Rt

emp(f
∗
t )| < ϵ] · P [|R(f∗

t+B)−Rt
emp(f

∗
t+B)| < ϵ]

>

(
1− 2 exp

(
−2|Dt|ϵ2

(b− a)2

))(
1− 2 exp

(
−2|Dt+B |ϵ2

(b− a)2

))
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Note that the left hand side of the equation above can be rewritten as:

P [|R(f∗
t )−R(f∗

t+B)| < 2ϵ+ |Rt
emp(f

∗
t )−Rt+B

emp(f
∗
t+B)|].

We thus get equation 1.

In the micro-batch online training settings, it is crucial to know in advance the amount of improve-
ment regarding the performance if we use newly arrived data to immediately train the model. The
theorem 1 above provides an estimation of that improvement so that both researchers and practition-
ers can make decisions on the proper number of data to train the model when considering the time
for training and computational cost. It is worth noting that the parameter ϵ could be used to adjust
the tightness or the certainty of the difference between those two gaps.

As clearly showed in the theorem 1, the right-hand-side of equation 1 depends on the size of the
set of trained data samples |Dt| and the number of data samples will be used to train |Dt+B | =
|Dt|+B ·N . With a fixed ϵ, the value of that probability increases when |Dt| or B rises.
Corollary 1. With probability at least (1− δt)(1− δt+B),

|R(f∗
t )−R(f∗

t+B)| − |Rt
emp(f

∗
t )−Rt+B

emp(f
∗
t+B)| <

√
ln( 2

δt
)(b− a)2

2|Dt|
+

√
ln( 2

δt
)(b− a)2

2(|Dt|+∆)
, (2)

where ∆ = |Dt+B | − |Dt| = B ·N , δt = 2 exp
(

−2|Dt|ϵ2t
(b−a)2

)
, and δt+B = 2 exp

(
−2|Dt+B |ϵ2t+B

(b−a)2

)
Corollary 1 explicitly indicates the dependence of the gap with respect to the difference ∆ in the
number of samples of the dataset between two timesteps. As ∆ tends to increase, the gap tends to
be tighter with a probability of at least (1− δt)(1− δt+B).

We next derive a similar result for online training under noisy labels.

3.2.2 RELATIONSHIP BETWEEN THE GAP OF TRUTH RISKS AND THE GAP OF EMPIRICAL
RISKS IN MICRO-BATCH ONLINE TRAINING

In noisy learning Ghosh et al. (2015; 2017), a noisy label ỹ is observed instead of the ground truth
label y and the noisy data set is defined as D̃t = D̃t−1 ∪{(xi, ỹi)}Ni=1 ,∀t = 1, 2, ..., T . The (noisy)
empirical risk of function f with D̃t then becomes R̃t

emp(f) = 1
˜|Dt|

∑
(x,ỹ)∈D̃t

L(ỹ, f(x)). The

noisy generalization risk of model f under loss function L is R̃(f) = E(x,ỹ)∼P (x,ỹ)[L(ỹ, f(x)]. We
denote f̃∗

t = argmin
f

(R̃t
emp), and f̃∗

t+1 = argmin
f

(R̃t+1
emp) are the optimal functions at time step tth

and (t+ 1)th .

The following theorem shows that Theorem 1 is also eligible for online training under noisy labels.
Theorem 2. Assuming that the loss function L satisfies: a ≤ L(y, x)) ≤ b, ∀(x, y). Then we have
the relationship between gap of truth risks and the gap of empirical risks of two optimal models at
two time steps t and t+B under noisy label as follow :

P [|R̃(f̃∗
t )− R̃(f̃∗

t+B)| < 2ϵ+ |R̃t
emp(f̃

∗
t )− R̃t+B

emp(f̃
∗
t+B)|]

>

(
1− 2 exp

(
−2|D̃t|ϵ2

(b− a)2|

))(
1− 2 exp

(
−2|D̃t+B |ϵ2

(b− a)2

))
(3)

