
SIMPLE EMERGENT ACTION REPRESENTATIONS FROM
MULTI-TASK POLICY TRAINING

Pu Hua1, Yubei Chen∗2, Huazhe Xu∗1,3

1Tsinghua University, 2Center for Data Science, New York University, 3Shanghai Qi Zhi Institute

ABSTRACT

Low-level sensory and motor signals in the high-dimensional spaces (e.g., image
observations or motor torques) in deep reinforcement learning are complicated
to understand or harness for downstream tasks directly. While sensory represen-
tations have been widely studied, the representations of actions that form motor
skills are yet under exploration. In this work, we find that when a multi-task pol-
icy network takes as input states and task embeddings, a space based on the task
embeddings emerges to contain meaningful action representations with moderate
constraints. Within this space, interpolated or composed embeddings can serve as
a high-level interface to instruct the agent to perform meaningful action sequences.
Empirical results not only show that the proposed action representations have ef-
ficacy for intra-action interpolation and inter-action composition with limited or
no learning, but also demonstrate their superior ability in task adaptation to strong
baselines in Mujoco locomotion tasks. The evidence elucidates that learning ac-
tion representations is a promising direction toward efficient, adaptable, and com-
posable RL, forming the basis of abstract action planning and the understanding
of motor signal space. Anonymous project page: https://sites.google.
com/view/emergent-action-representation/

1 INTRODUCTION

Deep reinforcement learning (RL) can learn near-optimal policies to perform low-level actions with
pre-defined reward functions. While the low-level actions are adequate for the specified tasks, it re-
mains challenging to reuse this learned knowledge to accomplish new tasks efficiently. By contrast,
when humans perform multiple tasks, the low-level muscle movements are naturally summarized
into high-level action representations such as “pick up,” or “turn left”, which can be reused in novel
tasks with slight modifications. As a result, though we are aware of our intent to perform a task,
we carry out the most complicated movements without thinking about the detailed joint motions
or muscle contractions (Kandel et al., 2021). By analogy with such abilities of humans, we ask
the question: can RL agents have action representations of low-level motor controls, which can be
reused, modified, or composed to perform new tasks?

As pointed out in Kandel et al. (2021), “the task of the motor systems is the reverse of the task
of the sensory systems. Sensory processing generates an internal representation in the brain of the
outside world or of the state of the body. Motor processing begins with an internal representation:
the desired purpose of movement”. In the past decade, representation learning has made tremendous
progress in representing high-dimensional sensory signals such as images and audios for revealing
the geometric and semantic structures hidden in the raw signals (Bengio et al., 2013; Chen et al.,
2018; Kornblith et al., 2019; Chen et al., 2020; Baevski et al., 2020; Radford et al., 2021; Bardes
et al., 2021; Bommasani et al., 2021; He et al., 2022). With the help of the generalization ability
of sensory representation learning, downstream control tasks can be accomplished efficiently (Nair
et al., 2022; Xiao et al., 2022; Yuan et al., 2022). In contrast to the advancement in sensory represen-
tation learning, action representation learning is yet under-explored. Thus, we make a step to study
this topic with an aim to find generalizable action representations which can be reused or efficiently
adapted to perform new tasks. A key idea in sensory representation learning is pretraining with a
comprehensive task (or a set of tasks) and reusing the emergent latent representation. Inspired by this

*Denotes equal contributions.

1

https://sites.google.com/view/emergent-action-representation/
https://sites.google.com/view/emergent-action-representation/


simple and powerful idea, we train a multi-task policy network, whereas a set of different tasks share
the same latent action representation space. Further, the time-variant sensory and time-invariant ac-
tion representations are decoupled and concatenated as the sensory-action representation, which is
transformed by a policy network to form the low-level action control. Surprisingly, when trained
on a comprehensive set of tasks, we discover that such a simple structure learns an emergent self-
organized action representation. The emergent action representation can be reused for intra-action
interpolation, inter-action composition, and efficient task adaptation. In particular, we demonstrate
the effectiveness of the emergent action representations with Mujoco locomotion environments and
show zero-shot composition and few-shot task adaptation in the representation space. The agents
adapt to new tasks in fewer steps than strong meta RL baselines. Besides the effectiveness of the
action representation, we find the decoupled time-variant sensory representation exhibits equivariant
properties. The evidence elucidates that reusable and generalizable action representations may lead
to efficient, adaptable, and composable RL, thus forming the basis of abstract action planning and
understanding motor signal space. The primary contributions in this work are listed as follows:

1. We put forward the idea of leveraging emergent action representations from multi-task
learners to better understand motor action space and accomplish task generalization.

2. We decouple the state-related and task-related information of the sensory-action represen-
tations and reuse them to conduct action planning more efficiently.

3. Our approach is a strong adapter, which achieves higher rewards with fewer steps than
strong meta RL baselines when adapting to new tasks.

4. Our approach supports intra-action interpolation as well as inter-action composition by
modifying and composing the learned action representations.

Next, we begin our technical discussion right below and leave the discussion of many valuable and
related literature to the end.

2 PRELIMINARIES

Soft Actor-Critic. In this paper, our approach is built on Soft Actor-Critic (SAC) (Haarnoja et al.,
2018). SAC is a stable off-policy actor-critic algorithm based on the maximum entropy reinforce-
ment learning framework, in which the actor maximizes both the returns and the entropy. In SAC,
there are three types of parameters to update during optimization: the policy parameter ω, the soft
Q-function parameter θ and a learnable temperature α. The objectives are:

J(α) = Eat∼πω

[
−α log πω (at | st)− αH

]
(1)

Jπ(ω) = Est∼D [Eat∼πω
[α log πω (at | st)−Qθ (st,at)]] (2)

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ (st,at)−

(
r (st,at) + γEst+1∼p [Vθ̄ (st+1)]

))2]
(3)

whereH in Equation 1 is a pre-defined minimum expected entropy. The value function in Equation 3
is parameterized by the weights Vθ̄ in the target Q-network and can be defined by:

V (st) = Eat∼π [Q (st,at)− α log π (at | st)] (4)

Task Distribution. We assume the tasks that the agent may meet are drawn from a pre-defined task
distribution p(T ). Each task in p(T ) corresponds to a Markov Decision Process (MDP). Therefore,
a task T can be defined by a tuple (S,A, p(st+1|st,at), p(s0), R(st,at)), in which S and A are
respectively the state and action space, p(st+1|st,at) the transition probability distribution, p(s0)
the initial state distribution and R(st,at) the reward function.

The concept of task distribution is frequently employed in meta RL problems, but we have made
some modifications and extensions on it to better match with the setting in this work. We divide all
the task distributions into two main categories, the “uni-modal” task distributions and the “multi-
modal” task distributions. Concretely, the two scenarios are defined as follows:

• Definition 1 (Uni-modal task distribution): In a uni-modal task distribution, there is only one
modality among all the tasks in the task distribution. For example, in HalfCheetah-Vel, a Mujoco
locomotion environment, we train the agent to run at different target velocities. Therefore, running
is the only modality in this task distribution.

2



Figure 1: Emergent action representations from multi-task training. The sensory information
and task information are encoded separately. When both are concatenated, an action decoder de-
codes them into a low level action.

• Definition 2 (Multi-modal task distribution): In contrast to uni-modal task distribution, there are
multiple modalities among the tasks in this task distribution. A multi-modal task distribution
includes tasks of several different uni-modal task distributions. For instance, we design a multi-
modal task distribution called HalfCheetah-Run-Jump, which contains two modalities including
HalfCheetah-BackVel and HalfCheetah-BackJump. The former has been defined in the previous
section, and the latter contains tasks that train the agent to jump with different reward weight. In
our implementation, we actually train four motions in this environment, running, walking, jumping
ans standing. We will leave more details in Section 4 and Appendix A.1.

