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Abstract

Scientific retrieval is essential for advancing001
academic discovery. Within this process, doc-002
ument reranking plays a critical role by refin-003
ing first-stage retrieval results. However, stan-004
dard LLM listwise reranking faces unique chal-005
lenges in the scientific domain. First-stage re-006
trieval is often suboptimal in the scientific do-007
main, so relevant documents are ranked lower.008
Moreover, conventional listwise reranking in-009
puts the full text of candidates into the con-010
text window, limiting the number of candidates011
that can be considered. As a result, many rel-012
evant documents are excluded before rerank-013
ing, constraining overall retrieval performance.014
To address these challenges, we explore com-015
pact document representations based on seman-016
tic features (e.g., categories, sections and key-017
words) and propose CORANK, a training-free,018
model-agnostic reranking framework for scien-019
tific retrieval. It presents a three-stage solution:020
(i) offline extraction of document-level features,021
(ii) coarse reranking using these compact repre-022
sentations, and (iii) fine-grained reranking on023
full texts of the top candidates from (ii). This024
hybrid design provides a high-level abstrac-025
tion of document semantics, expands candidate026
coverage, and retains critical details required027
for precise ranking. Experiments on LitSearch028
and CSFCube show that CORANK significantly029
improves reranking performance across differ-030
ent LLM backbones (nDCG@10 from 32.0 to031
39.7). Overall, these results highlight the value032
of information extraction for reranking in scien-033
tific retrieval. Code will be publicly available.034

1 Introduction035

Scientific retrieval (Lawrence et al., 1999; White et al.,036
2009) is crucial for scientific discovery. While current037
retrievers are effective at retrieving broadly relevant038
scientific papers, they often struggle to differentiate be-039
tween documents covering similar topics (Sciavolino040
et al., 2021; Liu et al., 2021), making fine-grained rel-041
evance estimation essential. Therefore, the reranking042
stage (Carbonell and Goldstein-Stewart, 1998; Kurland043
and Lee, 2005) is particularly important (Gao et al.,044
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Figure 1: Instead of directly reranking full documents,
we extract features, rerank a larger candidate pool with
them, and finally refine the shortlist with full documents.

2021b), as it refines the first-stage retrieval to better 045
distinguish between closely ranked documents. 046

Recently, large language models (LLMs) (Grattafiori 047
et al., 2024; OpenAI et al., 2024) have significantly ad- 048
vanced document reranking, particularly through their 049
application to listwise reranking (Sun et al., 2023a; Ma 050
et al., 2023). In this setting, LLMs jointly assess a set 051
of retrieved candidates within their context window and 052
generate a reordered ranking based on their relevance. 053
Previous works (Pradeep et al., 2023a; Gangi Reddy 054
et al., 2024; Liu et al., 2024c; Ren et al., 2024) show 055
that LLM-based listwise rerankers outperform prior 056
embedding-based approaches (Nogueira et al., 2019b, 057
2020) on benchmarks like BEIR (Thakur et al., 2021). 058

The standard practice in LLM listwise reranking (Sun 059
et al., 2023a; Pradeep et al., 2023a,b; Gangi Reddy et al., 060
2024; Liu et al., 2024c) is to input the full text of each 061
candidate document into the context window. However, 062
this approach faces key limitations in scientific retrieval. 063
In the scientific domain, retrievers often show limited 064
performance (Kim et al., 2023; Kang et al., 2024a,b), so 065
truly relevant documents may not rank high enough in 066
the first-stage retrieval. Moreover, due to the substan- 067
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tial token overhead of full text representation and finite068
context length, rerankers can only operate on a limited069
number (typically 20 per prompt) (Sun et al., 2023a; Ma070
et al., 2023) of candidates. As a result, when first-stage071
retrieval is suboptimal, the reranking performance is072
inherently constrained (Reddy et al., 2023).073

To address these limitations, we explore an alterna-074
tive document representation that is both compact and075
informative. Instead of using full text, we investigate076
an information extraction (IE)–based approach (Niklaus077
et al., 2018; Zhou et al., 2022; Liu et al., 2022), repre-078
senting each scientific paper using high-level features079
such as categories, sections, and keywords. We find that080
this representation significantly improves per-document081
token efficiency, enabling a larger pool of candidates082
to fit within the LLM’s context window. This, in turn,083
makes the reranking process more robust to suboptimal084
first-stage scientific retrieval results. It also simplifies085
the input by filtering out irrelevant details, making it086
easier for LLMs to interpret. However, since IE cannot087
guarantee complete coverage of all relevant content,088
full-text inputs still serve as a valuable complement089
when fine-grained relevance comparisons are required.090

Motivated by these insights, we propose CORANK,091
a training-free, model-agnostic reranking framework092
for science retrieval. CORANK consists of three stages:093
(i) Offline Preprocessing: extract high-level semantic094
features like categories and keywords from unstructured095
scientific documents; (ii) Coarse Reranking: use these096
compact representations for an initial ranking and select097
a subset of top candidates; (iii) Fine-grained Rerank-098
ing: rerank the top candidates using full scientific docu-099
ments to recover the potentially missing details during100
information extraction. Our design enhances the robust-101
ness against suboptimal first-stage retrieval with com-102
pact feature representation and maximizes the overall103
effectiveness with final full text reranking.104

We evaluate CORANK on two scientific retrieval105
benchmarks: LitSearch (Ajith et al., 2024) and CS-106
FCube (Mysore et al., 2021). Empirical experiments107
show that across various LLM backbones, CORANK108
achieves an absolute improvement of +11.5 nDCG@10109
without the sliding window strategy, and retains a +3.9110
gain with it. These results demonstrate significant ef-111
fectiveness of our method for reranking in scientific112
retrieval. Overall, our contributions are threefold:113

# 1 We are the first to reveal the unique limitations of114
LLM listwise reranking in scientific retrieval.115

# 2 We are the first to explore semantic features as116
compact representations in reranking and propose117
CORANK, a framework based on this design.118

# 3 We show that CORANK significantly improves119
reranking performance in scientific retrieval.120

These findings underscore the value of compact fea-121
ture extraction as a pre-analysis step for improving the122
reranking performance in scientific retrieval.123

2 Preliminary Analysis 124

In this section, we first define listwise reranking, then 125
show the limitations of current full text-based methods 126
and explore compact and informative document repre- 127
sentation options for reranking in the scientific domain. 128

2.1 Problem Definition 129

Reranking Input. Given a query q and a large cor- 130
pus Pn of n scientific papers, a first-stage retriever 131
selects a ranked list of m candidate documents C = 132
{p1, p2, . . . , pm} ⊂ Pn. Typically we have m ≪ n 133
due to the scale of the corpus and the finite capacity 134
of rerankers. This candidate list C is then passed to a 135
reranking model, which aims to reorder the documents 136
such that more relevant ones are ranked higher. 137

Reranking Objective. The goal of document rerank- 138
ing is to find a permutation σ : {1, . . . ,m} → 139
{1, . . . ,m} whose application 140

C′ = [ pσ(1), pσ(2), . . . , pσ(m) ] 141

orders documents in more accurate descending rele- 142
vance to q. The quality is often (Sun et al., 2023a; 143
Gangi Reddy et al., 2024; Liu et al., 2024c) evaluated 144
using top-k metrics such as nDCG@10, with small k 145
values that stress accuracy at the top of the ranked list. 146

LLM Listwise Reranking. Large language models 147
can inspect m candidate documents in their context 148
window and generate a permutation that reflects their 149
relevance ordering. Formally, the model acts as follows: 150

σLLM = LLM(q, C) ∈ Sm, 151

where Sm is the set of all permutations on {1, . . . ,m}. 152
Applying this permutation to the candidate list yields 153

C′ =
[
pσLLM(1), pσLLM(2), . . . , pσLLM(m)

]
. 154

2.2 Current Limitations 155

The standard approach in LLM-based listwise rerank- 156
ing (Sun et al., 2023a; Pradeep et al., 2023a,b; 157
Gangi Reddy et al., 2024; Liu et al., 2024c) feeds the full 158
text of each candidate into the model’s context window. 159
While this allows LLMs to capture the complete content 160
of each document, it incurs some limitations, especially 161
in scientific retrieval. 162

