
HAL Id: hal-04411288
https://hal.science/hal-04411288v1

Submitted on 23 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel multi-branch wavelet neural network for sparse
representation based object classification

Tan-Sy Nguyen, Marie Luong, Mounir Kaaniche, Long Ngo, Azeddine
Beghdadi

To cite this version:
Tan-Sy Nguyen, Marie Luong, Mounir Kaaniche, Long Ngo, Azeddine Beghdadi. A novel multi-branch
wavelet neural network for sparse representation based object classification. Pattern Recognition, 2023,
135, pp.109155. �10.1016/j.patcog.2022.109155�. �hal-04411288�

https://hal.science/hal-04411288v1
https://hal.archives-ouvertes.fr


A novel multi-branch wavelet neural network for sparse
representation based object classification
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Azeddine Beghdadi2

Abstract

Recent advances in acquisition and display technologies have led to an enormous

amount of visual data, which requires appropriate storage and management

tools. One of the fundamental needs is the design of efficient image classification

and recognition solutions. In this paper, we propose a wavelet neural network

approach for sparse representation-based object classification. The proposed

approach aims to exploit the advantages of sparse coding, multi-scale wavelet

representation as well as neural networks. More precisely, a wavelet transform

is firstly applied to the image datasets. The generated approximation and detail

wavelet subbands are then fed into a multi-branch neural network architecture.

This architecture produces multiple sparse codes that are efficiently combined

during the classification stage. Extensive experiments, carried out on various

types of standard object datasets, have shown the efficiency of the proposed

method compared to the existing sparse coding and deep learning-based meth-

ods.

Keywords: Object classification, sparse coding, wavelet transform, neural

networks, multi-branch architecture.
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1. Introduction

Object classification is one of the most common problems in computer vi-

sion and pattern recognition fields. It plays a crucial role in applications such

as face recognition, event detection [1], visual tracking [2], and more. Its main

goal consists of finding a compact representation or set of relevant features that5

capture the intrinsic properties of the image contents. Object/image classifi-

cation remains a challenging problem, especially in the case of large scale and

complex datasets [3]. In this respect, many efforts have been made in recent

years to design new efficient classification methods. Among these methods,

sparse representation-based classification (SRC) has attracted much attention10

due to its several advantages. Namely, SR ensures high robustness to noise

and other kinds of degradation while producing a compact representation of the

data through only a small number of meaningful features [4]. Recently, crucial

attention has been paid to deep learning-based techniques due to the benefits of

using neural networks for image analysis and processing [5]. Motivated by the15

success of such powerful techniques, this work aims to combine sparse represen-

tation with neural networks to further enhance their classification performance.

In the following, we will provide an overview of the state-of-the-art classification

techniques and then summarize the contributions of the current work.

1.1. Conventional classification techniques20

The main idea behind most of the conventional (i.e. non-deep learning) clas-

sification techniques relies on the sparse representation tool [6, 7]. For instance,

the original SRC method [6] aims to estimate the sparsest representation of a

test sample using an over-complete dictionary composed of training samples.

The resulting sparse code is then used as a feature descriptor for classification25

purposes. The latter is often made according to the minimum reconstruction

error criterion. Inspired by this original SRC method, different variants have

also been developed. Indeed, a kernel sparse representation for image classifi-

cation and face recognition has been proposed in [8]. Moreover, to reduce the
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computational time of SRC, local and block-based SRC schemes have been de-30

signed in [9] and [10], respectively. Generally, the performance of these methods

is limited in the case of large image datasets due to the fact that the dictio-

nary is formed by all the training samples of each class. To cope with this

drawback, several methods based on compact dictionary learning have been

developed. In this context, an interesting approach is discriminative dictio-35

nary learning (DDL), which allows the generation of a dictionary with small

size from a selective dataset. This can be achieved using an objective function

with reconstructive and discriminative terms. Moreover, a Fisher Discrimina-

tion Dictionary Learning (FDDL) method is proposed in [11]. This method

uses a Fisher discrimination criterion to learn a structured dictionary whose40

sub-dictionaries have specific class labels while producing discriminative sparse