3 EMERGENT ACTION REPRESENTATIONS FROM MULTI-TASK TRAINING

In this section, we first introduce the sensory-task decoupled policy network architecture. Next,
we discuss the multitask policy training details, along with the additional constraints to the task
embedding for the emergence of action representations. Lastly, we demonstrate the emergence of
action representations through various phenomena and applications.

3.1 MULTITASK POLICY NETWORK AND TRAINING

Decoupled embedding and concatenated decoding. An abstract high-level task, e.g., “move for-
ward”, typically changes relatively slower than the transient sensory states. As a simplification, we
decouple the latent representation into a time-variant sensory embedding Zst and a time-invariant
task embedding ZT , which is shown in Figure 1. These embeddings concatenate to form a sensory-
action embedding ZA(st, T ) = [Zst ,ZT ], which is transformed by the policy network (action
decoder) ψ to output a low-level action distribution p(at) = ψ(at|Zst ,ZT ), e.g., motor torques.
The action decoder ψ is a multi-layer perceptron (MLP) that outputs a Gaussian distribution in the
low-level action space A.

Latent sensory embedding (LSE). The low-level sensory state information is encoded by an MLP
state encoder ϕ into a latent sensory embedding Zst = ϕ(st) ∈ Rm. It includes the proprioceptive
information of each time step. LSE is time-variant in an RL trajectory, and the state encoder is
shared among different tasks. We use LSE and sensory representation interchangeably in this paper.

Latent task embedding (LTE). A latent task embedding ZT ∈ Rd encodes the time-invariant
knowledge of a specific task. Let’s assume we are going to train N different tasks, and their embed-
dings form an LTE set {ZTN

}. These N different tasks share the same state encoder ϕ and action
decoder ψ; in other words, these N tasks share the same policy network interface, except for their
task embeddings being different. For implementation, we adopt a linear encoder, which takes as
input the one-hot encodings of different training tasks, to initialize the set {ZTN

}. This task encoder

3



is learnable during training. After training, the LTE interface can be reused as a high-level action
interface. Hence, we use LTE and action representation interchangeably in this paper.

Training of the multi-task policy networks. A detailed description of the multi-task training is
demonstrated in Algorithm 1. When computing objectives and their gradients, we still use policy π
parameterized by ω to indicate all the parameters in the state encoder, task encoder and the action
decoder. The overall training procedure is based on SAC. The only difference is that the policy
network and Q networks additionally take as input the LTEZT and a one-hot task label, respectively.

During training, we also apply two techniques to constrain this space: 1) we normalize the LTEs so
that they lie on a hypersphere; 2) we inject a random noise to the LTEs to enhance the smoothness
of the space.

Algorithm 1 Multi-task Training

Input: Training task set {TN} ∼ p(T ), θ1, θ2, ω
θ1 ← θ1, θ2 ← θ2,B ← ∅
Initialize LTE set {ZTN

} for {TN}
for each pre-train epoch do

for Ti in {Tn} do
Sample a batch Bi of multi-task RL transitions with πω
B ← B ∪ Bi

end for
end for
for each train epoch do

Sample RL batch b ∼ B
for all transition data in b do
Zst = ϕ(st)

Z̃Ti = normalize(ZTi + n) and n ∼ N (0, σ2)

Sample action at ∼ ψ(·|Zst , Z̃Ti
) for computing SAC objectives

end for
for each optimization step do

Compute SAC objectives J(α), Jπ(ω), JQ(θ) with b based on Equation 123
Update SAC parameters

end for
end for

Output: The optimal model of state encoder ϕ∗ and action decoder ψ∗ and a set of LTEs {ZTN
}

3.2 THE EMERGENCE OF ACTION REPRESENTATION

After we train the multi-task policy network with a comprehensive set of tasks, where the LTE
vectors in {ZTN

} share the same embedding space, we find that {ZTN
} self-organizes into a ge-

ometrically and semantically meaningful structure. Tasks with the same modality are embedded
in a continuous fashion, which facilitates intra-task interpolation. Surprisingly, the composition
of task embeddings from different modalities leads to novel tasks, e.g., “run” + “jump” = “jump
run”. Further, the action representation can be used for efficient task adaptation. Visualization also
reveals interesting geometric structures in task embedding and sensory representation spaces. In
this subsection, we dive into these intriguing phenomena, demonstrating the emergence of action
representation and showing the generalization of the emergent action representation.

Task interpolation & composition. After training the RL agent to accomplish multiple tasks, we
select two pre-trained tasks and generate a new LTE through linear integration between the LTEs
of the two chosen tasks. The newly-generated task embedding is expected to conduct the agent to
perform another different task. The generated LTE is defined by:

Z ′ = f(βZTi + (1− β)ZTj ) (5)

where i, j are the indices of the selected tasks and ZTi ,ZTj are their corresponding LTEs. β is a
hyperparameter ranging in (0,1). The function f(·) is a regularization function related to the pre-

4



defined quality of the LTE Space. For instance, in this paper, f(·) is a normalization function to
extend or shorten the result of interpolation to a unit sphere.

A new task is interpolated by applying the aforementioned operation on the LTEs of tasks sampled
from a uni-modal distribution. The interpolated task usually has the same semantic meaning as
the source tasks while having different quantity in specific parameters, e.g., running with different
speeds. A new task is composed by applying the same operation on tasks sampled from a multi-
modal distribution. The newly composed task usually lies in a new modality between the source
tasks. For example, when we compose “run” and “jump” together, we will have a combination of
an agent running while trying to jump.

Efficient adaptation. We find that an agent trained with the multi-task policy network can adapt to
unseen tasks quickly by only optimizing the LTEs. This shows that the LTEs learn a general pattern
of the overall task distribution. When given a new task after pre-training, the agent explores in the
LTE Space to find a suitable LTE for the task. Specifically, we perform a gradient-free cross-entropy
method (CEM) (De Boer et al., 2005) in the LTE space for accomplishing the desired task. Detailed
description can be found in Algorithm 2.

Geometric Structures of LTEs and the LSEs. We visualize the LSEs and LTEs to understand their
geometric structures. The results are deferred to Section 4.5.

Algorithm 2 Adaptation via LTE Optimization

Input: Adaptation task T ∼ p(T ), ϕ∗, ψ∗, capacity of elite set m, number of sampling n
Initialize the elite set Ze with m randomly sampled LTEs from the LTE Space
for each adapt epoch do

Initialize the overall test set by Z← ∅
for Zi in Ze do

Sample n LTEs Zi1, . . . ,Zin near Zi

Z← Z ∪ {Zi,Zi1, . . . ,Zin}
end for
for Zj in Z do

while not done do
Zst = ϕ∗(st),
at ∼ ψ∗(·|Zst ,Zj)
rt = R(st,at|T )
st+1 ∼ p(st+1|st,at)

end while
end for
Sort the task embeddings in Z by high cumulative reward in the trajectory
Select the top m LTEs in Z to update Ze

end for

4 EXPERIMENTS

In this section, we first demonstrate the training process and performance of the multi-task policy
network. Then, we use the LTEs as a high-level action interface to instruct the agents to perform
unseen skills through interpolation without any training. After that, we conduct experiments to
evaluate the effectiveness of the LTEs in task adaptation. Lastly, we visualize the LSEs and LTEs
to further understand the structure of the state and action representation. We use emergent action
representation (EAR) to refer to the policy using the LTEs.

4.1 EXPERIMENTAL SETUPS

Environments. We evaluate our method on five continuous control environments (HalfCheetah-
Vel, Ant-Dir, Hopper-Vel, Walker-Vel, HalfCheetah-Run-Jump) based on OpenAI Gym and the
Mujoco simulator. Detailed descriptions of these RL benchmarks are listed in Appendix A.1.

