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ABSTRACT

One surprising trait of neural networks is the extent to which their connections
can be pruned with little to no effect on accuracy. But when we cross a critical
level of parameter sparsity, pruning any further leads to a sudden drop in accuracy.
What could explain such a drop? In this work, we explore how sparsity may affect
the geometry of the linear regions defined by a neural network and consequently
reduce its expected maximum number of linear regions. We observe that sparsity
affects accuracy in pruned neural networks similarly to how it affects the number
of linear regions as well as — and more so — our proposed upper bound on
that number. Conversely, we find out that selecting the sparsity on each layer to
maximize our bound very often improves accuracy in comparison to using the
same sparsity across all layers, thereby providing us guidance on where to prune.

1 INTRODUCTION

In deep learning, there are often good results with little justification and good justifications with few
results. Network pruning exemplifies the former: we can easily prune half or more of the connections
of a neural network without affecting the resulting accuracy, but have difficulty explaining why we
can do that. The theory of linear regions exemplifies the latter: we can theoretically design neural
networks to express very nuanced functions, but obtain much simpler ones in practice. In this paper,
we posit that the mysteries of pruning and the wonders of linear regions can complement one another.

When it comes to pruning, we can reasonably argue that reducing the number of parameters im-
proves generalization. While Denil et al. (2013) have shown that the parameters of neural networks
can be redundant, the smoother loss landscape of larger neural networks leads to better training
convergence (Li et al., 2018; Sun et al., 2020). Curiously, Jin et al. (2022) argue that pruning also
smooths the loss function, which consequently improves convergence during fine tuning — the ad-
ditional training performed after pruning the network. However, it remains unclear to what extent
we can prune without ultimately affecting accuracy, which is a primary concern in the literature.

Hoefler et al. (2021) illustrate that a moderate amount of pruning typically improves accuracy while
further pruning may lead to a substantial decrease in accuracy, whereas Liebenwein et al. (2021)
show that this tolerable amount of pruning depends on the task for which the network is trained. In
terms of what to prune, Blalock et al. (2020) observe that most approaches consist of either

(i) removing parameters with the smallest absolute value (Hanson & Pratt, 1988; Mozer &
Smolensky, 1989; Janowsky, 1989; Han et al., 2015; 2016; Li et al., 2017; Frankle & Carbin,
2019; Elesedy et al., 2020; Gordon et al., 2020; Tanaka et al., 2020; Liu et al., 2021); or

(ii) removing parameters with smallest expected impact on accuracy (LeCun et al., 1989; Hassibi
& Stork, 1992; Hassibi et al., 1993; Lebedev & Lempitsky, 2016; Molchanov et al., 2017;
Dong et al., 2017; Yu et al., 2018; Zeng & Urtasun, 2018; Baykal et al., 2019; Lee et al., 2019;
Wang et al., 2019; Liebenwein et al., 2020; Wang et al., 2020; Xing et al., 2020; Singh &
Alistarh, 2020; Yu et al., 2022), to which we can add the special case of exact compression
(Serra et al., 2020; Sourek & Zelezny, 2021; Serra et al., 2021; Ganev & Walters, 2022).

While the extensive work on this topic has helped us prune more with a lesser impact on accuracy,
fairness studies recently debuted by Hooker et al. (2019) have focused instead on the impact of
pruning on recall — the ability of a network to correctly identify samples as belonging to each class.
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Recall tends to be more severely affected for classes and features that are underrepresented in the
dataset (Hooker et al., 2019; Paganini, 2020; Hooker et al., 2020), which Tran et al. (2022) attribute
to differences across such groups in gradient norms and Hessian matrices of the loss function. Good
et al. (2022) have shown that such recall distortions may also occur in balanced datasets, however
in a more nuanced form: a moderate amount of pruning leading to comparable accuracy reduces
differences in recall, whereas an excessive amount of pruning leading to lower accuracy increases
differences in recall. Hence, avoiding a loss in accuracy due to pruning is also relevant for fairness.

In fact, one question keeps pushing this area: how can we get away with more network pruning?

Before we get there to our approach, let us consider the other side of the coin in our narrative.

When it comes to the theory of linear regions, we can reasonably argue that the number of linear
regions may represent the expressiveness of a neural network in which the neurons have piecewise
linear activations — and therefore relate to its ability to classify more complex data. We have discov-
ered that a neural network can be a factored representation of functions that are substantially more
complex than the activation function of each neuron. These networks may represent a piecewise
linear function in which the number of pieces — or linear regions — grows polynomially on the
width and exponentially on the depth of the network (Pascanu et al., 2014; Montúfar et al., 2014).