coding coefficients. In [12], the Label Consistent K-SVD (LC-KSVD) method

is proposed. This method consists of using only a single small dictionary for

jointly learning a discriminative dictionary as well as a linear classifier. To this

end, the authors explicitly incorporated a discriminative sparse-code (also called45

label consistency) constraint term and a classification error term into the objec-

tive function which is solved by applying the K-SVD algorithm [13]. While the

above methods as well as most of the existing DDL methods rely on a single

layer dictionary learning process, a multi-layer DDL approach has recently been

proposed in [14]. However, dictionary learning methods are still challenging in50

the case of large datasets. To tackle this problem, a projection step is often

performed to transform high dimensional data into a low dimensional space.

For this reason, a new approach for joint dimension reduction and dictionary

learning has been developed in [15]. Another interesting solution will consist of

applying a nonlinear projection using neural networks.55

1.2. Neural networks-based classification techniques

Recent deep learning-based classification methods can be classified into three

main categories: (i) spatial-based neural networks, (ii) wavelet-based neural net-

works, and (iii) sparse coding neural networks. Methods in the first category
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employ various Neural Network (NN) models to extract deep features for im-60

age/object classification. These models include VGG19 [16], ResNet50 [17],

Wide ResNet [18] and auto-encoder [19]. To further reduce the computational

complexity and exploit other compact representations of the original images, the

second category of developed methods have focused on the design of NN oper-

ating in the wavelet transform domain [20]. For instance, in [21], the input data65

is transformed into wavelet subbands that are fed into a Convolutional Neu-

ral Network (CNN). In [22], the authors proposed a wavelet-like auto-encoder

model that decomposes an input image into two channels corresponding to low

and high frequency information. Then, the low frequency channel is fed into

a standard classification network (VGG16) to extract deep features. Finally,70

these features are fused with those extracted from the high frequency channel

using a lightweight network. However, by only considering two channels, the

edge information is not efficiently taken into account during the classification

stage. Moreover, the output scores of these two channels are combined us-

ing an average operation. In [23], the authors propose to enhance CNNs by75

replacing max-pooling, strided-convolution, and average-pooling with Discrete

Wavelet Transform. Similarly, a U-Net architecture is deployed in [24] with the

intention of embedding wavelet decomposition into the CNN blocks to reduce

the resolution of the feature maps. However, this method is mainly designed

for image denoising applications. Finally, methods in the third category aim80

to combine neural networks with sparse representation/sparse coding models.

More precisely, in [25], a deep sparse coding network is developed to combine

the advantages of CNN and sparse coding-based classification techniques. A

sparse auto-encoder (AE)-based model using an ℓ1/2 sparsity regularization as a

constraint on the hidden representation is proposed in [26]. In [27], the conven-85

tional sparse coding scheme is extended to a multi-layer architecture yielding

a deep sparse coding network. Another extension of SRC, referred to as Deep

Sparse Representation Classification (DSRC), is developed in [28]. It is based

on a convolutional AE to learn sparse representation and find the sparse codes

for classification. More precisely, an encoder is firstly used to extract embed-90

4



ding features which are fed into the sparse coding layer. Then, the sparse codes

of the features are estimated by solving a sparse coding optimization problem.

Finally, the recovered embedding features are fed into the decoder for image

reconstruction purposes. The obtained sparse codes are exploited during the

classification stage based on the minimum reconstruction residual criterion as95

performed in the standard SRC approach.

1.3. Contributions

While previous deep learning-based classification methods aim to extract

deep features from original images, or combine neural networks with sparse

coding or embed wavelet transform into neural networks, the main goal of this100

work is to take advantage of neural networks, sparse coding as well as wavelets.

More precisely, we propose a hybrid approach using a neural network-based

sparse representation technique that operates in the wavelet transform domain.