Baselines. We compare EAR-SAC, the emergent action representation based SAC with several
multi-task RL and meta RL baselines. For multi-task RL baselines, we use multi-head multi-task

5



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Million Steps

1000

800

600

400

200

HalfCheetah-Vel

EAR_SAC
PEARL
MHMT_SAC
OHE_SAC

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Million Steps
200

0

200

400

600

800

1000

1200

1400
Ant-Dir

0.0 0.2 0.4 0.6 0.8 1.0

Million Steps

0

50

100

150

200

Hopper-Vel

0.0 0.2 0.4 0.6 0.8 1.0

Million Steps

100

50

0

50

100

150

Walker-Vel

Figure 2: Training performance of our method and baselines. The x-axis represents the total
training steps (in million steps) and the y-axis represents the average reward of all the training tasks.
All the training are based on 3 seeds. The shaded area is one standard deviation.

Method HalfCheetah-Vel Ant-Dir Hopper-Vel Walker-Vel

EAR-SAC (Ours) -136.9±1.29 1216.7±54.97 173.5±11.09 172.7±4.05
MAML -500.9±47.33 422.8±29.40 34.0±41.92 -4.9±0.58
PEARL -155.0±15.50 635.9±19.21 170.0±7.80 163.9±1.07

MHMT-SAC -145.2±2.60 1020.0±54.90 172.9±1.17 160.6±5.21
OHE-SAC -609.0±8.10 195.7±0.29 90.7±2.39 65.0±20.83

Table 1: Comparison with baselines on the final performance. The metric is the return of the last
epoch, and the mean and standard deviation is calculated among 3 seeds.

SAC (MHMT-SAC) and one-hot embedding SAC (OHE-SAC; for ablation). For meta RL baselines,
we use MAML (Finn et al., 2017) and PEARL (Rakelly et al., 2019). Detailed descriptions of these
baselines are listed in Appendix A.2.

4.2 MULTI-TASK TRAINING FOR ACTION REPRESENTATIONS

In this section, we train the multi-task network and evaluate whether sensory-action representations
can boost training efficiency. EAR-SAC is compared with all the multi-task RL and meta RL base-
lines on final rewards in Table 1 and additionally compared with off-policy baselines on the training
efficiency in Figure 2. We find that EAR-SAC outperforms all the baselines in terms of training
efficiency. In environments with high-dimensional observations (e.g., Ant-Dir), EAR-SAC achieves
large performance advantage against the baselines. We attribute this to that the learned action repre-
sentation space may provide meaningful priors when the policy is trained with multiple tasks.

4.3 ACTION REPRESENTATION AS A HIGH-LEVEL CONTROL INTERFACE

2m/s

1.8m/s, β=0.35

1m/s

1.5m/s, β=0.42 

1.2m/s, β=0.54 

Direction

Figure 3: Interpolated tasks. The top
and bottom rows are in-distribution. The
middle rows show the interpolated tasks.

In this section, we control the agent by recomposing the
LTEs. We perform intra-action interpolation and inter-
action composition in uni-modal task distributions and
multi-modal task distributions respectively.

Intra-action interpolation. Intra-action interpolation
is conducted in HalfCheetah-Vel, Ant-Dir, Hopper-Vel,
and Walker-Vel. We interpolate the action representa-
tions between two tasks using Equation 5. The coeffi-
cient β is searched to better fit the target task. An inter-
polation example in HalfCheetah-Vel is demonstrated
in Figure 3. We select the tasks of running at 1 m/s and
2 m/s to be interpolated and get three interpolated tasks:
run at 1.2 m/s, 1.5 m/s, 1.7 m/s. We perform evaluation
on each task for a trajectory, and visualize them. In each
task, we make the agent start from the same point (not
plotted in the figure) and terminate at 100 time steps.

6



Run Jump

Walk Stand

Run + Jump     

Walk + Jump      

Figure 4: Visualization of task compositions. Two stop-motion animations of the proposed
composition tasks are demonstrated. Animated results are shown in the project page: https:
//sites.google.com/view/emergent-action-representation/.

0 2 4 6 8 10

Steps

1600

1400

1200

1000

800

600

400

200

HalfCheetah-Vel

EAR_SAC_finetune
PEARL_finetune
MAML_finetune
OHE_SAC_finetune

0 2 4 6 8 10

Steps
500

250

0

250

500

750

1000

1250

Ant-Dir

0 2 4 6 8 10

Steps

0

50

100

150

Hopper-Vel

0 2 4 6 8 10

Steps
50

0

50

100

150

Walker-Vel

Figure 5: Adaptation results. The x-axis represents the adaptation steps and the y-axis represents
the average reward of all the adaptation tasks. We fix the adaptation task set for all algorithms in the
same environment.

Only part of the whole scene is visualized in the figure and we mark the terminals with red flags.
We find that through task interpolation, the agent manages to accomplish these interpolated tasks
without any training. We leave other results in all environments to Appendix A.4.

Inter-action composition. Inter-action composition is conducted in HalfCheetah-Run-Jump, in
which we merge two uni-modal task distributions. Taking HalfCheetah-BackVel and HalfCheetah-
BackJump as an example, we find that the agent has learned four motions: walking backward,
running backward, standing with its front leg, and jumping with its front leg. We select walk-
standing as a composition task pair and run-jumping as the other and compose them with Equation 5.
These two generated representations are evaluated in 1000 time steps and part of their evaluation
trajectories are visualized in Figure 4. We find that the walk-standing representation enables the
agent to walk backward with a standing posture despite some pauses to keep itself balance, while
the run-jumping representation helps the agent to jump when running backward after some trials.
These empirical results indicate that the LTEs can be used as action representations by composing
them for different new tasks.

4.4 TASK ADAPTATION WITH ACTION REPRESENTATIONS

In this section, we assess how well an agent can adapt to new tasks by only updating the LTEs.
We compare the agent’s adaptation ability with the meta RL baselines (MAML,PEARL) and the
ablation baseline (OHE-SAC). The results in Figure 5 demonstrate that EAR can adapt to new tasks
and achieve to the converged performance in no more than three epochs, outperforming the baseline
meta RL methods. We note that, with the help of the LTE space, we can adapt to new tasks using
zero-th order optimization method.

7

https://sites.google.com/view/emergent-action-representation/
https://sites.google.com/view/emergent-action-representation/


4.5 VISUALIZATION OF STATE AND ACTION REPRESENTATIONS

In this section, we further analyze and visualize the sensory-action representations based on the
HalfCheetah environment.

0.15 0.10 0.05 0.00 0.05 0.10 0.15

0.15

0.10

0.05

0.00

0.05

0.10

0.15 1 2

3

4

5

6
7

8
9

1011

12

13

14

15
Time Steps: 15

0.15 0.10 0.05 0.00 0.05 0.10
0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

12

3

4

5
6

7
8

9

10

11

12

13
14

15

Time Steps: 15

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

1 2
3

4

5

6
7

8
9

1011

12

13

14

15 1617

18
19

2021

22

2324
25

26
27

28

29

30

31

32
33

34

3536

37

38

39

40 41

42
43

44
45

4647

48
49

50
51

52

53 54

55

56

5758

59
60

Time Steps: 60

0.15 0.10 0.05 0.00 0.05 0.10

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

12
3

4
5

6
7

8
9

10

11

12

13
14

15
16

17
18

19
20 21

22
23

24

25

26

2728
2930

31

32
33

34

35

36

37

38
39

40
41

42 43
44

45

46

47

48

49

50

5152
53

54

55

56
57

58
59

60

Time Steps: 60

Raw State Signals v.s. Sensory Representations

Figure 6: Comparison between raw state sig-
nals (left) and sensory representations (right)
in HalfCheetah-Vel. To make the period of
running motion easier to observe, we reduce the
time interval between adjacent time steps. For
now a period of the motion is 15 steps, while in
the original setting it is only 6 steps.

Action Representation Space

0

2

4

6

8

Figure 7: Visualization of the action represen-
tation space in HalfCheetah-Vel. Each grid on
the unit sphere represents the terminal of an ac-
tion representation and is colored based on how
the agent performs when the policy is condi-
tioned on the action representation. The redder
the grid is, the faster the agent runs.