Suboptimal First-Stage Retrieval. Unlike in general- 163
domain scenarios, first-stage retrievers—whether 164
sparse (Robertson et al., 2009; Nogueira et al., 2019a) 165
or dense (Izacard et al., 2021; Wang et al., 2022)—strug- 166
gle to generalize to the scientific domain (Thakur et al., 167
2021; Bonifacio et al., 2022). This is due to the complex- 168
ity of long-tail concepts (Kang et al., 2024b, 2025) and 169
the lack of large-scale supervised training data (Boni- 170
facio et al., 2022; Li et al., 2023). Consequently, their 171
retrieval performance is limited, and truly relevant docu- 172
ments are often ranked much lower (Ajith et al., 2024). 173
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Case: Figure

TinyBERT: Distilling BERT for Natural Language Understanding.  
Language model pre-training, such as BERT, has significantly 
improved the performances of many natural language 
processing tasks. However, pre-trained language models are 
usually computationally expensive, so it is difficult to efficiently 
execute them on resource restricted devices task-specific 
learning stages … This framework ensures that TinyBERT can 
capture the general-domain as well as the task-specific 
knowledge in BERT. TinyBERT with 4 layers is empirically 
effective and achieves more than 96.8% the performance of its 
teacher BERT BASE on GLUE benchmark, while being 7.5x 
smaller and 9.4x faster on inference. TinyBERT is also better 
than 4-layer SOTA baselines on BERT distillation, with only 
∼28% parameters and ∼31% inference time of them. Moreover, 
TinyBERT with 6 layers performs on-par with its teacher.
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Figure 2: Overview of our feature extraction pipeline: from unstructured documents, we apply zero-shot LLM
information extraction to obtain document features including categories, sections, pseudo queries, and keywords,
which are then combined into compact representations.

Token Consumption. Full text representation also174
introduces significant token overhead, with individual175
scientific papers often consuming hundreds or even thou-176
sands of tokens (Thakur et al., 2021; Ajith et al., 2024;177
Mysore et al., 2021). At the same time, LLMs have a178
limited effective context length (Dai et al., 2019; Xiong179
et al., 2024) and are known to suffer from issues such as180
positional bias for long inputs (Liu et al., 2024a; Tian181
et al., 2024). As a result, full-text rerankers are con-182
strained to operate on a small number of candidates,183
typically 20 documents per input prompt (Sun et al.,184
2023a; Ma et al., 2023; Pradeep et al., 2023a,b).185

When first-stage retrieval is suboptimal and rerank-186
ing operates over a narrow candidate set, the overall187
reranking performance is significantly constrained.188

2.3 Semantic Features as Alternatives189

Given the limitations of full-text representations in190
scientific-domain reranking, we explore an alternative191
approach, which is based on document-level semantic192
features such as categories and keywords. The intu-193
ition is that these features are both significantly more194
concise and capable of preserving the core semantics.195
Therefore, more candidate documents can be effectively196
considered during reranking. Specifically, we examine197
the following four types of document semantic features:198

Category. Categories (Sun et al., 2023b; Zhang et al.,199
2024) offer a high-level topical overview of scientific200
documents. Each document is assigned a three-level201
hierarchical category path in the format {Category} →202
{Subcategory} → {Subsubcategory}, which provides a203
broad-to-specific classification on its topic.204

Section. Sections (Zhou et al., 2023) consist of multi-205
ple subtitle-style strings, each summarizing a major part206
of the scientific document. They capture the internal207
structure of the document and serve as mid-level seman-208
tic signals that enhance category-level summaries.209

Keyword. Keywords (Rose et al., 2010; Lee et al.,210
2023) are terms or entities that represent fine-grained211
lexical concepts within a document. They provide the212
most specific information among different granularities.213

Pseudo Query. Pseudo queries (Sachan et al., 2022; 214
Kang et al., 2025) are synthetic user questions based on 215
the content. This feature offers a unique query-aligned 216
perspective of the document, simulating how the docu- 217
ment might be retrieved in real-world scenarios. 218

These features cover most common types of 219
document-level IE and vary in granularity and style. 220
All semantic features are extracted using LLM-based 221
zero-shot information extraction. The prompt templates 222
used for this extraction are provided in Appendix A. 223

Among these features, sections, keywords, and 224
pseudo queries have multiple elements for each doc- 225
ument. To reduce noise and focus on the most relevant 226
content, we apply an adaptive selection strategy at infer- 227
ence time. We compute dense embedding similarities 228
between the query and each extracted element and retain 229
only the most relevant: 5 keywords (from 30), 1 pseudo 230
query (from 20), and 1 section (from 3). This improves 231
content relevance while minimizing token overhead. Ab- 232
lation of this strategy can be found in Section 4.2. 233

However, relying on a single feature often lacks repre- 234
sentational power. For example, using only the category 235
tends to be too coarse-grained and offers limited dis- 236
criminative ability, while keywords alone may lack suf- 237
ficient context or background information. To address 238
this, we represent each document using combinations 239
of features. Specifically, we explore the following four 240
configurations of different overall granularities. 241

Form 1. Pseudo Query 242

Form 2. Category 243

Form 3. Category + Section 244

Form 4. Category + Section + Keywords 245

Ablation studies on the effect of each specific compo- 246
nent can further be found in Section 4.2. The overview 247
of representation construction is presented in Figure 2. 248

2.4 Empirical Validation 249

To evaluate the effectiveness of our feature-based 250
representations, we conduct a series of experi- 251
ments on the LitSearch (Ajith et al., 2024), us- 252
ing GPT-4.1-mini (OpenAI, 2024) as the rerank- 253
ing backbone. Semantic features are extracted 254
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Figure 3: Token efficiency and performance comparison across different document representations. (a) Per-document
token lengths distribution. (b) nDCG@10 scores for different number of documents in the context window of single
LLM input (c) Context token overhead to reach equal reranking performance.

using Qwen3-8B-Instruct (Qwen et al., 2024).255
Following Gangi Reddy et al. (2024), we use256
Contriever (Izacard et al., 2021) as the first-stage re-257
triever and the similarity encoder for adaptive selection.258

Token Length Per Document. We first evaluate the259
token cost of different representations. As shown in260
Figure 3 (a), full-text inputs consume around 200 tokens261
per document on average, with some exceeding 5,000262
tokens, limiting the number of documents that can fit263
into the context window. In contrast, semantic feature-264
based representations (Forms 1-Form 4) are much more265
compact, each averaging between 10 and 50 tokens.266

Number of Documents in a Single Input. We then267
evaluate how different representations perform as the268
number of candidate documents increases (up to 200)269
within a 32k-token context window. As shown in Fig-270
ure 3 (b), all representations improve as more documents271
are included. In the range of 0 to 80 candidates, full-272
text representations perform better than feature-based273
ones. This is expected, since full text retains complete274
document information, though at a much higher token275
cost. However, beyond 80 candidates, full-text inputs276
frequently exceed the context length limit. In contrast,277
feature-based methods, especially Form 4, remain com-278
pact and can handle more candidates without issue,279
while still achieving comparable performance.280

Token Cost for Equal Reranking Performance. Fi-281
nally, we examine how many context tokens are needed282
to achieve the same reranking performance across dif-283
ferent representations. Using results from earlier experi-284
ments, we estimate the total token cost by combining the285
number of documents required with the average token286
count per document. We take full-text reranking with287
20 documents as the 100% performance base, and com-288
pare how many tokens each method needs to reach 70%,289
85%, 100%, 115%, and 130% of that level. As shown290
in Figure 3 (c), compact feature-based representations291
can match full-text performance with significantly fewer292
tokens. For instance, reaching 100% performance re-293
quires around 3,500 tokens for full text, but only 1,000294

or even a few hundred tokens for feature-based inputs. 295

2.5 Discussion 296

The results above demonstrate that feature-based doc- 297
ument representations offer clear advantages over full- 298
text inputs in reranking. They can express the core 299
content of a document using far fewer tokens, allowing 300
significantly more retrieved candidates to be included 301
within the same token overhead. This is especially valu- 302
able for recovering relevant documents that were as- 303
signed lower scores by the first-stage retriever. Consid- 304
ering both token efficiency and reranking performance, 305
we select Form 4 as our feature-based representation. 306