While many papers have shown that the right choice of parameters may lead to an astronomical
number of linear regions (Montúfar et al., 2014; Telgarsky, 2015; Arora et al., 2018; Serra et al.,
2018), the maximum number of linear regions can be affected by narrow layers (Montúfar, 2017),
the number of possible combinations of active neurons (Serra et al., 2018), and the parameters of the
network (Serra & Ramalingam, 2020). Despite the exponential growth in depth, Serra et al. (2018)
observe that a shallow network may in some cases yield more linear regions among architectures
with the same number of neurons. Furthermore, the number of linear regions in some cases relates
to the accuracy of the networks (Serra et al., 2018). Curiously, however, Hanin & Rolnick (2019a;b)
have shown that the typical initialization of neural networks is unlikely to yield the expressive num-
ber of linear regions that have been reported elsewhere. Whereas most of the literature is focused
on fully-connected feedforward networks using the Rectified Linear Unit (ReLU) (Nair & Hinton,
2010; Glorot et al., 2011) as the activation function, extensions of these results have been presented
for convolutional networks by Xiong et al. (2020) and for maxout networks Goodfellow et al. (2013)
by Montúfar et al. (2014), Serra et al. (2018), Tseran & Montúfar (2021), and Montúfar et al. (2021).

The study of linear regions bears some resemblance to universal approximation results, which have
shown that most functions can be approximated to arbitrary precision with sufficiently wide neural
networks (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989). Their results were later extended
to rectifier networks (Yarotsky, 2017) — with ReLU as the activation function of each neuron — and
subsequently focused on approximations in which the networks have limited width but arbitrarily
large depth (Lu et al., 2017; Hanin & Sellke, 2017). In comparison to universal approximation
results, we may argue that the theory of linear regions tells us what piecewise linear functions are
possible to represent — and consequently what other functions can be approximated with them —
given limited resources translated in terms of the number of layers and the width of each layer.

Likewise, another question seems to remain open here: can we use the number of linear regions
to improve accuracy if trained models are typically much less expressive in practice?

Now that you have read about both sides of the coin, you may have guessed where we are heading.

We posit that these two topics — network pruning and the theory of linear regions — can be used
in conjunction. Namely, that the theory of linear regions can be used to guide us on how to prune
neural networks. In order to get there, we must first address the paradox in our second question.
As observed by Hanin & Rolnick (2019a), perturbing the parameters of networks designed to max-
imize the number of linear regions, such as the one by Telgarsky (2015), leads to a sudden drop
on the number of linear regions. We interpret that as a matter on the distribution of the number of
linear regions: if by perturbing these constructions we get much smaller values, we can infer that
the numbers obtained with these constructions are telling us something about the long tail of the
distribution. However, if certain architectural choices lead to much larger numbers of linear regions,
we may also conjecture that the entire distribution shifts accordingly, and thus that even the ordinary
trained network might be more expressive if shaped with the potential number of linear regions in
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mind. Hence, we conjecture the architectural choices aimed at maximizing the number of linear
regions may lead to networks that are more likely to perform well in practice.

That brings us to a crucial gap in the literature: to the best of our understanding, there is no prior
work on how network pruning affects the number of linear regions. We take the path that we believe
would bring the most insight, which consists of revisiting — under the lenses of sparsity – the factors
that may limit the maximum number of linear regions which can be obtained by a neural network.

In summary, this paper presents the following contributions:

(i) We prove an upper bound on the expected number of linear regions over the possible ways in
which the weight matrices might be pruned in a feedforward network, which specializes the
bound in Serra et al. (2018) for the case in which the weight matrix is sparsified (Section 3).

(ii) We propose a method to count the number of linear regions on subspaces of input with arbi-
trary dimension in order to compare upper bounds and the number of linear regions of pruned
networks, which provides a generalized approach to methods involving unidimensional Hanin
& Rolnick (2019a) and bidemensional (Hanin & Rolnick, 2019b) inputs (Section 4).

(iii) We present computational experiments showing that (1) pruning affects the number of linear
regions and the upper bound proposed very similarly; (2) pruning also affects the accuracy of
the networks in a similar way; and (3) pruning more from one layer and less from another in
order to improve the upper bound also leads to improvements in accuracy (Section 5).

In addition, we present background notation in Section 2 and final remarks in Section 6.

2 NOTATION

In this paper, we study the linear regions defined by the fully-connected layers of feedforward net-
works. For simplicity, we assume in our notation that the entire network consists of such layers.
However, our results can be extended to the case in which the fully-connected layers are preceded
by convolutional layers, and in fact our experiments show their applicability in that context. Like-
wise, we abstract the fact that the fully-connected layers are often followed by a softmax layer.