Note that a preliminary version of this work, inspired by the Deep Sparse Repre-

sentation Classification (DSRC) model [28], has recently been presented in [29].105

However, unlike our previous work using only the low frequency subband, we

propose here a more general framework, exploiting both the approximation as

well as the detail subbands. To this end, a novel multi-branch wavelet neural

network (MB-WNN) architecture is designed in this paper. This architecture

produces multiple sparse codes at different orientations and resolution levels.110

During the classification stage, and in order to handle multiple sparse codes, we

have extended the standard residual-based probabilistic approach [30] which is

developed for single sparse code.

The remainder of this paper is organized as follows. In Section 2, we re-

call some background on Sparse Representation Wavelet-based Classification115

(SRWC). The proposed multi-branch wavelet neural network architecture is

then described in Section 3. The experimental results are shown in Section 4.

Finally, some conclusions and perspectives are drawn in Section 5.
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2. Background on Sparse Representation Wavelet-based Classifica-

tion120

Before describing the proposed architecture, we first recall the main idea be-

hind Sparse Representation Wavelet-based Classification (SRWC) method [31].

In fact, unlike the classical SRC methods, SRWC operates in the wavelet trans-

form domain and consists of using the approximation subband instead of the

entire image.125

More precisely, by considering k-classes with their labeled training samples, a

wavelet decomposition is first applied to all the samples. Then, the generated

approximation wavelet coefficients are processed using the Principal Component

Analysis (PCA) technique [32]. The resulting vectors of the different samples

are referred to as atoms. The sparse coding step consists of constructing sub-130

dictionaries Dc
tr derived from the training atoms dc

i , where i ∈ {1, . . . , nc}, nc

is the number of atoms in class c, c ∈ {1, . . . , k} and k is the total number of

classes. Thus, the sub-dictionary Dc
tr for a class c is given by

Dc
tr = [dc

1,d
c
2, ...,d

c
nc
] ∈ Rm×nc , (1)

where m is the dimension of each atom.

Then, for k classes with total number of atoms n, with n = ∑k
c=1 nc, a dictionary135

Dtr is constructed from the above sub-dictionaries as follows:

Dtr = [D1
tr,D

2
tr, ...,D

k
tr] ∈ Rm×n . (2)

Based on the sparse representation model, any new test atom xst ∈ Rm from a

given class can be approximated by a linear combination of the atoms of the

same class, yielding:

xst = sc1dc
1 + . . . + scnc

dc
nc
, (3)

where [sc1, sc2, ..., scnc
]⊺ ∈ Rnc is the corresponding sparse coefficients vector asso-140

ciated with class c.

The class of a given test atom xst is deduced from the dictionary Dtr by select-

ing a set of samples of the training atoms which can better approximate xst by
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the associated sparse code s whose non-zero entries correspond to the cth class.

Thus, the sparse representation vector can be expressed as145

s = [0, ...0, sc1, ..., scnc
, ...,0,0]⊺ ∈ Rn . (4)

Given the dictionary Dtr, the approximated sparse vector ŝ of xst is obtained

by solving the Lasso optimization problem:

ŝ = argmin
s
∥xst −Dtrs∥22 + λ0∥s∥1 , (5)

where λ0 is a parameter that controls the balance between the reconstruction

error and sparsity.

Finally, the non-zero coefficients in ŝ allow to identify the class of the unlabeled150

test atom. However, in practice, the non-zero coefficients may be associated

with different classes due to the noise or the correlation that may exist within

multiple classes. For this reason, the residual between the original test sample

xst and the estimated one is computed for the possible candidate classes, and

the predicted class is chosen according to the minimum residual value:155

class(xst) = argmin
c
∥xst −Dtrδc(ŝ)∥22, (6)

where ŝ ∈ Rn and δc(ŝ) is the characteristic function that selects elements in ŝ

that are only associated with class c.