However, in the second set of experiments where the 307
number of documents is held constant, we also observe 308
that feature-based representations may underperform 309
full text. After all, offline information extraction may 310
omit subtle but important cues present in the full text. 311

Therefore, these results motivate a hybrid reranking 312
strategy: using semantic features in the early stage to 313
cover a broader range of candidates, followed by a re- 314
finement stage that reranks the top candidates using 315
full-text inputs for more in-depth comparison. 316

3 Methodology 317

Based on the preliminary analysis, we propose a hybrid 318
reranking framework in scientific domain. It proceeds in 319
three steps: (i) offline extraction of structured semantic 320
features; (ii) coarse-grained reranking using the features 321
to select a subset of top candidates; and (iii) fine-grained 322
reranking over the subset with full text inputs. 323

3.1 Compact and Informative Representation 324

To construct compact, feature-based representations for 325
each scientific document, we first perform document- 326
level information extraction offline. As described in 327
Section 2.3, we use zero-shot information extraction to 328
obtain target semantic features: category, section, and 329
keyword. Formally, for a given document pi, we obtain: 330

LLM(pi) = Categoryi, [Sectionji ], [Keywordj
i ]
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These features are designed to capture the core se-331
mantics of scientific documents in a token-efficient man-332
ner. The extraction is performed offline, and the results333
are cached and reused at inference time to avoid any334
additional runtime delay. The prompt templates for ex-335
tracting different features can be found in Appendix A.336

3.2 Coarse Reranking w. Compact Features337

Given a query q, we obtain a document relevance rank-338
ing C = [p1, p2, . . . , pm] from a first-stage retriever.339
We then replace each document with a compact seman-340
tic representation and apply LLM-based listwise rerank-341
ing to identify a high-quality subset.342

For sections and keywords, we apply adaptive se-343
lection to select only those most relevant to the query.344
Specifically, for each unit (single section or keyword) u,345
we compute the cosine similarity with text embedding346
and select the top-5 keywords and the most relevant347
section. (Analysis on the number of keyword used can348
be found in Section 4.4) The final feature-based repre-349
sentation ri is formed as:350

ri = Concat [Categoryi, Section∗i , Keywords∗i ]351

where ∗ indicates adaptively selected elements.352
With the feature-based representations R =353

[r1, r2, . . . , rm], we then use the LLM to perform354
listwise reranking, producing a permutation σfeat =355
LLM(q, R) ∈ Sm. Applying this permutation to the356
original candidate list C = [p1, p2, . . . , pm] yields the357
reranked output for the coarse reranking:358

Cfeat = [pσfeat(1), pσfeat(2), . . . , pσfeat(m)]359

We then keep the top-k documents from this list to form360
the seed set for full text reranking:361

Cseed = [pσfeat(1), . . . , pσfeat(k)], k < m362

Coarse reranking with compact document represen-363
tations greatly expands the number of candidates that364
can be considered in the same LLM input. This broader365
coverage helps recover scientific documents that were366
initially assigned low scores by the first-stage retriever.367

3.3 Fine-grained Reranking w. Full Text368

In the second reranking stage, we refine the ranking over369
the seed set of candidates using full documents. Specif-370
ically, we take the seed set Cseed = [p′1, p

′
2, . . . , p

′
k],371

(we use ′ to distinguish them from the first-stage in-372
put) obtained from the previous stage, and replace each373
compact representation with its original document text.374

Let T = [t1, t2, . . . , tk] denote the full text of the375
selected documents, where ti corresponds to the full376
text content of passage p′i. We then once again use LLM377
to perform listwise reranking:378

σtext = LLM(q, T ) ∈ Sk379

With the permutation σtext we get the final ranking:380

Cfinal = [p′σtext(1)
, . . . , p′σtext(k)

]381

Fine-grained reranking with full-text inputs recovers 382
details that may be lost during the information extraction 383
process. Since the candidate set has already been nar- 384
rowed down, full documents can now be used without 385
exceeding the LLM’s context limit. 386

Overall, this hybrid strategy effectively addresses the 387
challenges of LLM-based listwise reranking in the sci- 388
entific domain. The coarse reranking stage expands 389
the reranking pool, improving robustness to suboptimal 390
first-stage retrieval in the scientific domain. The fine- 391
grained reranking stage, in turn, preserves sufficient 392
detail for precise relevance comparisons. 393

4 Experiments 394

In this section, we first outline the experimental setup, 395
then present the reranking results, followed by ablation 396
studies and further analysis. Detailed qualitative studies 397
can be found in Appendix B. 398

4.1 Experimental Setup 399

Datasets & Metric. We evaluate different rerank- 400
ing methods on two high-quality scientific retrieval 401
benchmarks: LitSearch (Ajith et al., 2024) and 402
CSFCube (Mysore et al., 2021). The former is a bench- 403
mark of expert-annotated complex literature queries 404
targeting recent ML and NLP papers. The latter is a 405
human-annotated testbed for faceted query-by-example 406
retrieval. Since reranking focuses on the top results, we 407
follow standard practice (Sun et al., 2023a; Ma et al., 408
2023; Gangi Reddy et al., 2024; Liu et al., 2024c), re- 409
porting metrics for @5 and @10. We include nDCG, 410
MAP, and Recall as our evaluation metrics. 411

Models & Hyperparameters. For the reranking 412
backbones, we use Qwen3-32B-Instruct (Qwen 413
et al., 2024) as the representative open-source model, 414
Gemini 2.0 Flash (Google DeepMind, 2025) and 415
GPT-4.1-mini (OpenAI, 2024) as proprietary exam- 416
ples. For generative parameters, we use a temperature 417
of 1.0 and a fixed random seed of 42 for reproducibility. 418
The API costs are detailed in Appendix C. 419

For semantic feature extraction, we find that small 420
open-source models are sufficiently effective; we there- 421
fore adopt Qwen3-8B-Instruct (Qwen et al., 2024) 422
for all extraction tasks (Templates in Appendix A). For 423
both first-stage retrieval and semantic similarity scor- 424
ing for filtering features, we use Contriever (Izacard 425
et al., 2021) following Gangi Reddy et al. (2024). 426

Baselines. For supervised, model-specific baselines, 427
we compare against RankVicuna (Pradeep et al., 428
2023a), RankZephyr (Pradeep et al., 2023b), and 429
RankMistral (Liu et al., 2024c). These models are 430
trained on large-scale general-domain datasets such as 431
MS MARCO (Bajaj et al., 2016) and RankGPT (Sun 432
et al., 2023a) to enhance reranking performance. 433

For model-specific baselines, we use vanilla listwise 434
reranking (Sun et al., 2023a) with zero-shot instruction- 435
following. We also consider the sliding window strat- 436
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Model Strategy LitSearch CSFCube

N@5 N@10 M@5 M@10 R@5 R@10 N@5 N@10 M@5 M@10 R@5 R@10

Initial Retriever

Contriever Dense Retrieval 12.6 14.2 11.0 11.7 16.4 21.2 22.0 23.6 5.8 8.6 9.5 16.4

Supervised, Model-Specific Methods

RankMistral Vanilla Full 19.5 20.1 18.0 18.2 23.6 24.3 23.1 21.9 5.8 7.8 8.4 13.3
RankVicuna Vanilla Sliding 25.9 26.5 23.9 24.1 30.8 32.4 30.0 28.7 7.5 10.6 10.7 17.5
RankZephyr Vanilla Sliding 33.7 34.1 31.9 32.1 37.7 39.0 35.7 34.1 9.4 13.6 14.6 22.7

Zero-Shot, Model-Agnostic Reranking Strategies

Qwen3-32B Vanilla Full 25.4 25.7 24.5 24.6 26.6 27.3 28.5 28.4 6.9 10.4 13.0 20.2
CORANK Full 39.4 39.6 38.3 38.4 41.5 41.9 32.2 31.8 8.8 12.8 15.9 23.4