We assume that the neural network has an input x = [x1 x2 . . . xn0
]T from a bounded domain X

and corresponding output y = [y1 y2 . . . ym]T , and each hidden layer l ∈ L = {1, 2, . . . , L} has
output hl = [hl

1 h
l
2 . . . h

l
nl
]T from neurons indexed by i ∈ Nl = {1, 2, . . . , nl}. All of those neurons

have a ReLU activation function. Let W l be the nl × nl−1 matrix where each row corresponds to
the weights of a neuron of layer l, W l

i the i-th row of W l, and bl the vector of biases associated
with the units in layer l. With h0 for x and hL+1 for y, the output of each unit i in layer l consists
of an affine function gli = W l

ih
l−1 + bli followed by the ReLU activation hl

i = max{0, gli}. We
consider the neuron to be active when hl

i = gli > 0 and inactive when hl
i = 0 and gli < 0. We

explain later in the paper how we consider the special case in which hl
i = gli = 0.

3 THE LINEAR REGIONS OF PRUNED NEURAL NETWORKS

In rectifier networks, small perturbations of a given input produce a linear change on the output
before the softmax layer. When the perturbations are sufficiently small, the neurons that are active
and inactive for the original input remain in the same state for the perturbed input. If we fix the
neurons in their current active or inactive state, then the neural network acts as a linear function.

If we consider every configuration of active and inactive neurons, then the network corresponds
to a piecewise linear function. The theory of linear regions aims to understand what affects the
achievable number of such pieces, which are also known as linear regions. In other words, we are
interested in knowing how many different combinations of active and inactive neurons are possible.

In what follows, we consider some building blocks leading to a bound for pruned neural networks.

The Geometric Perspective, Part I: The Activation Hyperplane Every neuron has an input
space corresponding to the output of the neurons from the previous layer, or to the input of the
network if the neuron is in the first layer of the neural network. For the i-th neuron in layer l, that
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input space corresponds to hl−1. The hyperplane W l
ih

l−1 + bli = 0 defined by the parameters of
the neuron separate the inputs in hl−1 into two half-spaces. Namely, the inputs that activate the
neuron in one side (W l

ih
l−1 + bli > 0) from those that do not activate the neuron in the other side

(W l
ih

l−1 + bli < 0). We discuss next how we regard inputs on the hyperplane (W l
ih

l−1 + bli = 0).

The Geometric Perspective, Part II: The Hyperplane Arrangement With every neuron in
layer l partitioning hl−1 into two half-spaces, our first guess could be that the intersections of
these half-spaces would lead the neurons in layer l to partition hl−1 into a collection of 2nl re-
gions (Montúfar et al., 2014). In other words, that there would be one region corresponding to each
possible combination of neurons being active or inactive in layer l. However, the maximum number
of regions defined in such a way would depend on the number of hyperplanes and the dimension
of space containing those hyperplanes. Given the number of activation hyperplanes in layer l as
nl and assuming for now that the size of the input space hl−1 is nl−1, then the number of linear
regions defined by layer l, or Nl, would be limited to at most

∑nl−1

d=0

(
nl

d

)
(Zaslavsky, 1975). Since

Nl ≪ 2nl when nl−1 ≪ nl, we note that this bound can be much smaller than initially expected —
not to mention other factors affecting this bound that will be discussed in part III.

Before moving on, we note that the bound above counts the number of full-dimensional regions
defined by a collection of hyperplanes in a given space. In other words, the activation hyperplanes
define the boundaries of the linear regions and within each linear region the points are such that
either W l

ih
l−1 + bli > 0 or W l

ih
l−1 + bli < 0 with respect to each neuron i in layer l. Hence, this

bound ignores cases in which we would regard W l
ih

l−1 + bli = 0 as making the neuron inactive
when W l

ih
l−1 + bli ≥ 0 for any possible input in hl−1, and vice-versa when W l

ih
l−1 + bli ≤ 0,

since in either case the linear region defined with W l
ih

l−1 + bli = 0 would not be full-dimensional
and would actually be entirely located on the boundary between other full-dimensional regions.

The Geometric Perspective, Part III: Bounding Across Layers As we add depth to a neural
network, every layer of the network breaks each linear region defined so far in even smaller pieces
with respect to the input space h0 of the network. One possible bound would be the product of
the bounds for each layer l by assuming the size of the input space to be nl−1 (Raghu et al., 2017).
However, the input space after the first layer can be much smaller than that. Within each linear region
defined by the first l − 1 layers that is then further partitioned by layer l, the output is defined by a
linear transformation with rank at most nl. The linear transformation would be hl = M lhl−1 +dl,
where M l

i = W l
i and dl

i = bli if neuron i of layer l is active in the linear region and M l
i = 0

and dl
i = 0 otherwise. If layer l + 1 or any subsequent layer has more than nl neurons, that would

not imply that the dimension of the image of the transformation for any linear region is greater than
nl since the output of any linear region after layer l is contained in a space with dimension at most
min{n0, n1, . . . , nl} (Montúfar, 2017). In fact, this dimension is often much smaller if we consider
that the rank of each matrix M l

i is bound by how many neurons are active in the linear region, and
that in only one linear region of a layer we would see all neurons being active (Serra et al., 2018).