The sensory representations. In HalfCheetah-Vel, the halfcheetah agent is encouraged to run
at a specific velocity, thus making its motion periodical. Therefore, the ideal raw signals and the
LSEs in the trajectory should be periodical as well. After conducting Principal Components Anal-
ysis (PCA) (Abdi & Williams, 2010) to reduce the dimension of all the raw signals and the sensory
representations collected in a trajectory, we visualize them for different time steps in Figure 6. We
find that the raw state signals appear to be only roughly periodical due to the noise in the states.
However, the LSEs show stronger periodicity than the raw signals, indicating that the sensory repre-
sentations can reduce the influence of the noise in raw signals, thus helping the agent better under-
stand and react to the environment.

The action representations. To better understand the intriguing fact that the agent can adapt to
new tasks using the emergent action representations when only sparse training tasks are provided,
we plot the LTE space in Figure 7. We find that the LTEs on the hypersphere automatically form
a continuous space, constructing the basis of the composition of the representations in it. This also
explains why the interpolation and composition of the LTEs result in meaningful new behaviors:
when interpolated and normalized, the new LTE would still lie on this hypersphere, leading to new
and meaningful action sequences.

4.6 COMPARISON WITH ONE-HOT REPRESENTATION

Readers might be curious about whether the learned, manipulable LTEs better than a naive one-hot
embedding. In this section, we compare EAR with a different policy network that takes in an one-
hot embedding rather then the LTE. Specifically, in multi-task training, we concatenate the raw state
vector with the one-hot embedding as the input of the policy network to form a multi-task RL archi-
tecture. We find that the one-hot embedded policy performs unsatisfactorily in all environments and
fails completely in Ant-Dir environment. We attribute this to the fact that, without the sensory-action
representation, the agent fails to understand the underlying relation among multiple tasks, especially
in those environments with high-dimensional observations and a large training task set. We also
compare both methods in the task adaptation setting. When optimizing the one-hot embedding to
adapt to new tasks, the agent can barely reach a reasonable performance in any of the new tasks.
These facts echo with the idea that the simple emergent action representations are meaningful and
effective in task learning and generalization.

8



5 RELATED WORK

Representation learning in reinforcement learning. Representation learning has been widely
applied in RL to generate representations of sensory information (Laskin et al., 2020; Chandak
et al., 2019; Yarats et al., 2021), policies (Edwards et al., 2019), dynamics (Watter et al., 2015).

In recent years, action representation has attracted more attention. In previous works (Dulac-Arnold
et al., 2015), the action embeddings have been proposed to compress discrete actions to a contin-
uous space based on prior knowledge. Recently, many researchers focus on mapping between the
original continuous action space and a continuous manifold to facilitate and accelerate policy learn-
ing (Allshire et al., 2021) or simplify teleoperation (Losey et al., 2020). Moreover, such action
representations are extended to high-dimensional real-world robotics control problems (Jeon et al.,
2020). In this area, a closely related work is Chandak et al. (2019), which enables a policy to output
a latent action representation with reinforcement learning and then uses supervised learning to con-
struct a mapping from the representation space to the discrete action space. However, in our work,
we discover emergent self-organized sensory-action representations from multi-task policy training
without additional supervised learning, which can be further leveraged to generalize to new tasks.

Multi-task reinforcement learning. Multi-task RL trains an agent to learn multiple tasks simul-
taneously with a single policy. A direct idea is to share parameters and learn a joint policy with
multiple objectives (Wilson et al., 2007; Pinto & Gupta, 2017), but different tasks may conflict with
each other. Some works tackle this problem by reducing gradient conflicts (Yu et al., 2020a), design-
ing loss weighting (Hessel et al., 2019; Kendall et al., 2018), or leveraging regularization (Duong
et al., 2015). Modular network has also been proposed to construct the policy network with combi-
nation of sub-networks (Heess et al., 2016; Yang et al., 2020). In our work, multiple tasks share the
state encoder and action decoder; the action decoder is conditioned on LTE to reduce task conflicts.
Emergent representations are learned for continuous actions during multi-task training.

Unsupervised skill discovery. Unsupervised skill discovery employs competence-based methods to
encourage exploration and help agents learn skills. These skills can be used in adapting to new tasks.
The unsupervised methods maximize the mutual information between states and skills (Eysenbach
et al., 2018; Liu & Abbeel, 2021; Sharma et al., 2019; Xu et al., 2020; Laskin et al., 2022), while our
method learns a geometrically and semantically meaningful representation in a multi-task setting.
We believe the proposed method can be complementary to the unsupervised paradigm.

Meta reinforcement learning. The adaptation part of this work shares a similar goal as meta rein-
forcement learning (meta RL) (Finn et al., 2017; Xu et al., 2018a; Rothfuss et al., 2018; Wang et al.,
2016; Levine et al., 2020). Meta RL executes meta-learning (Schmidhuber, 1987; Thrun & Pratt,
2012) algorithms under the framework of reinforcement learning, which aims to train an agent to
quickly adapt to new tasks. Many meta RL methods are gradient-based, performing gradient descent
on the policy (Finn et al., 2017; Xu et al., 2018a; Rothfuss et al., 2018), the hyperparameters (Xu
et al., 2018b), or loss functions (Sung et al., 2017; Houthooft et al., 2018) based on the collected
experience. Other meta RL algorithms are context-based (Wang et al., 2016; Rakelly et al., 2019).
They embed context information into a latent variable and condition the meta-learning policy on
such variables. Besides, recently offline meta RL algorithms (Levine et al., 2020; Mitchell et al.,
2021) have also been widely explored, which enables the agent to leverage offline data to perform
meta-training. However, we exploit the emergent high-level representations to abstract low-level
actions for adaptation rather than introduce complicated new techniques.

6 CONCLUSION

In this paper, we present our finding that the task embeddings in a multi-task policy network can
automatically form a space where action representations reside. The emergent action representations
abstract information of a sequence of actions and can serve as a high-level interface to instruct an
agent to perform motor skills. Specifically, we find the action representations can be interpolated,
composed, and optimized to generate novel action sequences for unseen tasks. Along with this work,
a promising direction is to learn the action representation via self-supervised learning. Another
intriguing direction is to learn hierarchical action representations that may capture different levels
of semantics and geometric information in motor signals, thus facilitating future applications such
as hierarchical planning (LeCun, 2022).

9



REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Arthur Allshire, Roberto Martı́n-Martı́n, Charles Lin, Shawn Manuel, Silvio Savarese, and Animesh
Garg. Laser: Learning a latent action space for efficient reinforcement learning. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6650–6656. IEEE, 2021.

Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A frame-
work for self-supervised learning of speech representations. Advances in Neural Information
Processing Systems, 33:12449–12460, 2020.

Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8):1798–1828,
2013.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Yash Chandak, Georgios Theocharous, James Kostas, Scott Jordan, and Philip Thomas. Learning
action representations for reinforcement learning. In International conference on machine learn-
ing, pp. 941–950. PMLR, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International conference on machine learning,
pp. 1597–1607. PMLR, 2020.

Yubei Chen, Dylan Paiton, and Bruno Olshausen. The sparse manifold transform. Advances in
neural information processing systems, 31, 2018.

Pieter-Tjerk De Boer, Dirk P Kroese, Shie Mannor, and Reuven Y Rubinstein. A tutorial on the
cross-entropy method. Annals of operations research, 134(1):19–67, 2005.

Gabriel Dulac-Arnold, Richard Evans, Peter Sunehag, and Ben Coppin. Reinforcement learning in
large discrete action spaces. corr abs/1512.07679 (2015). arXiv preprint arXiv:1512.07679, 2015.

Long Duong, Trevor Cohn, Steven Bird, and Paul Cook. Low resource dependency parsing: Cross-
lingual parameter sharing in a neural network parser. In Proceedings of the 53rd annual meeting
of the Association for Computational Linguistics and the 7th international joint conference on
natural language processing (volume 2: short papers), pp. 845–850, 2015.

