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Abstract—Early identification of individuals at risk for
Alzheimer’s disease is essential to improve treatment effectiveness.
Cerebrospinal fluid analyses and positron emission tomography
(PET) scans are commonly used to detect the presence of beta-
amyloid and tau, which are associated with an increased risk
of conversion to Alzheimer’s disease. However, these biomarker
tests are expensive and involve invasive procedures. Researchers
are working towards discovering easily measurable biomarkers
to detect individuals at risk, but only a few have been identified
thus far. There is a need to discover biomarkers that are cost-
efficient and non-invasive to test. We propose a machine learning
approach for discovering potential risk biomarkers of Alzheimer’s
disease through the analysis of physiological responses to the
cognitively complex task of driving by using decision tree ensemble
techniques. Though driving patterns in early Alzheimer’s have
been previously studied, physiological responses of cognitively
normal seniors during driving remain unexplored. As a first step,
we measure heart rate, electrodermal activity, and temperature
responses to several driving events, such as right turns and
roundabouts, of seniors with and without elevated PET beta-
amyloid levels to explore the relationship between these physi-
ological responses and amyloid level. Data were collected from
26 participants with elevated beta-amyloid and 28 without. We
used four machine learning algorithms for classification: Random
Forest, Extra Trees, AdaBoost, and XGBoost, and developed
a novel methodology to extract significant features from these
models. By doing so, we successfully identified five risk biomarkers
most influential in differentiating the two groups with and without
elevated beta-amyloid.

Index Terms—Beta-amyloid, Decision Tree Ensemble, Driving
and Alzheimer’s, Physiological Signals, Risk Biomarker Discovery

I. INTRODUCTION

As the population of senior citizens in the US continues to
grow, the number of Americans with dementia is also on the
rise. It is estimated that in 2050, the population of Americans
age 65 and older will increase from 58 million to 82 million
in 2022 [1]. About 6.9 million senior citizens are living in the
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US with Alzheimer’s disease (AD) in 2024, and this number
is predicted to increase to 12.7 million by 2050 [1]. AD is the
most common cause of dementia, accounting for two-thirds of
all dementia diagnoses [3], and results in the loss of cognitive
functioning [2], which hinders the ability to perform daily life
activities.

AD is a neurodegenerative disease with distinct pathological
characteristics. These include accumulations of beta-amyloid
(Aβ) plaques outside neurons [1], which are caused by the
breakdown of the amyloid precursor protein [5], and abnormal
accumulations of the tau protein inside neurons, which are
known as neurofibrillary tangles. The diagnosis of AD is a com-
plex, multifactorial process that includes the assessment of key
biomarkers such as neurodegeneration, elevated Aβ, and tau.
Definite tests for these biomarkers include cerebrospinal fluid
(CSF) analyses and PET scans [6, 9]. However, these diagnostic
methods can be quite expensive, require specialized equipment,
and often involve invasive procedures for the individual. Explo-
ration of novel risk biomarkers that are reliable, non-invasive,
and cost-efficient are necessary to identify individuals at higher
risk of developing AD in the future.

Many studies have discussed the association between ele-
vated Aβ levels, as identified through PET imaging, and an in-
creased risk of conversion to mild cognitive impairment (MCI)
due to AD [21, 27]. However, Aβ levels may increase 15 to 20
years or more before symptoms become apparent, coinciding
with increases in tau levels. Cognitively normal seniors with
elevated Aβ may exhibit subtle yet quantifiable changes in their
daily activities. Looking for changes in more complex activities
of daily living may provide insights into one’s chances of
developing cognitive decline in the future. Specifically, driving
is an incredibly complex and cognitively demanding task that
is regularly undertaken by many older adults and may therefore
be an ideal daily activity for monitoring early decline. The early
impact of AD on driving has been studied by researchers in the
past. As an example, Wadley et al. [7] compared the driving