Qwen3-32B Vanilla Sliding 39.6 39.8 37.9 37.9 43.1 43.5 31.6 31.2 7.4 11.3 14.3 22.9
CORANK Sliding 41.9 42.2 40.3 40.4 45.0 46.2 36.2 35.5 9.8 14.6 17.7 26.6

Gemini 2.0 Flash Vanilla Full 26.0 26.1 25.1 25.2 26.9 27.3 31.0 28.5 7.8 10.6 13.2 18.8
CORANK Full 40.5 40.7 38.7 38.8 43.6 44.2 36.6 35.1 11.5 15.4 20.7 27.8

Gemini 2.0 Flash Vanilla Sliding 40.7 40.8 38.9 39.0 44.4 44.6 32.6 32.2 8.3 12.5 15.3 23.2
CORANK Sliding 43.1 43.3 40.7 40.9 48.1 48.9 36.3 38.1 10.2 16.5 17.8 31.0

GPT-4.1-mini Vanilla Full 25.9 26.1 25.1 25.2 26.7 27.2 32.2 28.7 7.8 10.7 14.3 19.7
CORANK Full 46.0 46.3 44.5 44.7 48.3 49.4 39.2 39.0 10.6 16.5 18.6 30.5

GPT-4.1-mini Vanilla Sliding 41.6 41.9 40.3 40.4 43.8 44.4 34.1 34.9 8.6 13.5 15.2 25.3
CORANK Sliding 45.5 45.8 43.9 44.0 48.3 49.1 40.1 39.4 11.0 16.9 19.2 30.4

Table 1: Reranking performance on the LitSearch and CSFCube reflected by nDCG (N@k), MAP (M@k) and
Recall (R@k). We compare CORANK with supervised reranking models and zero-shot, model-agnostic strategy.

egy (Sun et al., 2023a; Ma et al., 2023), a test-time437
scaling (Xia et al., 2025) technique designed to enhance438
reranking performance. We report results both with and439
without the use of sliding windows. Although CORANK440
is orthogonal to this technique, we include a comparison441
in Section 4.3 to further show our effectiveness.442

Reranking Parameters. We follow the standardized443
setup (Sun et al., 2023a; Ma et al., 2023; Pradeep et al.,444
2023a,b; Gangi Reddy et al., 2024) from prior work445
to unify reranking parameters. For vanilla reranking446
without the sliding window strategy, we include 20 full-447
text documents within the context. An exception is448
RankMistral (Liu et al., 2024c), which benefits from449
long-context training and is able to process 100 full-text450
documents in a single input. When using the sliding451
window strategy, we rank a total of 100 full-text docu-452
ments by applying a window size of 20 with a step size453
of 10. For CORANK, we include 200 compact repre-454
sentations in the coarse reranking stage, followed by 20455
full-text documents in the fine-grained reranking stage.456

4.2 Main Results457

Reranking Performance. We begin by evaluating the458
performance of different reranking methods on the tar-459
get academic retrieval benchmarks, as shown in Table 1.460

First, we observe that all reranking methods outper-461
form the first-stage dense retriever baseline, confirming462
the critical role of reranking in scientific document re-463
trieval. However, while model-specific rerankers such464
as RankVicuna (Pradeep et al., 2023a) and zero-shot465
listwise baselines do yield noticeable improvements,466
their gains are relatively modest compared to results in467
general-domain settings (Sun et al., 2023a), particularly468
when the sliding window strategy is not used.469

In contrast, our proposed method, CORANK, is 470
fully zero-shot, model-agnostic, and training-free, yet 471
achieves strong and consistent gains across different 472
LLM backbones. Notably, without using sliding win- 473
dows, CORANK improves average nDCG@10 from 474
27.3 to 38.8, a relative improvement of over 40%. Even 475
when combined with sliding window inputs, it still 476
yields an average gain of +3.9 nDCG@10. 477

We also find that both CORANK and the sliding win- 478
dow strategy independently lead to substantial perfor- 479
mance gains (ours being larger and more efficient; see 480
Section 4.3). This is likely because both methods ex- 481
pand the reranking scope, which is particularly valu- 482
able in scientific domains considering the suboptimal 483
first-stage retrieval. These findings reinforce our earlier 484
analysis of current limitations presented in Section 2.2. 485

Ablation Studies. To evaluate the contribution of each 486
component in our design, we conduct ablation studies 487
on the LitSearch (Ajith et al., 2024) dataset using 488
GPT-4.1-mini (OpenAI, 2024) as the backbone. 489

Specifically, we remove individual semantic fea- 490
tures—category, section, and keywords—from the com- 491
pact representation to assess their relative importance. 492
In addition, we ablate two key components of our 493
pipeline: adaptive selection and fine-grained rerank- 494
ing, to understand their impact on overall performance. 495

As shown in Table 2, removing any single semantic 496
component (category, section, or keywords) consistently 497
degrades reranking performance, confirming that each 498
feature contributes complementary information. Cate- 499
gory captures coarse-grained background context that 500
tends to align more easily with the query but offers less 501
specific detail. In contrast, section and keywords reflect 502
finer-grained semantics that are harder to match but, 503
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Model Strategy N@10 M@10 R@10

Vanilla Full Text 26.1 25.2 27.3

CORANK – Category 43.4 41.9 45.9
CORANK – Section 45.4 43.8 48.2
CORANK – Keywords 44.6 42.8 48.0

CORANK – Selection 45.5 44.1 48.2
CORANK – Fine. Rank. 41.1 38.7 46.7

CORANK Full 46.3 44.7 49.4

Table 2: Ablation results showing the impact of remov-
ing individual features and two key design components.

when relevant, provide highly targeted signals. This504
balance underscores the value of combining semantic505
features across different levels of abstraction.506

Additionally, we find that both adaptive selection507
and fine-grained reranking contribute to the final perfor-508
mance. Adaptive selection ensures that the most query-509
relevant features are retained, while the fine-grained510
reranking stage substantially compensates for potential511
information loss in compact representations by recover-512
ing more nuanced evidence from the full text.513

4.3 Comparison with Sliding Window514

Sliding window strategy (Sun et al., 2023a) is a515
widely used (Ma et al., 2023; Pradeep et al., 2023a,b;516
Gangi Reddy et al., 2024) method for overcoming the517
context length limitations of LLMs in listwise reranking.518
Instead of ranking all candidates in a single prompt, it519
partitions the candidate list into overlapping windows520
and reranks each window independently from the bot-521
tom up. This method has been shown to notably improve522
reranking performance (Sun et al., 2023a).523

As noted in Section 4.1, we evaluate both the stan-524
dalone and combined use of sliding windows with our525
method. While CORANK and sliding window are or-526
thogonal and compatible, isolating them in comparison527
allows us to clearly demonstrate the superior efficiency528
and effectiveness of our approach when used alone.529

Method N@10 M@10 R@10 Token
Usage Cost

Vanilla 26.0 25.0 27.3 1.01M $0.40
Sliding 40.8 39.1 44.2 9.06M $3.62
CORANK 42.2 40.6 45.2 3.60M $1.44
Both 43.8 41.8 48.1 11.65M $4.66

Table 3: Comparison of performance, token usage, and
API cost between CORANK and Sliding Window.