Ashley Edwards, Himanshu Sahni, Yannick Schroecker, and Charles Isbell. Imitating latent poli-
cies from observation. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 1755–1763. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/edwards19a.html.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. In International Conference on Learning Representa-
tions, 2018.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

10

https://proceedings.mlr.press/v97/edwards19a.html
https://proceedings.mlr.press/v97/edwards19a.html


Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022.

Nicolas Heess, Greg Wayne, Yuval Tassa, Timothy Lillicrap, Martin Riedmiller, and David Silver.
Learning and transfer of modulated locomotor controllers. arXiv preprint arXiv:1610.05182,
2016.

Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, and Hado van
Hasselt. Multi-task deep reinforcement learning with popart. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence, volume 33, pp. 3796–3803, 2019.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAI Jonathan Ho, and
Pieter Abbeel. Evolved policy gradients. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018.

Hong Jun Jeon, Dylan P Losey, and Dorsa Sadigh. Shared autonomy with learned latent actions.
arXiv preprint arXiv:2005.03210, 2020.

E.R. Kandel, J.D. Koester, S.H. Mack, and S.A. Siegelbaum. Principles of Neural Science, Sixth
Edition. McGraw-Hill Education, 2021. ISBN 9781259642241.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7482–7491, 2018.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661–
2671, 2019.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. CURL: Contrastive unsupervised representa-
tions for reinforcement learning. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learn-
ing Research, pp. 5639–5650. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/laskin20a.html.

Michael Laskin, Hao Liu, Xue Bin Peng, Denis Yarats, Aravind Rajeswaran, and Pieter Abbeel. Cic:
Contrastive intrinsic control for unsupervised skill discovery. arXiv preprint arXiv:2202.00161,
2022.

Y LeCun. A path towards autonomous machine intelligence. preprint posted on openreview, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. CoRR, abs/2005.01643, 2020.

Hao Liu and Pieter Abbeel. Aps: Active pretraining with successor features. In International
Conference on Machine Learning, pp. 6736–6747. PMLR, 2021.

Dylan P Losey, Krishnan Srinivasan, Ajay Mandlekar, Animesh Garg, and Dorsa Sadigh. Con-
trolling assistive robots with learned latent actions. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), pp. 378–384. IEEE, 2020.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In Marina Meila and Tong Zhang (eds.), Pro-
ceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings
of Machine Learning Research, pp. 7780–7791. PMLR, 18–24 Jul 2021.

Suraj Nair, Aravind Rajeswaran, Vikash Kumar, Chelsea Finn, and Abhinav Gupta. R3m: A univer-
sal visual representation for robot manipulation. arXiv preprint arXiv:2203.12601, 2022.

11

https://proceedings.mlr.press/v119/laskin20a.html
https://proceedings.mlr.press/v119/laskin20a.html


Lerrel Pinto and Abhinav Gupta. Learning to push by grasping: Using multiple tasks for effective
learning. In 2017 IEEE international conference on robotics and automation (ICRA), pp. 2161–
2168. IEEE, 2017.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International conference on
machine learning, pp. 5331–5340. PMLR, 2019.

Jonas Rothfuss, Dennis Lee, Ignasi Clavera, Tamim Asfour, and Pieter Abbeel. Promp: Proximal
meta-policy search. arXiv preprint arXiv:1810.06784, 2018.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp.
1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. In International Conference on Learning Representations, 2019.

Flood Sung, Li Zhang, Tao Xiang, Timothy Hospedales, and Yongxin Yang. Learning to learn:
Meta-critic networks for sample efficient learning. arXiv preprint arXiv:1706.09529, 2017.

Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media, 2012.

Jane X. Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z. Leibo, Rémi Munos,
Charles Blundell, Dharshan Kumaran, and Matthew M. Botvinick. Learning to reinforcement
learn. CoRR, abs/1611.05763, 2016.

Manuel Watter, Jost Tobias Springenberg, Joschka Boedecker, and Martin A. Riedmiller. Em-
bed to control: A locally linear latent dynamics model for control from raw images. CoRR,
abs/1506.07365, 2015. URL http://arxiv.org/abs/1506.07365.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a
hierarchical bayesian approach. In Proceedings of the 24th international conference on Machine
learning, pp. 1015–1022, 2007.

Tete Xiao, Ilija Radosavovic, Trevor Darrell, and Jitendra Malik. Masked visual pre-training for
motor control. arXiv preprint arXiv:2203.06173, 2022.

Kelvin Xu, Siddharth Verma, Chelsea Finn, and Sergey Levine. Continual learning of control prim-
itives: Skill discovery via reset-games. Advances in Neural Information Processing Systems, 33:
4999–5010, 2020.

Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. Learning to explore via meta-policy gradient.
In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp. 5463–5472.
PMLR, 10–15 Jul 2018a.

Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient reinforcement learning. Ad-
vances in neural information processing systems, 31, 2018b.

Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning with soft
modularization. Advances in Neural Information Processing Systems, 33:4767–4777, 2020.

12

http://arxiv.org/abs/1506.07365


Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Reinforcement learning with pro-
totypical representations. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th In-
ternational Conference on Machine Learning, volume 139 of Proceedings of Machine Learning
Research, pp. 11920–11931. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/yarats21a.html.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in Neural Information Processing Systems,
33:5824–5836, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020b.

Zhecheng Yuan, Zhengrong Xue, Bo Yuan, Xueqian Wang, Yi Wu, Yang Gao, and Huazhe Xu.
Pre-trained image encoder for generalizable visual reinforcement learning. In First Workshop on
Pre-training: Perspectives, Pitfalls, and Paths Forward at ICML, 2022.

13

https://proceedings.mlr.press/v139/yarats21a.html
https://proceedings.mlr.press/v139/yarats21a.html


A EXPERIMENTAL DETAILS

A.1 ENVIRONMENTS

The detailed descriptions of the reinforcement learning benchmarks in our experiments are listed as
follows:

• HalfCheetah-Vel (Uni-modal): In this environment, we train the halfcheetah agent to run at a
target velocity. The training task set contains 10 velocities. The target velocities during training
range from 1 m/s to 10 m/s. For every 1 m/s, we set a training task. The adaptation task set
contains 3 velocities that are uniformly sampled from [1,10]. The agent is penalized with the l1
error between its velocity and the target velocity.

• Ant-Dir (Uni-modal): In this environment, we train the Ant agent to run in a target direction. The
training task set contains 24 directions which are consecutive integers from 1 to 10. The adaptation
task set contains 5 integer directions which are uniformly sampled from [0,360) degrees. The agent
is rewarded with the velocity along the target direction and penalized with the velocity along the
direction perpendicular to our target.

• Hopper/Walker-Vel (Uni-modal): Similar to HalfCheetah-Vel, Hopper/Walker-Vel contains 10
velocities in training task set and 3 in adaptation task set. The target velocities when training
range from 0.2 m/s to 2 m/s and every 0.2 m/s we set a training task. The Hopper/Walker agent is
penalized with the l1 error between its velocity and the target velocity.

• HalfCheetah-Run-Jump (Multi-modal): There are two different uni-modal task distributions in
this environment, respectively HalfCheetah-BackVel and HalfCheetah-BackJump. HalfCheetah-
BackVel trains the halfcheetah agent to run backward at a target velocity, and the agent is penalized
with the l1 error between its velocity and the target velocity. HalfCheetah-BackJump trains the
agent to raise its hind leg to jump, and the agent is rewarded with the height of its hind leg.
HalfCheetah-Run-Jump contains 7 velocities for running backward (from 1 m/s to 7 m/s and
every 1 m/s a training task is set) and 3 tasks for jumping (3 different weights for the leg height
in the total reward function) in the training task set. In our implementation, the jumping task with
smallest weight finally turns out to be a motion of “standing” instead of jumping.