performance of individuals with and without MCI and found
that drivers with MCI had a greater likelihood of obtaining
suboptimal ratings for lane control and left turns. Similarly,
Stinchcombe et al. [8] analyzed the simulated driving perfor-
mance at intersections for drivers with mild AD and concluded
that they commit most of their errors during the approach to
the intersection. These studies focused on analyzing the driving
behavior of individuals with an early MCI or AD diagnosis
who have started to display symptoms. The physiological
signals of cognitively normal individuals with elevated Aβ
burden remain unexplored. For example, increasing heart rate
or electrodermal activity may reflect anxiousness or increased
situational awareness in key driving situations. Given the link
between PET detected Aβ levels and the risk of developing
AD, comparing the physiological responses during driving of
seniors with and without elevated Aβ may reveal distinctive
characteristics of drivers with elevated Aβ. Identifying cost-
effective alternatives for the early detection of cognitive decline
would greatly enhance the accessibility of early AD diagnosis.
Consequently, we chose to study the physiological signals
of seniors with and without increased Aβ during driving to
discover potential novel susceptibility biomarkers of cognitive
decline due to AD. In this study, we explore whether senior
drivers with higher Aβ levels exhibit different physiological
responses to key driving scenarios with increased cognitive
demand (e.g., freeway entrances, roundabouts) compared to
senior drivers with no elevation in Aβ.

Artificial intelligence (AI) and machine learning (ML) meth-
ods have shown promising results for biomarker identification
[15]. Specifically, decision trees, a form of supervised learning
in AI and ML, have been widely used for biomarker discovery
and classification by many studies [10, 15]. As an example,
Hamsagayathri et al. [11] used J48 and Classification and
Regression Trees (CART) decision tree algorithms to classify
breast cancer. An alternating decision tree with principal com-
ponent analysis was deployed for early heart disease classifi-
cation by Jabbar et al. [12], whereas Li et al. [13] utilized the
Extreme Gradient Boosting tree (XGBoost), which is a form of
gradient boosting decision trees, to identify prognostic biomark-
ers of cancer. Over the years, many studies have unveiled the
ability of decision trees and decision tree ensembles to provide
reliable biomarker identification and classification results.

The aim of this study is to analyze the physiological re-
sponses of senior drivers with normal cognition with and
without elevated Aβ to discover potential risk biomarkers of
impending cognitive decline using multiple ML ensembles of
decision trees (EoDT) techniques. We utilize the four following
EoDT algorithms: Random Forest, Extra Trees, AdaBoost, and
XGBoost, and compare each method’s accuracy of classifying
seniors with elevated Aβ and ranking of feature importances
to identify the best risk biomarkers of cognitive decline. A
risk or susceptibility biomarker is defined as a biomarker used
to identify an individual, currently asymptomatic, at risk of
developing a given disease or condition in the future [4].

The remainder of the paper is organized as follows. Related
work is discussed in Section II. Data collection and processing

methods are described in Section III. The EoDT models used,
experimental methods, and biomarker selection procedure are
explained in Section IV. Experimental results and discovered
potential risk biomarkers are presented in Section V. Lastly,
the future scope and final remarks are discussed in section VI.

II. RELATED WORK

In this section, we discuss related work on extracting and
analyzing physiological features to identify early cognitive
decline and AD.

In order to differentiate between seniors with and without
AD, Vicchietti et al. [16] utilized computational electroen-
cephalographic (EEG) signal analysis. The EEG database was
obtained from Florida State University and pre-processed using
the Wavelet Transform. The researchers applied six different
computational time-series analysis methods, including wavelet
coherence and fractal dimension, to the EEG data for feature
extraction and compared the robustness of each method in
identifying seniors with AD. Each method was evaluated using
area under the curve and the ANOVA p-value to assess its
ability to detect AD. It was concluded that the Quantiles
Graph method produced the highest accuracy, sensitivity, and
specificity scores.

The study conducted by Dieffenderfer et al. [14] developed
a wearable system that longitudinally monitors physiological
and behavioral signals, such as heart rate variability and elec-
trodermal activity (EDA). This system aims to enable the early
detection of AD and related dementias. Here, cognitive stress
was measured using EDA, skin temperature, and photoplethys-
mography. The researchers designed a wrist band to collect
these signals and a waist patch to collect gait and speech
data. The researchers in this study plan to perform ML-based
analyses on the data collected using this system as future work,
in order to detect early AD and related dementias.

The extraction and analysis of physiological signals us-
ing ML and other approaches have significant potential for
identifying individuals at risk of developing cognitive decline.
While physiological signals have been studied under resting and
longitudinal conditions, they have not been evaluated during
the cognitively demanding task of driving. Despite extensive
research on identifying early cognitive decline, most studies
have only focused on individuals after the onset of symptoms.
To address this gap, we have studied the physiological signals
of cognitively normal Aβ positive and negative seniors during
key driving events using decision tree ensembles to identify
risk biomarkers of cognitive decline.