We evaluate CORANK and the sliding window strat-530
egy on LitSearch and CSFCube on three tested mod-531
els, reporting nDCG@10, total token consumption, and532
API cost for GPT-4.1-mini. As shown in Table 3,533
CORANK not only achieves better average reranking534
quality (nDCG@10 improved by 1.4), but also requires535
only 40% of the token budget compared to sliding win-536
dows. These results demonstrate that CORANK pro-537
vides an efficient yet effective alternative for expanding538

reranking range. Moreover, combining these two meth- 539
ods can further boost performance, offering an advanced 540
solution for complex retrieval scenarios. 541

4.4 Hyperparameter Study 542

We also study the effect of key hyperparameters in 543
CORANK, using the GPT-4.1-mini (OpenAI, 2024) 544
reranker on the LitSearch (Ajith et al., 2024) dataset. 545
We report results in terms of nDCG@10, MAP@10, 546
Recall@10, token usage, and estimated API cost. 547

Number of Keywords. With its default configuration, 548
CORANK extracts 30 keywords from each document 549
and selects the top 5 most relevant ones based on cosine 550
similarity from text embedding. These selected key- 551
words are then concatenated into the document repre- 552
sentation. Here, we evaluate the impact of the keyword 553
selection on coarse reranking performance by varying 554
the number of concatenated keywords: 0, 1, 3, 5, 10, 15, 555
and 20. The results are in Table 4. 556

# Keyword N@10 M@10 R@10 Token
Usage Cost

0 keyword 38.9 36.5 44.2 1.80M $0.72
1 keyword 40.4 38.0 46.3 1.95M $0.78
3 keywords 40.1 37.9 44.9 2.26M $0.90
5 keywords 41.1 38.7 46.7 2.57M $1.03
10 keywords 42.4 40.4 46.5 3.33M $1.33
15 keywords 42.6 40.1 48.6 4.10M $1.64
20 keywords 42.4 40.2 47.4 4.87M $1.95

Table 4: Effect of the number of selected keywords on
coarse reranking: performance, token usage and cost.

Our experiments reveal a trade-off between perfor- 557
mance and cost when varying the number of keywords. 558
In general, increasing the number of selected keywords 559
leads to a linear increase in token cost, while also im- 560
proving coarse reranking performance. However, we 561
observe diminishing returns beyond 10 keywords. This 562
is expected, as keywords are included in order of embed- 563
ding similarity to the query—those added later tend to 564
be less relevant and contribute weaker relevance signals. 565

Fine-Grained Pool Size. In the main experiments, 566
for fine-grained reranking, we select the top 20 candi- 567
dates from the coarse reranking stage to align with other 568
reranking baselines. Here, we explore the impact of 569
varying this candidate selection size. Specifically, we 570
evaluate performance when selecting 5, 10, 20, 40, 60, 571
80, and 100 candidates for fine-grained reranking. The 572
results are shown in Table 5. 573

Experimental results show that increasing the fine- 574
grained reranking candidate pool from 0 to 20 docu- 575
ments yields a favorable trade-off between token cost 576
and performance. However, performance saturates be- 577
yond 20 candidates and remains stable up to 100 docu- 578
ments, despite the growth of token consumption. 579

In theory, if an LLM’s long-context capability were 580
fully effective, performance should continue to improve 581
as more candidates are included. In practice, however, 582
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Pool Size N@10 M@10 R@10 Token
Usage Cost

5 docs 43.0 41.3 46.7 0.25M $0.10
10 docs 44.3 42.8 46.7 0.50M $0.20
20 docs 46.3 44.7 49.4 1.01M $0.40
40 docs 45.4 43.9 48.0 2.01M $0.81
60 docs 45.0 43.4 48.3 3.02M $1.21
80 docs 45.3 43.8 48.0 4.03M $1.61
100 docs 46.0 44.4 49.1 5.03M $2.01

Table 5: Effect of the fine-grained candidate pool size:
performance, token usage and cost.

the observed plateau suggests that the effective context583
length is often much shorter than the theoretical context584
limit, which is also mentioned in previous studies (Hsieh585
et al., 2024; Kuratov et al., 2024).586

5 Related Work587

Classical Document Reranking. Document Rerank-588
ing (Karpukhin et al., 2020; Ren et al., 2021, 2023) is a589
critical component in information retrieval (IR) (Baeza-590
Yates et al., 1999; Singhal et al., 2001), especially when591
high retrieval precision is required and the first-stage592
retriever alone is insufficient. Early reranking methods593
were typically lexical and probabilistic (Salton et al.,594
1975; Robertson and Jones, 1976), relying on term over-595
lap between the query and document to adjust relevance596
scores. However, these approaches were limited by re-597
liance on exact matching and failed to capture in-depth598
semantics (Karpukhin et al., 2020; Gao et al., 2021a).599

With advances in deep learning, neural reranking600
methods (Guo et al., 2019; Trabelsi et al., 2021), partic-601
ularly those based on learning-to-rank (Cao et al., 2007;602
Liu, 2010) frameworks became prevalent. These mod-603
els overcome previous limitations, capturing semantic604
similarity beyond surface-level term matches.605

The emergence of pre-trained language models606
(PLMs) (Vaswani et al., 2017; Devlin et al., 2019;607
Reimers and Gurevych, 2019) has further transformed608
the field of document reranking (Nogueira et al.,609
2019a; Yates et al., 2021). Cross-encoder-based610
rerankers (Litschko et al., 2022), in particular, have611
demonstrated strong performance by modeling query-612
document relevance scores and optimizing pointwise,613
pairwise, or listwise loss functions (Zhuang et al., 2023).614

LLM-Based Listwise Document Reranking. Re-615
cently, large language models (LLMs) (Touvron et al.,616
2023; OpenAI et al., 2023) have revolutionized the field617
of NLP. With strong general knowledge and instruction-618
following (Ouyang et al., 2022) capabilities, LLMs of-619
fer a new paradigm for listwise document reranking. A620
classic proposal (Sun et al., 2023a) involves placing the621
query and a list of candidate documents into the context622
window and prompting the LLM to generate a reordered623
ranking. This zero-shot strategy has been shown to624
outperform traditional reranking baselines (Sun et al.,625
2023a; Ma et al., 2023).626

After that, LLM listwise reranking has been ex- 627
tended in multiple directions. Works like RankVi- 628
cuna (Pradeep et al., 2023a) and RankZephyr (Pradeep 629
et al., 2023b) represent early explorations of open- 630
source reranking LLMs. For inference time effi- 631
ciency, FIRST (Gangi Reddy et al., 2024) modify list- 632
wise reranking by using only the first token decoding. 633
RankMistral (Liu et al., 2024c) adopts long-context 634
training to help LLMs adapt to larger document lists 635
in a single input. Test-time scaling (Xia et al., 2025) 636
also emerged as a common enhancement. For exam- 637
ple, the sliding window strategy (Sun et al., 2023a; 638
Ma et al., 2023) partitions the candidate list into over- 639
lapping chunks, enabling broader coverage within lim- 640
ited context. Building on this, Tang et al. (2024) en- 641
hance reranking quality through permutation consis- 642
tency. ScaLR (Ren et al., 2024) further designs self- 643
calibration to improve consistency across windows. 644

Notably, two prior studies (Liu et al., 2024b; Li et al., 645
2024) also identified limitations of full-document rep- 646
resentations, but their analyses are on general domain. 647
Moreover, the alternative representations they propose 648
are fundamentally different from ours—one (Liu et al., 649
2024b) adopts non-natural language embeddings, and 650
the other (Li et al., 2024) relies on document chunking. 651

To the best of our knowledge, our work is the first to 652
highlight the unique limitations of full-document repre- 653
sentations in scientific retrieval. We are also the first to 654
leverage IE-based features as document representations 655
for reranking. This makes our contribution novel and 656
significant within the reranking literature. 657

6 Conclusion 658

In this work, we first identify fundamental challenges 659
of standard listwise reranking in scientific retrieval. On 660
the one hand, the first-stage retriever often fails to rank 661
truly relevant documents high due to the lack of domain- 662
specific training data. On the other hand, existing LLM- 663
based listwise reranking methods typically operate over 664
full-document inputs, which are substantial in terms of 665
token usage and therefore limited to a small number of 666
candidates. As a result, when the first-stage retrieval is 667
suboptimal for scientific retrieval, the performance of 668
standard reranking method is massively restricted. 669

To address this, we propose CORANK, a training-free 670
and model-agnostic reranking framework for scientific 671
retrieval. CORANK employs compact semantic features 672
for coarse reranking. This allows the LLM to consider a 673
broader range of candidates within its context window. 674
A subsequent fine-grained reranking stage then refines 675
the top results using full-text inputs. Experiments on 676
two scientific benchmarks show that CORANK signifi- 677
cantly improves reranking performance. 678