A.2 BASELINES

The detailed descriptions of the multi-task RL and meta RL baselines are listed as follows:

• MAML. MAML (Finn et al., 2017) is a gradient-based meta-RL algorithm based on Trust Region
Policy Optimization (Schulman et al., 2015). It aims to learn easily adaptable model parameters
for tasks in a specific task distribution. MAML conducts explicit training on model parameters so
that a small number of training data and gradient steps are required to adapt to a new task. In our
implementation, we modify the range and density of task sampling, which will be discussed in the
following section.

• PEARL. PEARL (Rakelly et al., 2019) is a context-based off-policy meta-RL algorithm based on
Soft Actor Critic (Haarnoja et al., 2018) and variational inference method (Kingma & Welling,
2013). PEARL tackles the problem of limited sample efficiency in meta-RL domain. PEARL
integrates off-policy RL algorithms with a latent task variable which infers how to adapt to a new
task with small amount of history contexts.

• Multi-head multi-task SAC (MHMT-SAC). MHMT-SAC is a multi-task RL architecture, in
which each training task has an independent head input, and the body of the policy network is
shared among all the tasks. We compare our method with MHMT-SAC to evaluate the perfor-
mance of an agent with emergent action representation in multi-task training.

• One-hot embedding SAC (OHE-SAC). The sensory-action representation is introduced when
training the agent to learn multiple tasks in the training set. In OHE-SAC, We omit the represen-
tation layer to make the policy network a common multi-task RL structure, which concatenates
a one-hot embedding and the raw state vector as the input of the policy network. Through com-
parison between the final performance of the two methods, OHE-SAC helps identify the effect of
action representations in training and adaptation.

14



A.3 MULTI-TASK TRAINING

A.3.1 NETWORK ARCHITECTURE

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Million Steps

1200

1000

800

600

400

200

HalfCheetah-Vel

EAR_MLP
EAR_RNN

Figure 8: Comparison of MLP and RNN structure.

In this section, we discuss the choice of
network architecture. In our method, we
use MLP as the network structure of the
encoders and decoders. Here we replace
the first layer of MLP with an RNN layer
to get the RNN encoder and decoder. Our
MLP-based network is compared with the
RNN-based network. A comparison in the
HalfCheetah-Vel environment of the two
networks is shown in Figure 8. We find
that if we simply make such changes with
a certain amount of tuning, our simple
MLP-based network achieves much higher
performance than an RNN-based one.

A.3.2 HYPERPARAMETERS

In this section, we provide detailed settings of our methods. We set up the hyperparameters, as
shown in Table 2, for the environments and algorithms in the Mujoco locomotion benchmarks.

Hyperparameters HalfCheetah-Vel Hopper/Walker-Vel Ant-Dir

max episode frames 200 200 200
sensory encoder 2-layer MLP 2-layer MLP 2-layer MLP

task encoder 1-layer MLP 1-layer MLP 1-layer MLP
action decoder 4-layer MLP 4-layer MLP 4-layer MLP

Q-network 4-layer MLP 4-layer MLP 4-layer MLP
LSE shape 16 16 16
LTE shape 3 3 3
optimizer Adam Adam Adam

learning rate 3 3 3
discount 0.99 0.99 0.99

batch size 1280 1280 1920
replay buffer 1e6 1e6 1.2e6

pretrain epochs 20 20 20
training epochs 4k 5k 10k

optimization times 200 200 200
evaluation episodes 3 3 3

Table 2: Hyperparameters of EAR in four benchmarks

A.3.3 TASK SAMPLING DENSITY

In the experiments, we fix the range of task sampling to be for different algorithms in the same
environment. We find that in HalfCheetah-Vel environment, multi-task RL methods get different
final rewards for different tasks (in Figure 9). The reason is that when the agent is trained well
enough, the penalty of velocity in the reward will become slight, thus making the control cost of
the agent dominant in the reward function. Therefore, it is natural that the faster the agent runs, the
larger cost it should pay, leading to a relatively low reward. Thus to make our comparison valid and
persuasive, the range of task sampling should be fixed. The detailed settings of the implementation
in our paper are demonstrated in Table 3. Similarly, the adaptation tasks are also shared among all
the algorithms in the same environment in Section 4.4.

15



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Million Steps

2000

1750

1500

1250

1000

750

500

250

0
HalfCheetah-Vel

EAR_vel_1
EAR_vel_5
EAR_vel_10

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Million Steps

2000

1750

1500

1250

1000

750

500

250

0
HalfCheetah-Vel

MHMT_vel_1
MHMT_vel_5
MHMT_vel_10

Figure 9: Training curves of tasks with different target velocities with multi-task RL method.

Method HalfCheetah-Vel Hopper/Walker-Vel Ant-Dir

EAR-SAC (Ours) 10 tasks in [0,10] 10 tasks in [0,2] 24 tasks in [0,360)
MAML 100 tasks in [0,10] 40 tasks in [0,2] 40 tasks in [0,360)
PEARL 100 tasks in [0,10] 20 tasks in [0,2] 100 tasks in [0,360)

MTMH-SAC 10 tasks in [0,10] 10 tasks in [0,2] 24 tasks in [0,360)
OHE-SAC 10 tasks in [0,10] 10 tasks in [0,2] 24 tasks in [0,360)

Table 3: Density of task sampling in the training procedure.

A.4 INTRA-ACTION INTERPOLATION

Additional details for the “Intra-action interpolation”. We have performed task interpolation
between adjacent tasks in HalfCheetah-Vel in Section 4.3, where we can interpolate the LTEs of
running at 1m/s and 2m/s to control the agent to run at 1.2, 1.5, 1.7m/s. Some visualized results are
provided in the text, and here we demonstrate a quantitative analysis based on multiple seeds for
the statistical reliability of our claims. During the experiments, we find that the agent may learn to
move forward by hand-standing instead of running when faced with the 1m/s task in some seeds.
It makes the postures of 1m/s and 2m/s rather different and hard to achieve interpolation. Due to
such a phenomenon, we change the pre-trained tasks to 2m/s and 3m/s, and the interpolated tasks to
2.2m/s, 2.5m/s and 2.7m/s to fairly assess the stability of task interpolation on multiple seeds. The
coefficients β of the task interpolation on 3 seeds are demonstrated in Table 4. We can find that as
the coefficient of interpolation decreases, the cheetah tends to run faster, which indicates that the
LTEs between the embeddings of running at 2m/s and 3m/s show continuity in the LTE Space.

Mid-task interpolation. Meanwhile, to fully evaluate the performance of task interpolation, we
conduct another experiment on all environments. We aim to adjust the interpolation coefficients
to achieve “mid-task interpolation” between pairs of tasks, where a “mid-task” has the average
modality of the two base tasks. For instance, in the first seed of the experiment aforementioned, we
find that when β = 0.42, the agent can run forward at 2.5m/s, which is a mid-task of running at 2m/s
and 3m/s. The results of mid-task interpolation in 3 seeds are shown in Table 11,12,13,14.

1:1 task interpolation. In the previous parts, we first determine the desired interpolated tasks and
find a suitable coefficient β for the task. In this part, from another angle, we fix the interpolation co-
efficient and observe the corresponding tasks. We perform 1:1 task interpolation in all environments,
which means we fix the coefficients β to always be 0.5. The results are shown in Table 15,16,17,18.
We summarize the results of the interpolation aforementioned in Table 5.

Task extrapolation trials. Besides interpolation, we also perform extrapolation between tasks,
which means we make β > 1 or β < 0, in HalfCheetah-Vel and Ant-Dir. We demonstrate some of
the results in Table 6. We find that, in HalfCheetah-Vel, the extrapolated behavior can also achieve
the target speed as long as the speed is in the distribution of the training tasks. The exception happens
when the target speed is out of the distribution(e.g. extrapolate Vel-1.0 and Vel-2.0 with β > 1 or
Vel-9.0 and Vel-10.0 with β < 0) where the agent can only perform extrapolation within a relatively
small range of β. In the higher-dimensional environment Ant-Dir, extrapolation still works in most
cases but has a higher failure rate.