III. DATA COLLECTION AND PROCESSING

A. Participants
Fixed course driving trips from 54 participants were collected

for this study. All participants were diagnosed as cognitively
normal via consensus conference based on neuropsychological
testing, informant report, and medical and neurological eval-
uations by a clinician. Each participant underwent PiB-PET
scanning and the level of Aβ in their brain was quantified
based on the centiloid scale: centiloid values of 10 or lower



(a) Video Cameras

(b) Race Technology
DL1 CLUB Data
Logger
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Wristband

Fig. 1: Devices used for Data Acquisition

are indicative of no elevation in Aβ (Aβ negative), while
centiloid values of 20 or higher indicate elevated Aβ burden
(Aβ positive). One group consisted of 26 participants with
elevated Aβ levels. The mean age of this group was 73 years
(standard deviation (SD)=4.16) with a range of 66 to 81 years,
and consisted of 15 men and 11 women. The other group
consisted of 28 participants with no elevation in Aβ. The mean
age of this group was 73 years (SD=4.98) with a range of 65 to
85 years, and included 10 men and 18 women. Every participant
held a valid driver’s license.

B. Fixed Course Drive
All drivers completed a fixed course drive during the day-

time. They followed a suburban driving route in their own
vehicles, accompanied by an evaluator. The fixed course route
was 7.1 miles long and consisted of seven left turns, three right
turns, three intersections with traffic signals, six intersections
with stop signs, three yield signs, one freeway entrance ramp,
one freeway exit ramp, three roundabouts, three intersections
with signs, five intersections without signs, and two parking
lots.

The fixed course drive, encompassing a consistent set of
roadway types and conditions, provided a standardized eval-
uation to ensure fair comparison among all drivers. Evaluating
driving behavior through naturalistic drives may pose the issue
of fairness, for example, one driver’s route may consist of a
route without any freeways and minimal intersections, while an-
other driver’s route may consist of multiple busy intersections.
In this study, we kept the route consistent for all participants
in order to ensure the reliability of our findings.

C. Data Collection
Three types of data were collected from each participant

during their fixed course drive: video, vehicular, and physiolog-
ical data. Video data were collected using two video cameras
mounted inside the driver’s own car, one facing the driver
to record the driver’s upper body and face, and another to
record the front view of the car (Fig.1 a). Vehicular data such
as GPS position and driving speed were collected using the
Race Technology DL1 CLUB Data Logger (Fig.1 b), which
was placed under the driver’s seat. Physiological data, such as
heart rate (HR), EDA, and temperature (TEMP), were collected
through the Empatica E4 wristband (Fig.1 c), a user-friendly
watch with built-in sensor capabilities. The E4 wristband was
worn by the participant during the fixed course drive. The

sampling rates of HR, EDA, and TEMP are 1 Hertz, 4 Hertz,
and 4 Hertz respectively.

D. Physiological Signals
Physiological signals, such as heart rate and electrodermal

activity, provide information regarding an individual’s response
to various environmental situations depending on how they
interpret a given scenario. These signals can be measured
using multiple methods, including body mounted sensors and
wearable devices. For our study, we chose to measure and
analyze signals that would provide the most information re-
garding physiological arousal in response to key driving and
road events: HR, EDA, and TEMP.

Physiological arousal is an essential component of the body’s
response to a broad array of stimuli, such as external events and
internal psychological processes. Physiological arousal may be
due to a variety of factors including heightened attention, panic,
anxiety, and stress, to name a few. Upon encountering a stimu-
lus, an individual’s body goes through a series of events while
the situation is evaluated and ultimately provides a response
(e.g., a boost of energy to equip the individual to face the
forthcoming challenge). The response begins with the release
of hormones such as adrenaline, cortisol, and noradrenaline,
which elevates the level of physiological arousal. Heightened
physiological arousal triggers a series of physiological changes
including elevated heart rate, elevated blood pressure, sweat
production, and a rise in body temperature to name a few
[19, 24]. Each person’s physiological arousal level to the same
situation may differ based on their gender, age, temperament,
prior life experiences, existing illness, and many more factors
[20].