The Geometric Perspective, Part IV: The Effect of Parameters There are some ways in which
the value of the parameters may also interfere with the hyperplane arrangement. First, consider
the case in which the rank of the weight matrix is smaller than the number of rows. That would
imply that the hyperplane arrangement partitions the space in a way that could also be done if the
dimension of the space was the same as the rank of the weight matrix (Serra et al., 2018). For
example, if all activation hyperplanes are parallel to one another and thus the rank of the weight
matrix is 1, then nl neurons would not be able to partition the input space into more than nl + 1
regions. Second, consider the case in which a neuron is stable, meaning that is always active or
always inactive for any valid input (Tjeng et al., 2019). Not only that would affect the dimension of
the output, but also the effective number of activation hyperplanes, since the activation hyperplane
corresponding to a stable neuron has no inputs to one of its sides (Serra & Ramalingam, 2020).

The Algebraic Perspective: The Effect of Sparsity When we start making parameters of the
neural network equal to zero through network pruning, we may affect the number of linear regions
in many different ways. First, a neuron may become stable if W l

i = 0, since the bias term alone
defines if the neuron is active (bli > 0) or inactive (bli < 0). That is also likely to happen if only a
few parameters are left, such as when all the remaining weights and the bias are all either positive or
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negative, since the probability of all parameters having the same sign increases significantly as the
number of parameters left decrease if we assume that parameters are equally likely to be positive
or negative. Second, the rank of the weight matrix W l may decrease with sparsity. For example,
let us suppose that the weight matrix has n rows, n columns, and that there are only n nonzero
parameters. Although it is still possible that those n parameters would all be located in distinct

rows and columns to result in a full-rank matrix, that would only occur in
n!(
n2

n

) of the cases if we

assume every possible position for those n parameters in the n2 different positions. Hence, we may
except some rank deficiency in the weight matrix even if we do not prune as much. Third, the rank
of submatrices on the columns may decrease even if the the rank of the weight matrix matches the
number of columns. This could happen in the typical case where the number of columns exceeds
the number of rows, such as when the number of neurons decreases from layer to layer, and in that
case we could replace the number of active neurons with the rank of the submatrix on their columns
for the dimension of the output from each linear region in order to obtain a tighter bound.

Based on the discussion above, we proceed by proposing an expected upper bound on the number
of linear regions. We use an expected bound rather than a deterministic one to avoid the unlikely
scenarios in which the impact of sparsity is minimal, such as the example in the previous paragraph.
This upper bound considers every possible sparsity pattern in the weight matrix as equally probable,
which is an assumption that aligns with random pruning and does not seem to be too strict in our
opinion. For simplicity, we assume that every weight of the network has a probability p of not being
pruned; or, conversely, a probability 1− p of being pruned. We denote p as the network density.

Moreover, we focus on the second effect of sparsity — through a decrease on the rank of the weight
matrix — for two reasons: (1) it subsumes part of the first effect — when an entire row becomes zero;
and (2) it is stronger than the third effect — rank deficiency on submatrices — and do not require as
strict assumptions. Curiously, a bound based on the third effect is somewhat more sophisticated to
derive. We present that bound and discuss its limitations in Appendix B.
Theorem 1. Let R(l, d) be the expected maximum number of linear regions that can be defined from
layer l to layer L with the dimension of the input to layer l being d; and let P (k|R,C, S) be the
probability that a weight matrix having rank k with R rows, C columns, and probability S of each
element being nonzero. With pl as the probability of each parameter in W l from remaining in the
network after pruning — the layer density, then R(l, d) for l = L is at most

nL∑
k=0

P (k|R = nL, C = nL−1, S = pL)

min{k,d}∑
j=0

(
nL

j

)
and R(l, d) for 1 ≤ l ≤ L− 1 is at most

nl∑
k=0

P (k|R = nl, C = nl−1, S = pl)

min{k,d}∑
j=0

(
nl

j

)
R(l + 1,min{nl − j, d, k}).

We refer the reader to Appendix A for the proof of Theorem 1. Please note that the probability of
the rank of a sparse matrix is not uniform when the probability of the sparsity patterns is uniform.
We discuss how to compute the former from the later as one of the items in Section 5.