16



Task β Evaluation

Vel-2.0 1 2.01m/s
Vel-2.2 0.67 2.20m/s
Vel-2.5 0.42 2.50m/s
Vel-2.7 0.25 2.70m/s
Vel-3.0 0 2.98m/s

Task β Evaluation

Vel-2.0 1 2.00m/s
Vel-2.2 0.64 2.20m/s
Vel-2.5 0.42 2.50m/s
Vel-2.7 0.30 2.69m/s
Vel-3.0 0 2.99m/s

Task β Evaluation

Vel-2.0 1 2.00m/s
Vel-2.2 0.69 2.20m/s
Vel-2.5 0.44 2.51m/s
Vel-2.7 0.29 2.70m/s
Vel-3.0 0 3.00m/s

Table 4: Coefficients and evaluation results of task interpolation in HalfCheetah-Vel.

Success Rate HalfCheetah-Vel Hopper-Vel Walker-Vel Ant-Dir

Mid-task interpolation 26/27 27/27 27/27 70/72
1:1 task interpolation 25/27 27/27 25/27 66/72

Table 5: Success rate of mid-task interpolation and 1:1 task interpolation on all environments. The
definition of success in mid-task interpolation is whether a suitable β ∈ (0.1, 0.9) can be found,
while in 1:1 task interpolation is whether the interpolated task lies between the two base tasks.

A.5 INTER-ACTION COMPOSITION

We have performed task composition in the HalfCheetah-Run-Jump environment. Two stop motion
animations are shown in Section 4.3 and we provide more quantitative results here. The coefficients
β of the task composition in multiple seeds are demonstrated in Table 10. Composing walking
and standing succeeds in all three seeds while composing running and jumping only succeeds in two
seeds. In the seed where the run-jumping task fails, we discover a new motion called move-jumping,
in which the cheetah agent jumps backward with its hind leg raised.

A.6 ABLATION STUDY

In this section, we ablate the two constraints mentioned in Section 3.1 of our method to better
understand what makes it work in the proposed structure.

No. Terminate steps

Trajectory 1 200
Trajectory 2 102
Trajectory 3 144
Trajectory 4 200
Trajectory 5 200

Table 7: An example: Direction-240
task in Ant-Dir in seed 5.

Failure Rate Number of failures

Without noise 16 in 72 tasks
With noise 0 in 72 tasks

Table 8: Failure rates among all training
tasks with/without injected noise. There
are 24 tasks in Ant-Dir for each seed
and 3 seeds in total.

Random Noise Injection. We inject random noise
into the LTEs during the training procedure to enhance
the smoothness of the space. To assess the effect of
this injected noise, we compare it with the case with-
out the injected noise in the high-dimensional environ-
ment Ant-Dir. The training curves are shown in Figure
10. We observe that, when injected with random noise,
our method achieves comparable training performance to
the one without noise. Then we evaluate the policy we
learn. For each task in each seed, we evaluate the trained
policy for multiple trajectories. We find that without the
injected noise in training, the policy will be sensitive to
perturbation in the system during evaluation. An example
of such a phenomenon is shown in Table 7. In the task of
“direction-240” in Ant-Dir, we evaluate the policy for 5
trajectories and find that the second and third trials termi-
nate before the maximal steps (200 steps), which means
they fail halfway. We count the number of such failures
respectively and summarize them in Table 8. The policy
trained without injected noise fails to perform over 20%
of tasks stably, while the one with noise avoids failure.

17



Tasks β Evaluation

1.8 1.04
Vel-1.0 1.5 1.01

& 1.2 0.99
-0.2 2.07

Vel-2.0 -0.5 2.19
-0.8 2.35

Tasks β Evaluation

1.8 3.03
Vel-4.0 1.5 3.50

& 1.2 3.84
-0.2 5.21

Vel-5.0 -0.5 5.53
-0.8 5.87

Tasks β Evaluation

1.8 8.12
Vel-9.0 1.5 8.45

& 1.2 8.76
-0.2 10.10

Vel-10.0 -0.5 10.29
-0.8 10.19

Tasks β Evaluation

1.8 288.73
Dir-0 1.5 308.72

& 1.2 342.61
-0.2 9.46

Dir-15 -0.5 355.72
-0.8 49.29

Tasks β Evaluation

1.8 107.03
Dir-120 1.5 111.38

& 1.2 116.81
-0.2 135.53

Dir-135 -0.5 141.67
-0.8 145.02

Tasks β Evaluation

1.8 255.95
Dir-270 1.5 259.95

& 1.2 268.35
-0.2 288.98

Dir-285 -0.5 288.36
-0.8 294.08

Table 6: Coefficients and evaluation results of task extrapolation in HalfCheetah-Vel and Ant-Dir in
seed 3.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million Steps

200

400

600

800

1000

1200

1400
Ant-Dir

EAR_SAC_withoutnoise
EAR_SAC

Figure 10: The comparison of training curves
of the policy trained with/without the injected
random noise.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Million Steps 1e6

200

400

600

800

1000

1200

1400
Ant-Dir

EAR_SAC_withoutnorm
EAR_SAC

Figure 11: The comparison of training curves
of the policy with normalized/none-normalized
LTEs and LSEs.

0 2 4 6 8 10

Steps
500

250

0

250

500

750

1000

1250

Ant-Dir

direction_77
direction_133
direction_201

Figure 12: An example: three random
adaptation tasks in seed 1. Two achieve
comparable results with our method
while the remaining one requires much
more steps.

Unit sphere regularization. We also apply regulariza-
tion on LTEs by normalizing them on the surface of a
unit sphere. We ablate this regularization by removing the
normalization functions for LSEs and LTEs and directly
concatenating them together as the input of the action de-
coder. The training curves are demonstrated in Figure
11. We find that our method achieves higher sample ef-
ficiency and rewards than the one without normalization.
Then we compare their performance in downstream tasks.
We repeat the interpolation experiments with the new pol-
icy without normalization and calculate the success rates
in Table 9. With the normalization, the success rates of
interpolation experiments increase, which indicates that
normalization improves the quality of the representation
space and thus better supports interpolation. Furthermore,
we also try to perform task adaptation with the new pol-
icy. An example is demonstrated in Figure 12. Results
show that the new policy can still adapt to some tasks
while requiring more training steps.

18



Success Rate Mid-task interpolation 1:1 task interpolation

Without normalization 64/72 59/72
With normalization 70/72 66/72

Table 9: Success rates of mid-task and 1:1 task interpolation with/without normalization.

Task β

Move-jumping 0.41
Walk-standing 0.42

Task β

Run-jumping 0.52
Walk-standing 0.30

Task β

Run-jumping 0.27
Walk-standing 0.45

Table 10: Coefficients of task composition in HalfCheetah-Run-Jump.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Million Steps
0

50000

100000

150000

200000

250000

Metaworld-Reach

EAR_SAC
MHMT_SAC
PEARL

Figure 13: Training performance of our method
and baselines in Metaworld-Reach.

0 2 4 6 8 10

Steps
0

50000

100000

150000

200000

250000

Metaworld-Reach

EAR_SAC_finetune
PEARL_finetune

Figure 14: Adaptation results of our method and
PEARL in Metaworld-Reach.

A.7 APPLICATION IN MANIPULATION

In previous sections, we mainly tackle the classic and widely studied locomotion problems in rein-
forcement learning. In this section, we apply our method to the domain of manipulation to exam-
ine the effectiveness of the proposed method in other domains. We propose another environment
Metaworld-Reach based on the metaworld (Yu et al., 2020b), in which a robot arm is trained to
reach different points. We train the agent with multiple reach goals under the proposed multi-task
setting and perform fast adaptation with the learned policy. The training and adaptation curves are
demonstrated respectively in Figure 13,14. We find that our method can still find suitable latent task
embeddings in the action representation space for adaptation tasks in less than 5 steps.