Physiological signals can provide information regarding a
person’s degree of arousal and response to various driving
situations depending on how the driver may interpret a given
scenario. These responses could include heightened attention
to surroundings or a stress response to a challenging situa-
tion. Studying the physiological changes due to driving-related
physiological arousal among seniors with and without elevated
Aβ may have the potential to reveal unique characteristics of
those at risk of developing cognitive decline. Routine drives
pose drivers with multiple scenarios that cause stress and many
other emotions even without people realizing it. Situations
such as heavy traffic loads, highways, lane changing, and road
construction are all examples of driving stressors.

For our research, we chose to study HR, EDA, and skin
TEMP, all of which are key identifiers of a person’s level
of physiological arousal that could occur during either signs
of heightened attention or stress [24]. HR is defined as the
number of times an individual’s heart beats in sixty seconds.
It is known that HR increases during physiological arousal,
therefore, monitoring the HR of Aβ positive and negative
seniors while driving and comparing their responses will give
us insights into unique variations that exist among each group.
In addition, EDA has been broadly used for many years as
an attested noninvasive identifier of stress [22]. As previously
stated, sweating is also one of the key responses during physio-



logical arousal, which causes the skin’s electrical conductivity,
known as skin conductance, to change based on the amount
of sweat secreted [23]. EDA measures skin conductance and
provides valuable information on a person’s level of potential
stress. EDA consists of two different components: tonic and
phasic. The tonic component, otherwise known as skin con-
ductance level, is composed of the underlying characteristics
and slowly fluctuating activity of the signal [23]. The phasic
component, known as the skin conductance response, is the
rapidly changing, short term segment that occurs within a span
of a few seconds [23, 25]. Studying EDA and its components
will provide information on the differences in the driving-
related physiological arousal between Aβ positive and negative
seniors. Lastly, an increase in body temperature can also be
attributed to arousal.

These three physiological signals can be easily and accu-
rately measured using wearable technology. For our study, we
used the user-friendly Empatica E4 wristband, which is known
to provide precise and reliable digital biomarker data. In this
study, our analysis targets HR, EDA, and TEMP responses
in senior drivers, both with and without elevated Aβ. This
focus may enable the identification of new risk biomarkers
that are accessible, non-invasive, and cost-effective, potentially
aiding the identification of those potentially at risk of cognitive
decline.

TABLE I: All Road Events and Driver Behaviors

Event ID Road Event
1 Freeway entry ramp
2 Freeway exit ramp
3 Missed freeway entry
4 Missed freeway exit
5 Red light
6 Green light
7 Yellow light
8 Stop sign - driver did not stop
9 Stop sign - driver stopped
10 Intersection with yield sign
11 Intersection without traffic signs
12 Light traffic load
13 Medium traffic load
14 Heavy traffic load
15 Left turn
16 Right turn
17 Lane change
18 Going straight
19 Roundabout
20 Missed opportunity
21 Unsafe gap
22 Failure to yield
23 Out of lane
24 Run through red light
25 Run through yellow light
26 Roll through stop sign
27 Hit curb
28 Overtake
29 Pedestrian crossing the street
30 Pedestrian on the side of the road
31 Road construction
32 Construction signs
33 Multilane road

Fig. 2: Overview of Data Collection and Processing Procedure

E. Data Processing

The road- and driver-view videos recorded during the fixed
course driving trip of each participant were manually annotated
to mark key road events along with their respective time
windows, specifying the start and end times of each event.
These windows are determined by the researcher who performs
the manual annotation. Table I presents the full list of annotated
road events and driver behaviors.

As not all events, such as hitting the curb, were experienced
by each participant, only events that occurred in at least
70% of participants in each group were used in this study
(i.e., a minimum of 20 participants in each group must have
data present). Therefore, the road events and driver behaviors
highlighted in bold in Table I were selected for analysis.

The average HR, EDA, and TEMP data were extracted for
each road event highlighted in bold from Table I based on time
windows that specify the start and end times of each driving
event (e.g., average HR response during freeway entry ramp).
This was done by first synchronizing the start times of the video
and E4 wristband data using a Python script we developed.
Then, to unify the sampling rates of all three physiological
signals to 4 Hertz, we upsampled HR by performing linear
interpolation. Lastly, to calculate the average physiological
response to each road event and driver behavior, we developed
a Python script to aggregate all occurrences of each driv-
ing behavior and road event and average their corresponding
physiological signals (HR, EDA, and TEMP individually) to
produce one average response value for each physiological
signal. For example, one result from these calculations would
be as follows: participant X had average HR, EDA, and TEMP
responses of 85 beats per minute, 2.5 microsiemens, and 35
degrees Celsius respectively to left turns (road event 15). The
data processing procedure is illustrated in Fig. 2.