4 COUNTING LINEAR REGIONS IN SUBSPACES

Based on the characterization of linear regions in terms of which neurons are active and inactive,
we can count the number of linear regions defined by a trained network with a Mixed-Integer Lin-
ear Programming (MILP) formulation (Serra et al., 2018). Among other things, these formulations
have also been used for network verification Cheng et al. (2017), embedding the relationship be-
tween inputs and outputs of a network into optimization problems Say et al. (2017); Delarue et al.
(2020); Bergman et al. (2022), identifying stable neurons Tjeng et al. (2019) to facilitate adversarial
robustness verification Xiao et al. (2019) as well as network compression (Serra et al., 2020; 2021),
and producing counterfactual explanations (Kanamori et al., 2021). Moreover, several studies have
analyzed and improved such formulations Fischetti & Jo (2018); Anderson et al. (2019); Botoeva
et al. (2020); Serra & Ramalingam (2020); Anderson et al. (2020); Serra et al. (2021).
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In these formulations, the parameters W l and bl of each layer l ∈ L are constant while the decision
variables are the inputs of the network (x = h0 ∈ X), the ouputs before and after activation of
each feedforward layer (gl ∈ Rnl and hl ∈ Rnl

+ for l ∈ L), and the state of the neurons in each
layer (zl ∈ {0, 1}nl for l ∈ L). By mapping these variables according to the parameters of the
network, we can characterize every possible combination of inputs, outputs, and activation states as
distinct solutions of the MILP formulation. For each layer l ∈ L and neuron i ∈ Nl, the following
constraints associate the input hl with the outputs gl

i and hl
i as well as with the neuron activation zl

i:

W l
ih

l−1 + bli = gl
i (1)

(zl
i = 1) → hl

i = gl
i (2)

(zl
i = 0) → gl

i ≤ 0 (3)

(zl
i = 0) → hl

i = 0 (4)

hl
i ≥ 0 (5)

zl
i ∈ {0, 1} (6)

The indicator constraints (2)–(4) can be converted to linear inequalities (Bonami et al., 2015).

We can use such a formulation for counting the number of linear regions based on the number of
distinct solutions on the binary vectors zl for l ∈ L. However, we must first address the simplifying
assumption allowing us to assume that a neuron can be either active (zl

i = 1) or inactive (zl
i =

0) when the preactivation output is zero (gl
i = 0). We can do so by maximizing the value of

a continuous variable that is bounded by the preactivation output of every active neuron and the
negated preactivation output of every inactive neuron. In other words, we count the number of
solutions on the binary variables for the solutions with positive value for the following formulation:

maxf (7)
s.t.(1)− (6) ∀l ∈ L, i ∈ Nl (8)

(zl
i = 1) → f ≤ gl

i ∀l ∈ L, i ∈ Nl (9)

(zl
i = 0) → f ≤ −gl

i ∀l ∈ L, i ∈ Nl (10)

h0 ∈ X (11)
We note that constraint (10) has not been used in prior work, where it is assumed that the neuron
is inactive when gl

i = 0 Serra et al. (2018); Serra & Ramalingam (2020). However, its absence
makes the counting of linear regions incompatible with the theory used to bound the number of
linear regions, which assumes that only full-dimensional linear regions are valid.

Finally, we extend this formulation for counting linear regions on a subspace of the input. This
form of counting has been introduced by (Hanin & Rolnick, 2019a) for 1-dimensional inputs and
later extended by (Hanin & Rolnick, 2019b) to 2-dimensional inputs. Although far from the upper
bound, the number of linear regions can still be very large even for networks of modest size, which
makes the case for analyzing how neural networks partition subspaces of the input. In prior work,
1 and 2-dimensional inputs have been considered as the affine combination of 1 and 2 samples with
the origin, and a geometric algorithm is used for counting the number of linear regions defined. We
present an alternative approach by adding the following constraint to the MILP formulation above:

h0 = p0 +

S∑
i=1

αi(p
i − p0) (12)

Where {pi}Si=0 is a set of S + 1 samples and {αi}Si=1 is a set of S continuous variables. One of
these samples, such as p0, could be the origin as before. However, that is not necessary.

5 COMPUTATIONAL EXPERIMENTS

We have carried out computational experiments aimed at assessing the following items:

(1) if there is a connection between network accuracy and the number of linear regions;
(2) if this connection also translates to the upper bound from Theorem 1; and
(3) if the upper bound from Theorem 1 can guide us on how much to prune from each layer.
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Datasets, training details, pruning algorithms, and hyperparameters For each architecture, we
used 30 different neural networks. Depending on the experiment, these networks were trained on the
datasets MNIST (LeCun et al., 1998), Fashion (Xiao et al., 2017), or CIFAR-10 (Krizhevsky, 2009).
Besides metrics discussed later, we measured the mean network accuracy before pruning, which
corresponded to a density p = 1, as well as for another seven values of p that were aimed at gradually
degrading the accuracy toward random guessing, which corresponded to accuracy 10% accuracy in
those datasets. Each network was trained for 15 epochs using stochastic gradient descent with batch
size of 128 and learning rate of 0.01, pruned, and then fine-tuned with the same hyperparameters for
another 15 epochs. These networks were pruned using Layerwise Magnitude Pruning (LMP) — i.e.,
removing the same proportion of parameters with smallest absolute from each layer. LMP worked
better under the extreme sparsities used than Global Magnitude Pruning (GMP) — i.e., choosing
the parameters with smallest absolute regardless of the layer — and also prevented the network
from getting disconnect with GMP when p was too small. Our implementation is derived from the
ShrinkBench framework Blalock et al. (2020). We have opted for magnitude-based pruning due to
its simplicity, popularity, and frequent use as a component of more sophisticated pruning algorithms.