Proof. We have L(ỹi, f̃(xi)) are independent ∀i. By applying Hoeffding’s inequality with in-
dependent random variables L(ỹi, f̃∗

i (xi)), where the sum of variable is the noisy empirical risk
R̃t

emp(f̃
∗
t ), and its expectation is the noisy generalization risk R̃(f̃∗

t ) we have:

P [|R̃t
emp(f̃

∗
t )− R̃(f̃∗

t )| < ϵ] > 1− 2 exp

(
−2|D̃t|ϵ2

(b− a)2

)
, and

P [|R̃t
emp(f̃

∗
t+B)− R̃(f̃∗

t+B)| < ϵ] > 1− 2 exp

(
−2|D̃t+B |ϵ2

(b− a)2

)
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for all ϵ > 0. Hence

P [(|R̃(f̃∗
t )− R̃t

emp(f̃
∗
t )| < ϵ) ∩ (|R̃(f̃∗

t+B)− R̃t
emp(f̃

∗
t+B)| < ϵ)]

= P [|R̃(f̃∗
t )− R̃t

emp(f̃
∗
t )| < ϵ] · P [|R̃(f̃∗

t+B)− R̃t
emp(f̃

∗
t+B)| < ϵ]

>

(
1− 2 exp

(
−2|D̃t|ϵ2

(b− a)2

))(
1− 2 exp

(
−2|D̃t+B |ϵ2

(b− a)2

))
.

We can rewrite the left-hand side of the equation above as:

P [|R̃(f̃∗
t )− R̃(f̃∗

t+B)| < 2ϵ+ |R̃t
emp(f̃

∗
t )− R̃t+B

emp(f̃
∗
t+B)|].

We, therefore, get the results in equation 2.

Theorem 2 showed that gaps between generalization risks of the two optimal functions f∗
t and f∗

t+B

at time step tth and (t + B)th will be bounded by the corresponding gaps between two minimal
empirical risks of the same functions (which is essentially the optimal training loss).
Corollary 2. With probability at least (1− δt)(1− δt+B),

|R̃(f̃∗
t )− R̃(f̃∗

t+B)| − |R̃t
emp(f̃

∗
t )− R̃t+B

emp(f̃
∗
t+B)| <

√
ln( 2

δt
)(b− a)2

2|Dt|
+

√
ln( 2

δt
)(b− a)2

2(|Dt|+∆)
, (4)

where ∆ = |Dt+B | − |Dt| = B ·N , δt = 2 exp
(

−2|Dt|ϵ2t
(b−a)2

)
, and δt+B = 2 exp

(
−2|Dt+B |ϵ2t+B

(b−a)2

)
Similar to Corollary 1, Corollary 2 explicitly indicates the dependence of the gap with respect to the
difference ∆ in number of samples of the dataset between two time steps.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTING

In this section, we empirically evaluate the effects of online batch size by the generalization perfor-
mance of models trained online with different sizes ∆ of micro-batches. In particular, we consider
the performance based on the top-1 classification accuracy of ResNet-34 (He et al., 2016) on two
datasets: CIFAR10 (Krizhevsky et al., 2009) (containing 50, 000 training and 10, 000 testing images
of 10 visual classes) and CIFAR100 (Krizhevsky et al., 2009) (consisting of 50, 000 training and
10, 000 testing images of 100 visual classes).

To simulate the microbatch-based online learning practice, we first train the model with 50% of
the training set (to achieve a reasonable performance at the initial training stage), corresponding to
training the based model with public datasets in practice. We then split the second half of the training
set into different equal parts, corresponding to different micro-batch sizes, and incrementally train
the model with one micro-batch at a time (see Figure 2). To separate evenly, three values of micro-
batch size is used: 1562, 3125, and 6250 which correspond to dividing the remaining half of the
training set into 4, 8 and 32 parts. The training routine is replicated identically, regardless of the
micro-batch size. Based on the condition of Theorem 1, we employ the mean squared error (MSE)
as the bounded training loss, with the Adam optimizer. The learning rate is fixed at 0.0001, while
the number of epochs is fixed at 50. The batch size for each training epoch is 256 samples.