In addition to averaged physiological responses to key road
events, we extracted additional features, such as variances
and differences between physiological responses to key road



events and benchmark events. We defined the following two
benchmark events:

1) Average physiological response throughout the entire
fixed course drive

2) Average physiological response over the 5 minutes pre-
ceding the fixed course trip, which is referred to as the
baseline measure

We converted ”roll through stop sign” (event 26) into a cat-
egorical variable with two options: ”yes” (participant rolled
through the stop sign without coming to a full stop) and ”no”
(participant did not roll through the stop sign and made a
complete stop). The full list of 131 physiological features we
extracted and used in all EoDT algorithms can be found in
Table II.

57% of the participants had complete data for all 131 features
while 43% had data missing for less than five features. Missing
data was handled using the mean imputation method. For
example, if HR data from a specific segment of the freeway
is missing for a participant from one of the two study groups
(e.g. due to a faulty sensor), then the missing data is imputed
based on the average for that event from all participants in that
individual’s group. We used the same procedure for any events
with missing data.

IV. METHOD

A. Ensembles of Decision Trees
EoDT are a popularly used ensemble learning method that

amalgamate the predictions of multiple trees to provide a more
accurate and reliable result than a single decision tree [17].
The ensemble learning technique in ML has demonstrated its
ability to create more robust and accurate models that are less
susceptible to overfitting. The three popular ensemble learning
methods are bagging, boosting, and stacking [18]. For our
study, we use multiple bagging and boosting techniques.

Bagging (bootstrap aggregating): This method uses boot-
strapping to create multiple random subsets of the data and
trains each model in parallel on one subset [18]. The final
prediction is generated by taking a majority vote (for classi-
fication) or average (for regression) of the results generated by
all the models. Bagging is known for its efficiency at reducing
variance and overfitting.

Boosting: In this method, training of the models is performed
in a sequential fashion, where every successive model learns
from the errors of the prior one. Weights are assigned to the
output of each tree, with higher weights given to incorrect
predictions. This way, multiple weak learners are combined to
generate one strong learner capable of providing results with
higher accuracies [18, 26].

B. Models Used
We use the following four EoDT models for potential risk

biomarker discovery:
1) Random Forest (RF): This is a bagging algorithm which
combines multiple decision trees that are fit on random sub-
samples of the training data. Each tree makes one prediction,
and the final result is generated based on whether the task is

classification or regression. A majority vote is used to determine
the final class prediction for a classification task, and the
results of all the trees are averaged to generate a final result
for regression. Random Forests have shown high capability
of reducing overfitting and provide high accuracy since the
forecasts of all trees are combined to make a decision. However,
since there are multiple trees and each tree needs to be trained
separately, Random Forests require quite a bit of time and
memory.
2) Extremely Randomized Trees (ET): Also known as Extra
Trees, this algorithm is quite similar to Random Forest. Extra
Trees also builds many decision trees, however, contrary to
Random Forest, this algorithm trains each tree on the entire
training data. Therefore, this algorithm does not fall into the
bagging or boosting category. A subset of features is randomly
selected for each tree and the node split is done based on a
randomly selected threshold value for every feature. Since the
splitting of trees is done in a random manner, this algorithm
reduces variance and has faster training times than Random
Forest.
3) AdaBoost (AB): Adaboost is a boosting algorithm which
sequentially trains multiple weak classifiers and assigns higher
weights to errors made by the preceding model in order for
the following models to focus on misclassified samples. The
algorithm starts by assigning the equal weights to all data
samples. A weak classifier is then trained on this data and
the weights of this classifier are calculated based on the errors
produced. Next, each sample’s weight is updated, where lower
weights are assigned to accurately classified samples and higher
weights are assigned to incorrectly classified samples. Weights
are also assigned to the model where higher weight is given to
classifiers with higher accuracies. Training, classifier weight
calculation, and weights assignment are repeated until the
stopping criterion is met. The final result for a classification
task is calculated by taking a majority vote of all the weak
learners. AdaBoost is quite a flexible model and can work with
a range of base classifiers. It also reduces the risk of overfitting
due to its nature of assigning higher weights to misclassified
samples. On the other hand, AdaBoost is a bit time intensive
and is sensitive to data which is noisy or contains outliers.
4) XGBoost (XGB): XGBoost stands for Extreme Gradient
Boosting and is a boosting algorithm widely used for classifica-
tion and regression. XGBoost is similar to AdaBoost, but uses
only decision trees as its base learner. In addition, the weights of
each sample are calculated using gradient descent in XGBoost.
Unlike the other models, XGBoost can handle missing data and
finds the optimal method of imputing the missing data sample.
Additionally, the algorithm is well known for its speed and
reduction of the overfitting problem due to its use of L1 and L2
regularization techniques. Conversely, XGBoost may be subject
to overfitting when working with small datasets. Also, precise
hyperparameter tuning is crucial to attain the best performance
using XGBoost.