Upper bound calculation For each architecture and density p used, we calculated the upper bound
by firstly estimating the probability distribution for the rank of the weight matrix in each layer — i.e.,
the probabilities of the form P (k|R,C, S) in Theorem 1. For that purpose, we generated a sample
of matrices with the same shape as the weight matrix for each layer and in which every element is
randomly drawn from the normal distribution with mean 0 and standard deviation 1. These matrices
were randomly pruned based on the density p, which may have been the same for every layer or
may varied per layer as discussed later, and then their rank was calculated. We first generated 50
such matrices for each layer, kept track the minimum and maximum rank values obtained, minr
and maxr, and then generated more matrices until the number of matrices generated was at least
as large as (maxr −minr +1) ∗ 50. For example, 50 matrices are generated if the rank is always
the same, and 500 matrices are generated if the rank goes from 11 to 20. Finally, we calculated the
probability of each possible rank based on how many times that value was observed in the samples.
For example, if 10 out of 500 matrices have rank 11, then we assumed a probability of 2%.

Choice of density per layer after pruning Besides pruning the networks with the same density p
in each feedforward layer, we have also chosen different densities to each layer in order to increase
the upper bound value while still pruning the same number of parameters. We consider varying the
density from pruning as much as possible from the first layer to pruning as much as possible from
the second layer. From preliminary experimentation, we observed that (i) the upper bound can be
reasonably approximated by a quadratic function; and (ii) pruning more from the first layer in the
settings considered tends to be more advantageous. Hence, we use both extremes mentioned above
in addition to density p in both layers to interpolate the upper bound and then we evaluate the local
maximum of the interpolation. If that local maximum is not pruning more from the first layer, we
sample densities for the first layer uniformly from the minimum density all the way to p.

Linear region counting Given the large cost of counting linear regions in neural networks, we
opted to work toward items 1 and 2 with smaller neural networks in order to hopefully establish a
connection between the upper bound and the performance of the network. For that purpose, we used
networks trained on MNIST with 2 feedforward layers having 20 neurons each. We counted the
number of linear regions in these networks by restricting the input to the affine space defined by 2,
3, and 5 sample points randomly chosen from the dataset, which respectively define subspaces with
dimension at most 1, 2, and 4. Hence, we compared those numbers of linear regions with the upper
bound when the dimension of the input corresponds to the dimension of the affine subspace. In prior
work, the number of linear regions in subspaces is restricted to at most 3 samples and thus dimension
2 (Hanin & Rolnick, 2019b). While our approach allows counting on subspaces of arbitrary size, we
focus on subspaces of smaller dimension to keep the runtimes manageable. We contrast the mean
number of linear regions on subspaces with the mean accuracy under uniform pruning in Figure 1
and with layer densities improving the bound in Figure 5 (Appendix C).

Connecting upper bounds and sparsity We worked toward item 3 using the networks from the
first experiment as well as networks with 2 feedforward layers having 100, 200, and 400 neurons
each and an adaptation of the LeNet architecture (LeCun et al., 1998). In the case of LeNet, the
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Figure 1: Comparison between the mean accuracy (blue curve; right y axis) and the log base 2 of
the mean number of linear regions on the affine subspace defined by S = 2, 3, or 5 sample points
for 30 models (olive curve) when the same density p is used in both layers.
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Figure 2: Comparison between the mean accuracy (continuous blue curve; right y axis) for 30
models and the log base 2 of the bound from Theorem 1 (dashed blue curve) for input dimension
d = 1, 2, and 4 (equivalent to S = 2, 3, and 5) when the same density p is used in both layers.

bounds and the pruning only consider the 2 feedforward layers immediately preceding the output
layer. We have trained these networks on all the datasets considered. For the smaller networks used
previously, we contrast the upper bound on subspaces with the mean accuracy under uniform pruning
in Figure 2 and with layer densities improving the bound in Figure 6 (Appendix C). For the larger
networks, we contrast the mean accuracy under uniform pruning with the mean accuracy with layer
densities improving the upper bound and illustrate the difference — or accuracy improvement —
between both in Figure 3; and we contrast the upper bounds in both cases in Figure 7 (Appendix C).

For consistency across plots, dashed lines are used for upper bounds, blue is used for uniform prun-
ing and orange is used for nonuniform pruning, and olive is used for the number of linear regions.