19



Target 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

β 0.47 0.44 0.38 0.44 0.46 0.46 0.47 0.44 0.46
Evaluation 1.60 2.51 3.51 4.50 5.50 6.50 7.51 8.50 9.51

Target 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

β 0.42 0.42 0.38 0.39 0.43 0.45 0.46 0.51 0.48
Evaluation 1.51 2.50 3.50 4.50 5.50 6.50 7.50 8.50 9.50

Target 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

β 0.37 0.42 0.45 0.43 0.49 0.52 0.51 0.53 0.41
Evaluation 1.49 2.50 3.50 4.50 5.50 6.50 7.50 8.49 9.51

Table 11: Mid-task interpolation in HalfCheetah-Vel.

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

β 0.59 0.50 0.47 0.39 0.51 0.64 0.55 0.64 0.60
Evaluation 0.30 0.50 0.70 0.90 1.11 1.30 1.50 1.70 1.90

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

β 0.59 0.44 0.45 0.54 0.63 0.54 0.53 0.60 0.61
Evaluation 0.30 0.51 0.70 0.90 1.09 1.30 1.50 1.70 1.90

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

β 0.51 0.52 0.52 0.58 0.48 0.72 0.63 0.58 0.04
Evaluation 0.30 0.50 0.70 0.91 1.10 1.30 1.50 1.70 1.90

Table 12: Mid-task interpolation in Hopper-Vel.

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

β 0.54 0.36 0.49 0.38 0.45 0.44 0.66 0.82 0.77
Evaluation 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

β 0.36 0.23 0.37 0.44 0.41 0.45 0.48 0.58 0.74
Evaluation 0.30 0.50 0.70 0.90 1.10 1.30 1.51 1.70 1.90

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

β 0.50 0.39 0.46 0.51 0.43 0.52 0.51 0.76 0.62
Evaluation 0.30 0.50 0.70 0.90 1.10 1.30 1.50 1.70 1.90

Table 13: Mid-task interpolation in Walker-Vel.

20



Target 7.5 22.5 37.5 52.5 67.5 82.5 97.5 112.5

β 0.45 0.82 0.46 0.46 0.49 0.50 0.34 0.40
Evaluation 7.48 22.51 37.81 52.57 67.56 82.50 97.62 112.29

Target 127.5 142.5 157.5 172.5 187.5 202.5 217.5 232.5

β 0.49 0.68 0.42 0.99 0.73 0.58 0.36 0.70
Evaluation 127.58 142.47 157.47 163.43 187.48 202.53 217.39 232.52

Target 247.5 262.5 277.5 292.5 307.5 322.5 337.5 352.5

β 0.26 0.67 0.58 0.31 0.36 0.37 0.57 0.47
Evaluation 247.50 262.48 277.50 292.61 307.56 322.49 337.55 352.42

Target 7.5 22.5 37.5 52.5 67.5 82.5 97.5 112.5

β 0.76 0.56 0.37 0.20 0.59 0.31 0.40 0.40
Evaluation 7.27 22.54 37.51 52.32 67.54 82.58 95.52 112.52

Target 127.5 142.5 157.5 172.5 187.5 202.5 217.5 232.5

β 0.34 0.22 0.52 0.48 0.41 0.47 0.38 0.27
Evaluation 127.69 142.80 157.56 172.39 187.50 202.50 217.44 232.61

Target 247.5 262.5 277.5 292.5 307.5 322.5 337.5 352.5

β 0.35 0.56 0.40 0.35 0.86 0.52 0.66 0.48
Evaluation 247.50 262.33 277.49 292.42 307.37 322.55 337.32 352.82

Target 7.5 22.5 37.5 52.5 67.5 82.5 97.5 112.5

β 0.75 0.50 0.53 0.29 0.46 0.43 0.39 0.99
Evaluation 7.58 22.48 37.44 52.44 67.63 82.53 97.61 112.62

Target 127.5 142.5 157.5 172.5 187.5 202.5 217.5 232.5

β 0.55 0.47 0.34 0.36 0.30 0.21 0.27 0.32
Evaluation 127.51 142.44 157.37 172.31 187.43 202.68 217.59 232.48

Target 247.5 262.5 277.5 292.5 307.5 322.5 337.5 352.5

β 0.26 0.30 0.30 0.38 0.15 0.55 0.47 0.41
Evaluation 247.44 262.54 277.45 292.84 307.19 322.44 337.74 352.33

Table 14: Mid-task interpolation in Ant-Dir.

Target 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Evaluation 0.96 2.42 3.30 4.43 5.46 6.45 7.49 8.46 9.49

Target 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Evaluation 1.23 2.38 3.35 4.40 5.41 6.46 7.47 8.44 9.02

Target 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Evaluation 1.25 2.38 3.42 4.42 5.48 6.54 7.49 8.50 9.43

Table 15: 1:1 interpolation in HalfCheetah-Vel.

21



Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Evaluation 0.31 0.51 0.68 0.91 1.08 1.36 1.54 1.72 1.96

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Evaluation 0.31 0.46 0.69 0.90 1.14 1.31 1.50 1.73 1.95

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Evaluation 0.38 0.51 0.69 0.89 1.15 1.34 1.51 1.73 1.90

Table 16: 1:1 interpolation in Hopper-Vel.

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Evaluation 0.32 0.46 0.69 0.87 1.09 1.29 1.82 1.83 1.97

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Evaluation 0.26 0.46 0.67 0.89 1.08 1.28 1.51 1.72 1.97

Target 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

Evaluation 0.29 0.47 0.69 0.90 1.09 1.30 1.50 1.79 1.95

Table 17: 1:1 interpolation in Walker-Vel.

Target 7.5 22.5 37.5 52.5 67.5 82.5 97.5 112.5

Evaluation 8.65 22.86 38.86 52.07 67.76 79.79 175.41 113.61

Target 127.5 142.5 157.5 172.5 187.5 202.5 217.5 232.5

Evaluation 126.45 142.40 154.05 169.70 185.50 198.52 214.90 231.39

Target 247.5 262.5 277.5 292.5 307.5 322.5 337.5 352.5

Evaluation 243.37 258.17 273.74 290.81 316.52 323.48 338.66 351.11

Target 7.5 22.5 37.5 52.5 67.5 82.5 97.5 112.5

Evaluation 47.26 25.14 39.65 26.37 60.58 81.91 96.71 114.74

Target 127.5 142.5 157.5 172.5 187.5 202.5 217.5 232.5

Evaluation 125.47 133.68 160.27 171.79 190.62 201.69 217.45 229.55

Target 247.5 262.5 277.5 292.5 307.5 322.5 337.5 352.5

Evaluation 243.46 263.07 275.24 291.22 319.19 326.01 337.86 350.19

Target 7.5 22.5 37.5 52.5 67.5 82.5 97.5 112.5

Evaluation 8.60 21.04 37.14 51.72 68.20 84.26 98.73 112.72

Target 127.5 142.5 157.5 172.5 187.5 202.5 217.5 232.5

Evaluation 129.20 152.40 157.35 308.21 189.11 201.22 218.09 230.26

Target 247.5 262.5 277.5 292.5 307.5 322.5 337.5 352.5

Evaluation 245.85 238.00 283.31 296.63 308.51 322.86 334.91 352.17

Table 18: 1:1 interpolation in Ant-Dir.

22


	Introduction
	Preliminaries
	Emergent Action Representations from Multi-Task Training
	Multitask Policy Network and Training
	The Emergence of Action Representation

	experiments
	experimental setups
	Multi-task Training for Action Representations
	Action Representation as a High-level Control Interface
	Task Adaptation with Action Representations
	Visualization of State and Action Representations
	Comparison with one-hot representation

	Related Work
	Conclusion
	Experimental Details
	Environments
	Baselines
	Multi-task training
	Network Architecture
	Hyperparameters
	Task sampling density

	Intra-action interpolation
	Inter-action composition
	Ablation study
	Application in manipulation