TABLE II: Input Features for All Four EoDT Algorithms
Feature Name Description Number of

Features
HR road event ID number (e.g. ”HR 1”) Average HR response to road events 1,2,5,6,9,10,11,12,13,15,16,17,18,19 14

EDA road event ID number (e.g. ”EDA 1”) Average EDA response to road events 1,2,5,6,9,10,11,12,13,15,16,17,18,19 14
TEMP road event ID number (e.g.

”TEMP 1”)
Average TEMP response to road events 1,2,5,6,9,10,11,12,13,15,16,17,18,19 14

HR var Variance in HR throughout the fixed course drive 1
EDA var Variance in EDA throughout the fixed course drive 1

TEMP var Variance in TEMP throughout the fixed course drive 1
diff HR road event ID number (e.g.

”diff HR 1”)
Difference between average HR throughout the drive and average HR response to road

events 1,2,5,6,9,10,11,12,13,15,16,17,18,19
14

diff EDA road event ID number (e.g.
”diff EDA 1”)

Difference between average EDA throughout the drive and average EDA response to road
events 1,2,5,6,9,10,11,12,13,15,16,17,18,19

14

diff TEMP road event ID number (e.g.
”diff TEMP 1”)

Difference between average TEMP throughout the drive and average TEMP response to
road events 1,2,5,6,9,10,11,12,13,15,16,17,18,19

14

basediff HR road event ID number (e.g.
”basediff HR 1”)

Difference between baseline HR and average HR response to road events
1,2,5,6,9,10,11,12,13,15,16,17,18,19

14

basediff EDA road event ID number (e.g.
”basediff EDA 1”)

Difference between baseline EDA and average EDA response to road events
1,2,5,6,9,10,11,12,13,15,16,17,18,19

14

basediff TEMP road event ID number (e.g.
”basediff TEMP 1”)

Difference between baseline TEMP and average TEMP response to road events
1,2,5,6,9,10,11,12,13,15,16,17,18,19

14

roll stop Participant rolled through the stop sign (event 26) without coming to a full stop (yes/no) 2

TABLE III: Performances of All Four EoDT Models
EoDT Models Accuracy (%) Precision Recall F1 Score

Train Test Train Test Train Test Train Test
Random Forest 100 83.33 1.0 0.838 1.0 0.831 1.0 0.832

Extra Trees 100 77.78 1.0 0.784 1.0 0.775 1.0 0.775
AdaBoost 100 77.78 1.0 0.777 1.0 0.777 1.0 0.777
XGBoost 100 79.63 1.0 0.797 1.0 0.795 1.0 0.796

C. System Training, Evaluation, and Extraction of Significant
Features

For each of the four EoDT models, denoted as Mi (i =
1, 2, 3, 4), we applied K-fold cross-validation (CV) with K=5
to the data and features described in Table II. During K-fold
CV, we partitioned the dataset into K partitions using stratified
random sampling to ensure proportional representation of all
classes in each fold, maintaining balance throughout training
and testing. The training and testing process takes K iterations
and every iteration has its unique training and testing set. At
each fold, the system is trained using the training set, which
contains K-1 partitions, and evaluated using the testing set,
which takes the remaining partition. For 5-fold CV, at each
iteration, four partitions are used for training and the remaining
partition is used for testing. The K-fold CV method provides
a robust estimate of the model’s performance on unseen data.
In each fold, the training set contained approximately 21 Aβ
positive and 22 Aβ negative samples, while the testing set
contained approximately five Aβ positive and six Aβ negative
samples. To evaluate the performance of all models during
training, we used the following evaluation metrics: accuracy,
precision, recall, and F1 score. The same evaluation metrics
along with confusion matrices were computed at each fold
on the partition used as the test data, i.e. the partition that
is not used as a part of training at that fold. The evaluation
results across all K folds were averaged to produce the overall
performance results generated by K-fold CV.