Overall, we are the first to explore semantic features 679
as compact document representations for LLM rerank- 680
ing in scientific retrieval. Our results highlight the value 681
of semantic feature extraction as a pre-analysis step in 682
LLM listwise reranking in the scientific domain. 683
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Limitations684

Feature Extraction Quality. In our offline prepro-685
cessing stage, we apply zero-shot information extraction686
using LLMs to obtain semantic features such as cate-687
gories for each document. This is a relatively simple688
approach. While it has proven effective based on both689
quantitative results and case studies, there is still po-690
tential room for improvement. For instance, one could691
explore using more specialized models or introducing692
multi-turn feedback mechanisms to enhance the quality693
of extracted features. That said, since the primary focus694
of our work is to address the reranking bottleneck in sci-695
entific retrieval, we did not dedicate significant effort to696
modifiying the IE component, especially observing that697
the basic extraction already yielded strong performance.698

Applicability Across Domains. This work focuses699
exclusively on scientific retrieval. The motivation and700
assumptions behind our method are specifically tailored701
to the characteristics of this domain, such as long-tail702
terminology and the limitations of first-stage retrievers.703
We do not evaluate our method in general-domain set-704
tings. The potential effectiveness and limitations of our705
method outside the scientific domain remain untested706
and are left for future work.707

Ethics Statement708

We conduct our experiments on widely recognized and709
publicly available scientific retrieval datasets. Our pro-710
posed method and findings do not pose any foreseeable711
harm to individuals or groups. Overall, we do not antic-712
ipate any significant ethical concerns with this work.713

References714

Qingyao Ai, Ting Bai, Zhao Cao, Yi Chang, Jiawei715
Chen, Zhumin Chen, Zhiyong Cheng, Shoubin Dong,716
Zhicheng Dou, Fuli Feng, et al. 2023. Information717
retrieval meets large language models: A strategic718
report from chinese ir community. AI Open, 4:80–90.719

Anirudh Ajith, Mengzhou Xia, Alexis Chevalier, Tanya720
Goyal, Danqi Chen, and Tianyu Gao. 2024. Litsearch:721
A retrieval benchmark for scientific literature search.722

Ricardo Baeza-Yates, Berthier Ribeiro-Neto, et al. 1999.723
Modern information retrieval, volume 463. ACM724
press New York.725

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,726
Jianfeng Gao, Xiaodong Liu, Rangan Majumder, An-727
drew McNamara, Bhaskar Mitra, Tri Nguyen, et al.728
2016. Ms marco: A human generated machine read-729
ing comprehension dataset.730

Luiz Henrique Bonifacio, Hugo Queiroz Abonizio,731
Marzieh Fadaee, and Rodrigo Frassetto Nogueira.732
2022. Inpars: Unsupervised dataset generation for733
information retrieval. In SIGIR ’22: The 45th Inter-734
national ACM SIGIR Conference on Research and735
Development in Information Retrieval, Madrid, Spain,736
July 11 - 15, 2022, pages 2387–2392. ACM.737

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and 738
Hang Li. 2007. Learning to rank: from pairwise ap- 739
proach to listwise approach. In Machine Learning, 740
Proceedings of the Twenty-Fourth International Con- 741
ference (ICML 2007), Corvallis, Oregon, USA, June 742
20-24, 2007, volume 227 of ACM International Con- 743
ference Proceeding Series, pages 129–136. ACM. 744

J. Carbonell and Jade Goldstein-Stewart. 1998. The 745
use of mmr, diversity-based reranking for reordering 746
documents and producing summaries. ACM SIGIR 747
Forum, 51:209–210. 748

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car- 749
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019. 750
Transformer-XL: Attentive language models beyond 751
a fixed-length context. In Proceedings of the 57th 752
Annual Meeting of the Association for Computational 753
Linguistics, pages 2978–2988, Florence, Italy. Asso- 754
ciation for Computational Linguistics. 755

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 756
Kristina Toutanova. 2019. BERT: Pre-training of 757
deep bidirectional transformers for language under- 758
standing. In Proceedings of the 2019 Conference of 759
the North American Chapter of the Association for 760
Computational Linguistics: Human Language Tech- 761
nologies, Volume 1 (Long and Short Papers), pages 762
4171–4186, Minneapolis, Minnesota. Association for 763
Computational Linguistics. 764

Revanth Gangi Reddy, JaeHyeok Doo, Yifei Xu, 765
Md Arafat Sultan, Deevya Swain, Avirup Sil, and 766
Heng Ji. 2024. FIRST: Faster improved listwise 767
reranking with single token decoding. In Proceed- 768
ings of the 2024 Conference on Empirical Methods 769
in Natural Language Processing, pages 8642–8652, 770
Miami, Florida, USA. Association for Computational 771
Linguistics. 772

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021a. 773
COIL: Revisit exact lexical match in information 774
retrieval with contextualized inverted list. In Pro- 775
ceedings of the 2021 Conference of the North Amer- 776
ican Chapter of the Association for Computational 777
Linguistics: Human Language Technologies, pages 778
3030–3042, Online. Association for Computational 779
Linguistics. 780

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021b. Re- 781
think training of bert rerankers in multi-stage retrieval 782
pipeline. ArXiv preprint, abs/2101.08751. 783

Google DeepMind. 2025. Gemini 2.5: Our 784
most intelligent ai model. https://blog. 785
google/technology/google-deepmind/ 786
gemini-model-thinking-updates-march-2025/. 787
Google Blog. 788

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 789
Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, 790
Aiesha Letman, Akhil Mathur, Alan Schelten, Alex 791
Vaughan, et al. 2024. The llama 3 herd of models. 792
ArXiv preprint, abs/2407.21783. 793

J. Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao 794
Ai, Hamed Zamani, Chen Wu, W. Bruce Croft, and 795

9

https://api.semanticscholar.org/CorpusID:259982533
https://api.semanticscholar.org/CorpusID:259982533
https://api.semanticscholar.org/CorpusID:259982533
https://api.semanticscholar.org/CorpusID:259982533
https://api.semanticscholar.org/CorpusID:259982533
https://arxiv.org/abs/2407.18940
https://arxiv.org/abs/2407.18940
https://arxiv.org/abs/2407.18940
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://arxiv.org/abs/1611.09268
https://doi.org/10.1145/3477495.3531863
https://doi.org/10.1145/3477495.3531863
https://doi.org/10.1145/3477495.3531863
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
https://doi.org/10.1145/1273496.1273513
http://dl.acm.org/citation.cfm?id=3130369
http://dl.acm.org/citation.cfm?id=3130369
http://dl.acm.org/citation.cfm?id=3130369
http://dl.acm.org/citation.cfm?id=3130369
http://dl.acm.org/citation.cfm?id=3130369
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2024.emnlp-main.491
https://doi.org/10.18653/v1/2024.emnlp-main.491
https://doi.org/10.18653/v1/2024.emnlp-main.491
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://arxiv.org/abs/2101.08751
https://arxiv.org/abs/2101.08751
https://arxiv.org/abs/2101.08751
https://arxiv.org/abs/2101.08751
https://arxiv.org/abs/2101.08751
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://blog.google/technology/google-deepmind/gemini-model-thinking-updates-march-2025/
https://arxiv.org/abs/2407.21783


Xueqi Cheng. 2019. A deep look into neural rank-796
ing models for information retrieval. Inf. Process.797
Manag., 57:102067.798

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-799
tanu Acharya, Dima Rekesh, Fei Jia, and Boris Gins-800
burg. 2024. Ruler: What’s the real context size of801
your long-context language models? ArXiv preprint,802
abs/2404.06654.803

Gautier Izacard, Mathilde Caron, Lucas Hosseini, Se-804
bastian Riedel, Piotr Bojanowski, Armand Joulin, and805
Edouard Grave. 2021. Unsupervised dense informa-806
tion retrieval with contrastive learning.807