3. Proposed multi-branch wavelet neural network architecture and

classification scheme

Motivated by the advantages of wavelets in producing multi-scale represen-160

tation with good space-frequency localization, a wavelet transform is applied

to the image dataset. More precisely, the luminance component X is firstly

extracted from each input color image. Then, the Haar transform is performed

on the resulting images to generate four wavelet subbands: One approximation

subband X(LL) and three detail subbands oriented horizontally X(LH), verti-165

cally X(HL) and diagonally X(HH). Thus, for notation concision, X(o) denotes
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a given wavelet subband at orientation o ∈ O, where O = {LL,HL,LH,HH} is

the set of the generated directional wavelet subbands. By repeating the same

decomposition process on the approximation subband, a multi-resolution repre-

sentation of the input image can be obtained.170

Before describing the proposed architecture, let us introduce the following nota-

tions. For a given dataset, n, ntr, nv, and nst represent the respective numbers of

all, training, validation and testing samples. Thus, following the wavelet decom-

position stage, the resulting subbands, with orientation o ∈ O, of the training,

validation and testing samples are designated by X
(o)
tr ∈ Rm×ntr , X

(o)
v ∈ Rm×nv ,175

and X
(o)
st ∈ Rm×nst , respectively.

3.1. Architecture description

Once the wavelet decomposition is performed and the approximation X(LL)

as well as the horizontal X(LH), vertical X(HL) and diagonal X(HH) detail

subbands are obtained, the latter are fed into different neural networks. Thus,180

a multi-branch wavelet neural network architecture is obtained.
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Figure 1: Proposed multi-branch wavelet neural network (MB-WNN) architecture.

It can be observed from Fig. 1 that each wavelet subband is processed through

the following three main blocks:
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• An encoder E(o) that generates the encoding features Y(o) in the latent

space. Thus, from the input vector X
(o)
inp = [X

(o)
tr ,X

(o)
ref ], we obtain:

Y(o) = [E(o)(X(o)tr ),E
(o)(X(o)ref)]

= [Y(o)tr ,Y
(o)
ref ] (7)

where the index ref refers either to the validation or test data. For in-

stance, when the MB-WNN architecture is used in the training (resp. test)185

phase, X
(o)
ref and Y

(o)
ref terms correspond to X

(o)
v and Y

(o)
v (resp. X

(o)
st and

Y
(o)
st ).

• A sparse coding layer, parameterized by S(o), which aims to find the sparse

encoding features Ŷ(o) from Y(o).

• A decoderD(o) that consists in reconstructing an output X̂(o) =D(o)(Ŷ(o))190

close to the encoder input X
(o)
inp.

It is important to note that the sparse coding layer plays a crucial role in

this architecture. For instance, the estimation of the sparse representation of

the encoding features Y(o) is achieved by minimizing the approximation error

under the sparsity constraint. This leads to the following Lasso optimization195

problem:

min
S(o)
∑
o∈O
(λ(o)1 ∥Y

(o)
ref −Y

(o)
tr S(o)∥

2

F
+ λ(o)2 ∥S

(o)∥
1
) , (8)

where S(o) ∈ Rntr×nref is the sparse coefficient matrix, λ
(o)
1 are positive constants

weighting the different approximation errors across the different subbands, λ
(o)
2

are positive regularization parameters that control the sparsity penalty and

the fidelity between the input and output of the sparse coder, and ∥⋅∥F is the200

Frobenius norm.

According to (8), the estimated sparse encoding features Ŷ
(o)
ref can be seen as the

output of a Fully Connected Network (FCN) whose input layer is the encoded

feature vector Y
(o)
tr . Thus, we have:

Ŷ
(o)
ref =Y

(o)
tr S(o) . (9)
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Knowing that the sparse coder’s output is given by Ŷ(o) = [Ŷ(o)tr , Ŷ
(o)
ref ] while205

Ŷ
(o)
tr =Y

(o)
tr , problem (8) can be rewritten as

min
S(o)
∑
o∈O
(λ(o)1 ∥Y

(o) − Ŷ(o)∥
2

F + λ
(o)
2 ∥S

(o)∥1) . (10)