After the training phase of each EoDT model, we generated a
ranking of feature importance at each fold. The ML algorithm
used in each model calculates feature importance across the
entire model by aggregating the contribution of each feature to

the predictive performance of the trees. The four EoDT models
used in this research employed different methods to calculate
feature importance — Random Forest used entropy, AdaBoost
used Gini impurity, XGBoost used gain, and Extra Trees also
used Gini impurity. In these model learning processes, each
feature is assigned a numerical value corresponding to its
significance within the model.

The process of extracting significant features is described
as follows. For each of the four EoDT models Mi, at every
fold K (the index of the folds in 5-fold CV processes, where
K = 1, 2, 3, 4, 5), we extract the top 25% of the features,
denoted as Mi,FK

. Here, FK denotes the top 25% of features
extracted at fold K. The top ranked features from each model
Mi are found by taking the intersection of the top ranked
features generated at each fold, i.e., Mi,F = Mi,F1

∩Mi,F2
∩

Mi,F3
∩ Mi,F4

∩ Mi,F5
. This step generated four separate

feature lists, one for each model (M1,F ,M2,F ,M3,F ,M4,F ).
Lastly, the features that appeared in the feature lists of three
or more models were chosen as the risk biomarkers most
effective at identifying senior drivers with Aβ positivity: Risk
biomarkers = (M1,F ∩M2,F ∩M3,F ) or (M1,F ∩M2,F ∩M4,F )
or (M1,F ∩ M3,F ∩ M4,F ) or (M2,F ∩ M3,F ∩ M4,F ) or
(M1,F ∩M2,F ∩M3,F ∩M4,F ).

V. EXPERIMENTAL RESULTS

The accuracy, precision, recall, and F1 score of all four
models were evaluated in our experiments, and the results
are shown in Table III and illustrated in Fig. 3 (the standard
deviation across all five folds for each metric is shown as error
bars). The Random Forest algorithm demonstrated superior
performance compared to the other three models, achieving an



Fig. 3: Accuracy, Precision, Recall, and F1 Score of All Models

accuracy of 83.33%, along with the highest scores in precision,
recall, and F1 metrics. All models achieved a full score on all
evaluation metrics during training. XGBoost ranked second in
performance following Random Forest. AdaBoost and Extra
Trees were the lowest performers, producing scores that were
very similar to each other across all four evaluation metrics.
Extra Trees had a slightly higher precision than AdaBoost while
AdaBoost had a marginally higher recall and F1 score. When
comparing the performances of both boosting models, XGBoost
and AdaBoost, both were relatively similar, with XGBoost
showing comparatively higher results across all evaluation
metrics. The confusion matrices of all models are shown in
Fig. 5.

Using the aforementioned method, we discovered five poten-
tial novel susceptibility biomarkers which identified individuals
with elevated Aβ burden as compared to those without. The
discovered biomarkers are presented in Table IV and the
importance of each top-ranked feature generated by each of
the four models is shown in Fig. 4.

Studying these discovered potential biomarkers in depth
revealed some characteristics unique to Aβ positive seniors
compared to their Aβ negative peers. HR appears to be the most
effective physiological indicator for distinguishing older drivers
with elevated Aβ from those without, outperforming responses
from EDA and TEMP, with TEMP being the least effective.
Intersections without traffic signs emerge as a pivotal road event
that triggers noticeable differences in HR responses between
Aβ positive and negative seniors. Seniors with Aβ positivity
exhibit a higher average HR during this road event than their

Fig. 4: Importance of Each Top-Ranked Feature

TABLE IV: Novel Risk Biomarkers Discovered in this Study

Feature
Name

Description Selected
by Models

HR 11 Average HR while encountering intersections
without traffic signs

XGB, RF,
ET, AB

diff HR 11 Difference between average HR throughout the
drive and average HR response while encountering

intersections without traffic signs

XGB, ET,
AB

diff HR 2 Difference between average HR throughout the drive
and average HR response to freeway exit ramps