6 CONCLUSION

In this work, we studied how the theory of linear regions can help us identify how much to prune
from each fully-connected feedforward layer of a neural network. First, we proposed an upper
bound on the number of linear regions based on the density of the weight matrices when neural
networks are pruned. We observe from Figure 2 that the upper bound is reasonably aligned with the
impact of pruning on network accuracy. Second, we proposed a method for counting the number
of linear regions on subspaces of arbitrary dimension. We observe from Figure 1 to the number of
linear regions is also aligned with the impact of pruning on network accuracy — although not as
accurately as the upper bound. Third, and most importantly, we leverage this connection between
the upper bound and network accuracy under pruning to decide how much to prune from each layer
in order to achieve a chosen weight density p. We observe from Figure 3 that we obtain considerable
gains in accuracy across varied datasets and architectures by pruning from each layer in a proportion
that improves the upper bound on the number of linear regions rather than pruning uniformly. These
gains are particularly more pronounced when the number of parameters differs across layers, which
is a case in which Figure 7 (Appendix C) shows that the upper bound can be considerably improved
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Figure 3: Comparison between mean accuracy (y-axis) for 30 models trained and then pruned with a
density p of preserving each parameter of the feedforward layers (x-axis) when (i) the same density
is used in all layers (blue curve); and (ii) the density is chosen to increase the bound from Theorem 1
(orange curve). The difference between them is shown in a column chart (maroon bars).

by moving away from uniform pruning. Hence, the gains are understandably smaller when the
width of the layers increases (from 100 to 200 and 400) but greater when the size of the input
increases (from 784 for MNIST and Fashion to 3,072 for CIFAR-10 with a width of 400). We also
obtain positive results with pruning fully connected layers of convolutional networks as illustrated
with LeNet, and in future work we intend to investigate how to also make decisions about pruning
convolutional filters. We observe from Figure 5 that the number of linear regions on subspaces
nevertheless increases when we prune to increase the upper bound. Hence, the potential number of
linear regions can guide us on pruning more from neural networks with less impact on the accuracy.
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A PROOF OF THEOREM 1

Theorem 1. Let R(l, d) be the expected maximum number of linear regions that can be defined from
layer l to layer L with the dimension of the input to layer l being d; and let P (k|R,C, S) be the
probability that a weight matrix having rank k with R rows, C columns, and probability S of each
element being nonzero. With pl as the probability of each parameter in W l from remaining in the
network after pruning, then R(l, d) for l = L is at most

nL∑
k=0

P (k|R = nL, C = nL−1, S = pL)

min{k,d}∑
j=0

(
nL

j

)
and R(l, d) for 1 ≤ l ≤ L− 1 is at most

nl∑
k=0

P (k|R = nl, C = nl−1, S = pl)

min{k,d}∑
j=0

(
nl

j

)
R(l + 1,min{nl − j, d, k}).

Proof. We begin with a recurrence on the number of linear regions similar to the one in Serra et al.
(2018). Namely, let R(l, d) be the maximum number of linear regions that can be defined from
layer l to layer L with the dimension of the input to layer l being d, and let Nnl,d,j be the maximum
number of regions from partitioning a space of dimension d with nl activation hyperplanes such that
j of the corresponding neurons are active in the resulting subspaces (|Sl| = j):

R(l, d) =


min{nL,d}∑

j=0

(
nL

j

)
if l = L,

nl∑
j=0

Nnl,d,jR(l + 1,min{j, d}) if 1 ≤ l ≤ L− 1

(13)

Note that the base case of the recurrence directly uses what we know about the number of linear
regions given the number of hyperplanes and the dimension of the space. That bound also applies

to
nl∑
j=0

Nnl,d,j in the other case from the recurrence. Based on Lemma 5 from Serra et al. (2018),

nl∑
j=0

Nnl,d,j ≤
min{nl,d}∑

j=0

(
nl

j

)
. Some of these linear regions will have more neurons active than others.

In fact, there are at most
(
nl

j

)
regions with |Sl| = j for each j. In resemblance to BC, we can thus

assume that the largest possible number of neurons is active in each linear region defined by layer l
for the least impact on the input dimension of the following layers. Since

(
nl

j

)
=

(
nl

nl−j

)
, we may

conservatively assume that
(
nl

0

)
linear regions have nl active neurons,

(
nl

1

)
linear regions have nl−1

active neurons, and so on. That implies the following refinement of the recurrence:

R(l, d) =


min{nL,d}∑

j=0

(
nL

j

)
if l = L,

min{nl,d}∑
j=0

(
nl

j

)
R(l + 1,min{nl − j, d}) if 1 ≤ l ≤ L− 1

(14)

Note that there is a slight change on the recurrence call, by which j is replaced with nl − j, given
that we are working backwards from the largest possible number of active neurons nl with nl − j.