SeongKu Kang, Shivam Agarwal, Bowen Jin, Dongha808
Lee, Hwanjo Yu, and Jiawei Han. 2024a. Improving809
retrieval in theme-specific applications using a corpus810
topical taxonomy. In Proceedings of the ACM on Web811
Conference 2024, WWW 2024, Singapore, May 13-17,812
2024, pages 1497–1508. ACM.813

SeongKu Kang, Bowen Jin, Wonbin Kweon, Yu Zhang,814
Dongha Lee, Jiawei Han, and Hwanjo Yu. 2025. Im-815
proving scientific document retrieval with concept816
coverage-based query set generation.817

SeongKu Kang, Yunyi Zhang, Pengcheng Jiang,818
Dongha Lee, Jiawei Han, and Hwanjo Yu. 2024b.819
Taxonomy-guided semantic indexing for academic820
paper search. ArXiv preprint, abs/2410.19218.821

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick822
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and823
Wen-tau Yih. 2020. Dense passage retrieval for open-824
domain question answering. In Proceedings of the825
2020 Conference on Empirical Methods in Natural826
Language Processing (EMNLP), pages 6769–6781,827
Online. Association for Computational Linguistics.828

Jihyuk Kim, Minsoo Kim, Joonsuk Park, and Seung-829
won Hwang. 2023. Relevance-assisted generation for830
robust zero-shot retrieval. In Proceedings of the 2023831
Conference on Empirical Methods in Natural Lan-832
guage Processing: Industry Track, pages 723–731,833
Singapore. Association for Computational Linguis-834
tics.835

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rod-836
kin, Dmitry Sorokin, Artyom Y. Sorokin, and Mikhail837
Burtsev. 2024. Babilong: Testing the limits of llms838
with long context reasoning-in-a-haystack. In Ad-839
vances in Neural Information Processing Systems840
38: Annual Conference on Neural Information Pro-841
cessing Systems 2024, NeurIPS 2024, Vancouver, BC,842
Canada, December 10 - 15, 2024.843

Oren Kurland and Lillian Lee. 2005. Pagerank without844
hyperlinks: structural re-ranking using links induced845
by language models. ArXiv, abs/cs/0601045.846

Steve Lawrence, Kurt Bollacker, and C Lee Giles. 1999.847
Indexing and retrieval of scientific literature. In Pro-848
ceedings of the eighth international conference on849
Information and knowledge management, pages 139–850
146.851

Wanhae Lee, Minki Chun, Hyeonhak Jeong, and 852
Hyunggu Jung. 2023. Toward keyword generation 853
through large language models. Companion Proceed- 854
ings of the 28th International Conference on Intelli- 855
gent User Interfaces. 856

Haitao Li, Qingyao Ai, Jia Chen, Qian Dong, Yueyue 857
Wu, Yiqun Liu, Chong Chen, and Qi Tian. 2023. 858
SAILER: structure-aware pre-trained language model 859
for legal case retrieval. In Proceedings of the 46th 860
International ACM SIGIR Conference on Research 861
and Development in Information Retrieval, SIGIR 862
2023, Taipei, Taiwan, July 23-27, 2023, pages 1035– 863
1044. ACM. 864

Minghan Li, É. Gaussier, Juntao Li, and Guodong Zhou. 865
2024. Keyb2: Selecting key blocks is also impor- 866
tant for long document ranking with large language 867
models. ArXiv preprint, abs/2411.06254. 868
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A Prompt Templates1163

In the preprocessing stage, our method uses1164
Qwen3-8B-Instruct (Qwen et al., 2024) to perform1165
zero-shot information extraction (Wei et al., 2023; Sainz1166
et al., 2024), instructing the model to extract document-1167
level semantic features such as categories (Sun et al.,1168
2023b; Zhang et al., 2024), sections (Zhou et al.,1169
2023), and keywords (Rose et al., 2010; Lee et al.,1170
2023). During inference, we provide a zero-shot,1171
model-agnostic reranking framework, and evaluate its1172
performance on Qwen3-32B-Instruct (Qwen et al.,1173
2024), Gemini 2.0 Flash (Google DeepMind, 2025),1174
and GPT-4.1-mini (OpenAI, 2024).1175

Here, we include the prompts used for different types1176
of zero-shot document-level information extraction and1177
model-agnostic reranking.1178

A.1 Extracting Categories1179

Prompt Template
Please analyze this document for its topic and
categories:
{document}
Provide a comprehensive analysis that includes:
1. The broad category (coarse-grained) this doc-
ument belongs to
2. The specific category (fine-grained) within
that broad category
3. A concise, title-like description of the docu-
ment’s topic
Deliver the analysis in one concise paragraph.

1180

A.2 Extracting Sections1181

Prompt Template
Identify 3-8 logical sections that would effec-
tively organize this document’s content:
{document}
Generate appropriate subtitle-style headings for
each section that would help structure the doc-
ument. Sections should be comprehensive and
cover the full scope of the content.

1182

A.3 Extracting Keywords1183

Prompt Template
Extract a comprehensive list of at least 30 diverse
keywords and concepts from this document:
{document}
Generate as many diverse, relevant keywords and
concepts as possible. Include both specific terms
and broader conceptual themes.

1184

A.4 Generating Pseudo Queries 1185

Prompt Template
Generate 20 diverse search queries that users
might enter to find this document:
{document}
Create different types of queries that cover var-
ious aspects of the document content. Queries
should be diverse in wording, length, and speci-
ficity.

1186

A.5 Reranking 1187

Prompt Template
You are an LLM reranker, an intelligent assistant
that can rank passages based on their relevancy
to the query.
I will provide you with {num} passages (either
represented by full text, previous user query, key-
words or structured analysis), each indicated by
a numerical identifier [].
Rank the passages based on their relevance to
the search query: {query}.
[1]{passage}
...
[n]{passage}
Search Query: {query}.
Rank the {num} passages above based on their
relevance to the search query. All the passages
should be in descending order of relevance.
The output format should be [passage_id] >
[passage_id] > ..., (If the full list is very long,
generate at least 10) e.g., [4] > [2] > ... Only
respond with the ranking results, do not say any
word or explain.

1188

B Case Studies 1189

B.1 Distribution of Positives and Negatives 1190

While metrics like nDCG@10 quantify the overall 1191
reranking quality, they do not indicate which specific 1192
reranking judgement contribute to the improvements. 1193
To better understand where our performance gains and 1194
limitations come from, we perform a qualitative analysis 1195
of how the position of ground-truth documents changes 1196
in the ranked list with or without CORANK. 1197

We compare CORANK with the vanilla zero-shot list- 1198
wise reranker on LitSearch (Ajith et al., 2024) with 1199
GPT-4.1-mini (OpenAI, 2024). Based on the rank po- 1200
sition of the ground-truth documents and whether they 1201
fall within the top-10 (i.e., Recall@10), we obtain the 1202
distribution of positive cases and negative cases. 1203

Analysis on Shared Positives. As shown in figure 4, 1204
CORANK successfully covers the majority of positive 1205
cases (69 out of 71) of the vanilla reranker. This is ex- 1206
pected, as the fine-grained reranking stage in CORANK 1207
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Figure 4: Distribution of Recall@10 positive and nega-
tive in Vanilla listwise reranking and CORANK.

inherits the full-text completeness in document repre-1208
sentation of the vanilla listwise reranking.1209

Analysis on Exclusive Positives. At the same time,1210
CORANK exclusively attains 58 positive cases. Ana-1211
lyzing these cases, we find that most (57 out of 58)1212
were missed by the vanilla reranker because their first-1213
stage retrieval ranks were too low (i.e., outside the top1214
20). This supports our analysis in Section 2.2 on the1215
key challenge in scientific-domain reranking: truly rele-1216
vant documents may be excluded from reranking due to1217
suboptimal first-stage retrieval results. CORANK miti-1218
gates this issue with the compactness of feature-based1219
representations in the coarse reranking stage, allowing1220
more candidates to be considered and increasing the1221
likelihood of recovering relevant documents.1222

Next, we present full instances of both positive and1223
negative examples, along with their ranks in the first-1224
stage retrieval, coarse reranking stage, and fine-grained1225
reranking stage. This allows us to analyze the underly-1226
ing causes of success or failure in each case.1227