We further extend our experiments by replicating the above routine for different ratios of symmetric
label noise to demonstrate the applicability of our theory to the pragmatic scenario of training with
noisy labels. We corrupt the labels of training data by injecting uniform label noise (Ghosh et al.,
2017) at 4 noise rates rnoise: 0%, 20%, 40%, 60% before training the model. All experiments are
conducted with three random seeds {3, 4, 5}. The visual results are represented in Figures 3 and 4.
Targeting a fair comparison, we run each experiment 3 times using different initializations, and the
numerical results presented in the form of the means and standard deviations aggregated from these
trials are reported in Table1.

7



Under review as a conference paper at ICLR 2023

…

1 𝑡 Time

Training

Pretrained on ½ of the

training set

Training

Trained on 𝑡
micro-batches

0

Training

Initial model

½ training set ½ training set

1st micro-batch 𝑡-th micro-batch

…

Figure 2: An illustration of experiments

4.2 RESULTS AND DISCUSSION

First, it can be clearly seen that, in all cases, the gap between training with different micro-batches
agrees with our theoretical results in that the performance gap between consecutive checkpoints
should tend to be narrower as we increase the micro-batch size. As expected, the results are stable
across initializations as the standard deviation is relatively insignificant across trials.

In addition, when the micro-batch size increases, the performance of the model after each time step
increases. With the same training epoch, the larger the micro-batch size is, the higher performance
of a model is. Furthermore, this trade-off is extendable in the case of noisy labels. As clearly showed
in the Figures 3, 4, when the noise rate increases, the performance of models reduced, but the same
patterns are observed.

Keep in mind that, unlike streaming online learning where the model is put into inference while
training, our micro-batch setting only puts the model into inference after a training routine is con-
cluded. On one hand, to have a better model within a reasonable computational cost, one should wait
for more data before training. On the other hand, this might restrain its capability in catching up with
real-time problems. Thus, our results should serve as a trade-off frontier in terms of micro-batch in
online learning to assist machine learning engineers in deciding when to update models with new
data.

Figure 3: CIFAR10 test accuracy across micro-batch sizes and noise rates
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Figure 4: CIFAR100 test accuracy across micro-batch sizes and noise rates

Dataset
∆ = 6250 ∆ = 3125 ∆ = 1562

Name rnoise

CIFAR10

0.0 0.903± 0.001 0.903± 0.001 0.900± 0.002
0.2 0.902± 0.003 0.900± 0.003 0.900± 0.002
0.4 0.891± 0.002 0.889± 0.000 0.885± 0.000
0.6 0.859± 0.002 0.844± 0.001 0.842± 0.003

CIFAR100

0.0 0.609± 0.002 0.596± 0.001 0.575± 0.004
0.2 0.597± 0.004 0.587± 0.002 0.568± 0.004
0.4 0.575± 0.003 0.557± 0.006 0.538± 0.006
0.6 0.514± 0.005 0.495± 0.002 0.474± 0.004

Table 1: Test accuracy across micro-batch sizes and noise rates on CIFAR10 and CIFAR100.

5 CONCLUSION AND FUTURE WORKS

In this paper, we deeply investigate micro-batch online training framework for learning deep models
based on the empirical risk minimization learning principle. Our theoretical and empirical results
demonstrate that the generalization performance gap between consecutive checkpoints critically de-
pends on the sizes of incremental data batches. This should serve as strategic guidance for online
updatable machine learning algorithms deploying in practice, e.g., whether or not to update your
“real-time” models within seconds or minutes. In future works, we look foward to using these
results as the foundation for investigating methods with more realistic assumptions and exploits.
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