Finally, we account for the rank of the weight matrix upon sparsification. For the base case of l = L,
we replace nL from the end of the summation range with the rank k of the weight matrix WL, and
then we calculate the expected maximum number of linear regions using the probabilities of rank k
having any value from 0 to nL as

nL∑
k=0

P (k|R = nL, C = nL−1)

min{k,d}∑
j=0

(
nL

j

)
,

which corresponds to the first expression in the statement. For the case in which l ∈ {1, . . . , L−1},
we similarly replace nl from the end of the summation range with the rank k of the weight matrix
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W l, and then we calculate the expected maximum number of linear regions using the probabilities
of rank k having any value from 0 to nl as

nl∑
k=0

P (k|R = nl, C = nl−1)

min{k,d}∑
j=0

(
nl

j

)
RH(l + 1,min{nl − j, d, k}),

which corresponds to the second expression in the statement.

B ANOTHER BOUND BASED ON SPARSITY

The next result considers the effect of pruning on the dimension of the output of feedforward layers.
Theorem 2. Let R(l, d) be the expected maximum number of linear regions that can be defined from
layer l to layer L with the dimension of the input to layer l being d; and let P (k|R,C, S) be the
probability that a weight matrix having rank k with R rows, C columns, and probability S of each
element being nonzero. With pl as the probability of each parameter in W l from remaining in the
network after pruning, then R(l, d) for l = L is at most

min{nL,d}∑
j=0

(
nL

j

)
and R(l, d) for 1 ≤ l ≤ L− 1 is at most

nl∑
j=0

R(l + 1,min{nl − j, d})
min{j,d}∑

k=0

(
nl

k

)
P (nl − j|R = nl − k,C = nl−1).

Proof. We start from the recurrence in equation (14) in the proof of Theorem 1.

If the weight matrix is sufficiently sparse, having nl − j neurons active in a given linear region may
not necessarily imply that the dimension of the image for that linear region is nl − j due to rank
deficiency of the submatrix. In other words, given a weight matrix W l for layer l with nl rows and
nl−1 columns, a submatrix on nl − j of its rows may not necessarily have rank nl − j. While we
keep the base case of l = L the same as in (14), we refine the recurrence for l ∈ {1, . . . , L− 1} to

min{nl,d}∑
j=0

(
nl

j

) nl−j∑
k=0

P (k|R = nl − j, C = nl−1)R
I(l + 1,min{k, d}).

Now we reformulate the recurrence for a single occurrence of R(l+1,min{k, d}) for each value of
k while changing the meaning of the indices j and k as illustrated in Figure 4:

R(l, d) =

min{nl,d}∑
j=0

(
nl

j

) nl−j∑
k=0

P (k|R = nl − j, C = nl−1)R(l + 1,min{k, d}) (15)

=

nl∑
j=0

R(l + 1,min{nl − j, d})
min{j,d}∑

k=0

(
nl

k

)
P (nl − j|R = nl − k,C = nl−1). (16)

Now that recurrence (16) in Theorem 2 has a similar shape to the one in equation (14), and we can
compare them if we flip the terms of the later. Namely, for the case in which 1 ≤ l ≤ L − 1, we
have

R(l, d) =

min{nl,d}∑
j=0

R(l + 1,min{nl − j, d})
(
nl

j

)
in equation (14).

15
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Figure 4: Mapping between the summation indices j and k of recurrence (15) in red and of recur-
rence (16) in blue for the cases in which (i) min{nl, d} = nl (left) and (ii) min{nl, d} = d (right).

Note that each term R(l + 1,min{nl − j, d}) in (16) is multiplied by
j∑

k=0

(
nl

k

)
P (nl − j|R = nl −

k,C = nl−1) rather than
(
nl

j

)
in (14). Hence, it would be tempting to consider a ratio between

the two as an indicator of how the dimension of the image of a linear region in layer l affects the
number of linear regions going forward. However, note that j goes up to nl in the expression for RI

rather than up to min{nl, d} as before for R, which captures cases in which the weight submatrix
considered is rank deficient. In other words, there are additional recurrence terms with lower input
dimension than those considered before.

One issue with this bound is the assumption of independence between the probabilities for different
submatrices. Due to the fact that the decreases in the maximum number of linear regions due to
this bound are not as expressive as those obtained with Theorem 1, we focused on attention to that
Theorem instead.
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C ADDITIONAL PLOTS
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Figure 5: Comparison between the mean accuracy (orange curve; right y axis) and the log base 2 of
the mean number of linear regions on the affine subspace defined by S = 2, 3, or 5 sample points
for 30 models (olive curve; left y axis) with a layer density increasing the bound from Theorem 1.
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Figure 6: Comparison between the mean accuracy (continuous orange curve; right y axis) for 30
models and the log base 2 of the bound from Theorem 1 (dashed orange curve) for input dimension
d = 1, 2, and 4 (equivalent to S = 2, 3, and 5) with a layer density increasing the bound from
Theorem 1.
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Figure 7: Comparison between the log base 2 of the bound from Theorem 1 given the density p of
preserving each parameter of the feedforward layers (x-axis) when (i) the same density is used in
both layers (blue curve); and (ii) the density is chosen to increase the bound (orange curve).
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