3.2. Learning approach

Once the different blocks are described, we focus on the model learning

approach. The proposed MB-WNN model will be trained using an appropriate

loss function which aims to achieve the following two objectives for each branch210

of the architecture:

• Learning a meaningful representation of the input wavelet subbands X
(o)
inp

by a nonlinear reduction method, using the encoder block of the AE, in-

stead of the linear PCA as performed in SRWC [31]. The decoder block of

the AE ensures that the encoded features allow to recover a reconstructed215

subband X̂(o) close to X
(o)
inp. Hence, the loss related to the reconstruction

error of the AE, L(o)AE , is given by

L(o)AE = ∥X
(o)
inp − X̂

(o)∥
2

F
. (11)

• Estimating the sparse representation of the encoding features in the latent

space by minimizing both the approximation error (i.e. first term in (10))

and the sparsity penalty constraint (i.e. second term in (10)). Thus, the220

loss related to the sparse coding layer, L(o)SC , is defined by

L(o)SC = λ
(o)
1 ∥Y

(o) − Ŷ(o)∥
2

F + λ
(o)
2 ∥S

(o)∥1 . (12)

Since we are dealing with a multi-branch architecture, the global loss function

is defined by considering the weighted sum of the two loss terms L(o)SC and L(o)AE

associated to each branch. Therefore, the retained loss function of our MB-

WNN architecture becomes:

Lt = ∑
o∈O
(L(o)SC + λ

(o)
3 L

(o)
AE)

= ∑
o∈O
(λ(o)1 ∥Y

(o) − Ŷ(o)∥
2

F + λ
(o)
2 ∥S

(o)∥1 + λ
(o)
3 ∥X

(o)
inp − X̂

(o)∥
2

F
), (13)
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where λ
(o)
3 are positive parameters used to weight the reconstruction errors re-

sulting from the auto-encoders applied to the different wavelet subbands (while

λ
(o)
1 and λ

(o)
2 have already been defined in (8)). Note that the choice of these

weights will be discussed in the next section to better analyze the impact of the225

different subbands on the classification performance.

Finally, the loss function Lt is minimized using a standard stochastic gradient-

based optimization method to get the optimal parameters of the overall archi-

tecture.

3.3. Multiple sparse codes-based classification stage230

Once the model is trained, the obtained sparse codes are used in the test

phase to proceed with the classification stage. More precisely, the class labels of

the test samples will be identified using a residual-based probabilistic rule [30].

In the case of highly inter-correlated data, the probabilistic rule revealed good

classification performance compared to the classical approach based on the trun-235

cated residual scheme where the samples from different classes may yield the

same residual [6]. While the residual-based probabilistic approach has been de-

veloped for a single sparse code [29, 30], we propose to generalize it to deal with

a multiple sparse code matrix S(o).

In this respect, for each class c ∈ {1, . . . , k} and orientation o ∈ O, the residual240

term r
(o)
c is firstly computed as follows:

r(o)c (x
(o)
st ) =

∥y(o)st −Y
(o)
tr δc (s(o))∥

2

2

∥δc (s(o))∥
2

2

, (14)

where x
(o)
st is the subband at orientation o of the observed sample in the test

data X
(o)
st , y

(o)
st is its embedding feature vector and s(o) is its corresponding

sparse code column in the sparse code matrix S(o).

Then, a probability value p
(o)
c is mapped to each residual term r

(o)
c using the

softmax function:

p(o)c = e−r
(o)
c

∑k
c=1 e

−r
(o)
c

, (15)
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where k denotes the number of classes.