RF, ET, AB

diff HR 13 Difference between average HR throughout the drive
and average HR response to medium traffic loads

RF, ET, AB

EDA var Variance in EDA throughout the fixed course drive RF, ET, AB

Aβ negative peers. Furthermore, while encountering intersec-
tions without traffic signs, freeway exit ramps, and medium
traffic loads, the average HR of seniors with elevated Aβ differs
much less than their average HR throughout the fixed course
drive when compared to seniors with no elevation in Aβ. In
other words, Aβ negative seniors seem to experience a greater
change in HR in the same situation than Aβ positive seniors.
Lastly, senior drivers with elevated Aβ have a higher variance
in their EDA responses throughout the fixed course drive, which
could be indicative of more pronounced fluctuations in arousal
levels when compared to Aβ negative seniors. Overall, the
physiological arousal levels of those with elevated Aβ are quite
different during intersections without traffic signs, freeway exit
ramps, and medium traffic loads when compared with those
with no elevation in Aβ. In these situations, Aβ positive
seniors show measurable differences in HR and EDA, with
HR being the most significantly affected parameter. Measuring
senior drivers’ physiological responses to these road events may
provide insights into their risk of developing cognitive decline
attributed to AD in the forthcoming years. Such individuals
can work with their healthcare providers to arrange for regular
monitoring to be vigilant for any early signs of cognitive
decline.

Fig. 5: Comparison of Confusion Matrices for All Four Ensem-
bles of Decision Trees Models

VI. CONCLUSION

Early diagnosis of AD is crucial to begin the necessary
treatment plans in order to delay progression of the disease.
There is a great need for more cost-efficient, non-invasive,
and reliable methods to identify individuals at greater risk
of developing AD in the future. Testing for the presence of
biomarkers has shown a promising path to early risk detection,
however, current AD biomarker screening involves invasive and
expensive procedures, making it inaccessible to some groups.
Risk biomarkers that can be non-invasively and inexpensively
measured using machine learning technologies will allow indi-
viduals at higher risk to be identified.

In this study, we proposed a machine learning approach for
early detection of those at risk of cognitive decline by studying



senior drivers’ physiological responses to cognitively complex
driving events. The focus was transferred from brain-derived
biomarkers to physiological biomarkers, to investigate the dif-
ferences in physiological arousal among Aβ positive and nega-
tive senior drivers. We discovered five potential risk biomarkers
of cognitive decline associated with Aβ positivity by analyzing
physiological responses to driving using Ensembles of Decision
Trees models. We employed one bagging model, Random
Forest, two boosting models, AdaBoost and XGBoost, and
the Extra Trees algorithm to perform the classification task
of identifying Aβ positive seniors. Accuracy, precision, recall,
and F1 score were calculated for all models during training
and testing using 5-fold cross validation. The highest accuracy
of 83.33% was achieved by Random Forest. XGBoost was
the next best performing model with an accuracy of 79.63%,
while Extra Trees and AdaBoost were the lowest performing
algorithms with accuracies of 77.78%. Novel risk biomarkers
were identified by systematically combining the top ranked
features over all five folds for each model and then selecting the
features appearing in the list of top-ranked features of three or
more models. The discovered risk biomarkers demonstrate that
seniors with elevated Aβ have observable differences in HR
and EDA responses to the following road events: intersections
without traffic signs, freeway exit ramps, and medium traffic
loads. Following our approach, studying physiological signals
during the cognitively demanding task of driving shows a
promising path for the discovery of potential risk biomarkers
of AD that can be non-invasively and cost-efficiently measured.
Such biomarkers can be used to recognize seniors at greater
risk of developing MCI due to AD in the forthcoming years
and arrangements can then be made for more invasive testing
if needed (e.g., PET, CSF).

We are actively recruiting more Aβ positive and negative
participants along with young participants and those with MCI.
Additionally, we are conducting a two-year follow-up study for
each participant. In the near future, we plan to validate and
improve the generalizability of our findings by using data from
this growing and more diverse group. As next steps, we also
aim to include additional physiological signals and road events,
enhance model performance, and study additional ML models
to discover more risk biomarkers of cognitive decline.
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