B.2 Positive Example1228

This example clearly demonstrates the advantages of1229
our method. The ground-truth document in this case1230
involves long-tailed scientific concepts such as CGA1231
and VAE, which are not well captured by the first-stage1232
retriever. As a result, it is ranked only 92nd in the initial1233
retrieval, making it inaccessible to vanilla rerankers that1234
operate on the top 20 candidates. Even with the sliding1235
window strategy (Sun et al., 2023a; Ma et al., 2023),1236
the document would need to consistently win across 91237
windows to enter the top-10, highlighting the limitations1238
of existing reranking methods in scientific domains, as1239
discussed earlier. In contrast, our method successfully1240
ranks this document as the top candidate during the1241
coarse reranking stage. This illustrates two key points:1242
(1) our feature-based representation is highly compact,1243
allowing us to expand the reranking pool to 200 candi-1244
dates and include low-ranked but relevant documents1245
such as this one; and (2) it is also sufficiently informa-1246
tive, enabling the reranker to recognize and promote the1247
document directly to the top of the list once included.1248

Query
Can you recommend a foundational paper that
provides a scalable framework for generating En-
glish sentences with controllable semantic and
syntactic attributes for the purpose of augment-
ing datasets in NLP tasks?

1249

Ground Truth Document
Control, Generate, Augment: A Scalable Frame-
work for Multi-Attribute Text Generation: We
introduce CGA, a conditional VAE architecture,
to control, generate, and augment text. CGA
is able to generate natural English sentences
controlling multiple semantic and syntactic at-
tributes by combining adversarial learning with
a context-aware loss and a cyclical word dropout
routine. We demonstrate the value of the individ-
ual model components in an ablation study. The
scalability of our approach is ensured through a
single discriminator, independently of the num-
ber of attributes. We show high quality, diversity
and attribute control in the generated sentences
through a series of automatic and human assess-
ments. As the main application of our work,
we test the potential of this new NLG model
in a data augmentation scenario. In a down-
stream NLP task, the sentences generated by
our CGA model show significant improvements
over a strong baseline, and a classification perfor-
mance often comparable to adding same amount
of additional real data.

1250

First-Stage Retrieval Ranking
92 of 14256

1251

Compact Representation
Natural Language Processing (NLP) -> Text
Generation and Neural Machine Translation ->
Conditional VAE-Based Framework for Control-
lable and Scalable Multi-Attribute Text Gener-
ation with Applications in Data Augmentation:
CGA for Data Augmentation in NLP Tasks (Text
Generation, Multi-Attribute Control, Data Aug-
mentation, Semantic Attributes)

1252

Coarse Reranking
1 of 200

1253

Fine-grained Reranking
1 of 20

1254
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B.3 Negative Example1255

The example above illustrates a case where our method1256
fails to rank the ground-truth document highly—not1257
due to representation quality, but because the document1258
was ranked extremely low (319th) by the first-stage re-1259
triever. At such a low position, it is not visible to vanilla1260
reranking methods, nor to those with extended context1261
windows such as the sliding window strategy (Sun et al.,1262
2023a; Ma et al., 2023) or our Method.1263

As a result, even though our compact representation1264
accurately captures the document’s semantic content,1265
it never enters the reranking process and thus has no1266
opportunity to be promoted to a higher position.1267

Query
Are there any studies that explore post-hoc tech-
niques for hallucination detection at both the
token- and sentence-level in neural sequence gen-
eration tasks?

1268

Ground Truth Document
Detecting Hallucinated Content in Conditional
Neural Sequence Generation: Neural sequence
models can generate highly fluent sentences, but
recent studies have also shown that they are also
prone to hallucinate additional content not sup-
ported by the input. These variety of fluent but
wrong outputs are particularly problematic, as it
will not be possible for users to tell they are be-
ing presented incorrect content. To detect these
errors, we propose a task to predict whether each
token in the output sequence is hallucinated (not
contained in the input) and collect new manu-
ally annotated evaluation sets for this task. We
also introduce a method for learning to detect
hallucinations using pretrained language models
fine tuned on synthetic data that includes auto-
matically inserted hallucinations Experiments on
machine translation (MT) and abstractive sum-
marization demonstrate that our proposed ap-
proach consistently outperforms strong baselines
on all benchmark datasets. We further demon-
strate how to use the token-level hallucination
labels to define a fine-grained loss over the target
sequence in low-resource MT and achieve signif-
icant improvements over strong baseline meth-
ods.We also apply our method to word-level qual-
ity estimation for MT and show its effectiveness
in both supervised and unsupervised settings 1.

1269

Compact Representation
Natural Language Processing -> Hallucination
Detection in Neural Sequence Generation ->
Token-Level Hallucination Detection in Condi-
tional Text Generation: detecting hallucination
using token-level classification and pretrained
language models (Hallucination Detection, Neu-
ral Sequence Generation, Token-Level Classifi-
cation, Machine Translation (MT))

1270

First-Stage Retrieval Ranking
319 of 14256

1271

Coarse Reranking
N/A

1272

Fine-grained Reranking
N/A

1273

C Proprietary Model API Cost 1274

As part of our evaluation of different rerank- 1275
ing methods, we tested two commercial LLMs: 1276
Gemini 2.0 Flash (Google DeepMind, 2025) and 1277
GPT-4.1-mini (OpenAI, 2024). Here, we report the 1278
API costs incurred in the main experiments when query- 1279
ing these models. The costs associated with experiments 1280
in the Further Analysis section have already been pre- 1281
sented as part of the token efficiency comparison. 1282

Model Price Setting # Token Cost ($)

Gemini 2.0 Flash $0.1/M

Vanilla Full 1.22M $0.12
CORANK Full 3.32M $0.33
Vanilla Sliding 10.98M $1.10
CORANK Sliding 14.08M $1.41
Total Cost 29.61M $2.96

GPT-4.1-mini $0.4/M

Vanilla Full 1.22M $0.12
CORANK Full 3.32M $1.33
Vanilla Sliding 10.98M $4.39
CORANK Sliding 14.08M $5.63
Total Cost 29.61M $11.84

Table 6: Reranking token usage and cost across
different settings for Gemini 2.0 Flash and
GPT-4.1-mini (OpenAI, 2024). Prices are per 1
million tokens.

As shown in Table 6, across all different set- 1283
tings in the main experiments, we spent $2.96 on 1284
Gemini-2.0-Flash (Google DeepMind, 2025) and 1285
$11.84 on GPT-4.1-mini (OpenAI, 2024), resulting 1286
in a total API cost of $14.80. 1287

D Future Work 1288

In the previous section, we identified two main limita- 1289
tions of our current approach. These suggest promising 1290
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directions for future research that could further improve1291
the generality and effectiveness of our method.1292

D.1 Improving Feature Extraction1293

Our current pipeline uses zero-shot information ex-1294
traction (Wei et al., 2023) with general-purpose1295
LLMs (Qwen et al., 2024) to generate semantic fea-1296
tures such as categories (Sun et al., 2023b; Zhang et al.,1297
2024) and keywords (Rose et al., 2010; Lee et al., 2023).1298
While this approach is simple and has proven effective,1299
future work could explore more advanced techniques to1300
enhance extraction quality. For example, using domain-1301
specific LLMs (Taylor et al., 2022; Xie et al., 2023) or1302
introducing multi-turn feedback (Shinn et al., 2023) may1303
yield richer and more accurate representations, further1304
improving downstream reranking performance.1305

D.2 Extending to General Domains1306

Our method is designed specifically for scientific re-1307
trieval (Lawrence et al., 1999; White et al., 2009),1308
where challenges like long-tail terminology (Kang et al.,1309
2024a) and limited first-stage recall (Kim et al., 2023)1310
are particularly severe. An important direction for future1311
work is to investigate the applicability of our framework1312
in general-domain retrieval settings (Zhu et al., 2023;1313
Ai et al., 2023). This includes evaluating how well the1314
feature-based representation and the hybrid reranking1315
strategy transfer beyond the scientific context, and iden-1316
tifying any necessary adaptations.1317
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