Finally, based on a linear combination of the probability values p
(o)
c associated

with the different subbands at orientation o ∈ O, the class of the test sample xst

is identified as follows

class (xst) = argmax
c
(pc)

= argmax
c
( ∑
o∈O

α(o)p(o)c ), (16)

where pc denotes the probability that the sample xst belongs to class c, and α(o)

is a positive constant (with ∑o∈O α(o) = 1) representing the weight associated

to each probability value p
(o)
c . In other words, α(o) reflects the importance of

subband o in the classification stage.245

Particular case: single branch architecture

A particular case of the proposed MB-WNN architecture consists in considering

only one wavelet subband, yielding a single branch architecture. Since wavelet

transforms allow to concentrate the main information of a given input image

in the low frequency subband, the single branch architecture could be easily250

deduced by selecting the branch dealing with the approximation subband (i.e.

the upper branch of the MB-WNN shown in Fig. 1). While such a single branch

model presents the advantage of reducing the complexity of the architecture, it

may be less efficient as it does not take into account the detail wavelet coefficients

(i.e. edge information) of the input images as addressed in the proposed MB-255

WNN-based framework.

4. Experimental results

To evaluate the performance of the proposed methods, extensive experiments

have been conducted. The first round of experiments is devoted to the analysis

of the influence of the different parameters involved in the proposed MB-WNN260

architecture. The latter is then compared to recent state-of-the-art classification

methods.
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4.1. Experimental settings

As mentioned in the previous section, each branch of the proposed archi-

tecture relies on three main blocks referred to as encoder, sparse coding and265

decoder. It is important to note here that the retained architecture, applied to

each branch, is quite similar to that investigated recently in [28]. However, few

modifications related to the kernel sizes are made to reduce the amount of the

involved parameters. For instance, a description of the employed architecture

is provided in Table 1. To train our models, a two-stage approach is adopted

Table 1: Description of the neural network model used in each branch of the overall architec-

ture.

Layer
Feature maps

Kernel size # Param
Number Size

Encoder

Conv2D-1 10 48×48 3×3 208

Max-pool-1 10 24×24 ∅ 0

Conv2D-2 20 24×24 3×3 1168

Max-pool-2 20 12×12 ∅ 0

Conv2D-3 30 12×12 1×1 4640

Max-pool-3 30 6×6 ∅ 0

Sparse

Coding
FCN 30 6×6 ∅ 540225

Decoder

Conv2D-4 30 6×6 1×1 9248

Upsampling-1 30 12×12 ∅ 0

Conv2D-5 20 12×12 3×3 4640

Upsampling-2 20 24×24 ∅ 0

Conv2D-6 10 24×24 3×3 1168

Upsampling-3 10 48×48 ∅ 0

Conv2D-7 1 48×48 3×3 208

Param Total parameters: 561,474

270
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in our experiments as investigated in [28]. The first one corresponds to a pre-

training stage where the model is trained without considering the sparse coding

layer (i.e. like a traditional AE model). This step is achieved using 100 epochs.

Then, in the second stage, we continue the training of the overall model, while

including the sparse coding layer, by using 900 epochs. The models are trained275

using the ADAM optimizer [33] with the learning rate 10−3 while applying a

decay of 0.9. These implementations were carried out using Pytorch 2.0 and

NVIDIA Quadro RTX 6000 GPU. Note that the source code of the proposed

approach is available on github3.

4.2. Experimental datasets280

To validate the effectiveness of the proposed methods, our simulations have

been carried out on different types of standard balanced datasets often used for

object classification and recognition purposes. More precisely, we have used two

digits datasets (USPS [34] and SVHN [35]), three face datasets (AR face [36],

AR gender [36] and UMDAA-01 [37]), and four natural object dataset (COIL-100285

[38], ETH-80 [39], ARID [40], Tiny ImageNet [41]). Samples of some datasets

are shown in Fig. 2.

(a) USPS [34] (b) SVHN [35] (c) AR face [36]

(d) UMDAA-01 [37] (e) COIL-100 [38] (f) ARID [40]

Figure 2: Samples of some employed datasets.

3https://github.com/tansyab1/MB-WNN-SRC
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Note that 80%, 10% and 10% of each dataset are the proportions of samples

which have been randomly selected for training, validation and test phases,

respectively.290

4.3. Comparison methods and performance evaluation

The proposed single and multi-branch wavelet neural network architectures

for sparse representation classification (SRC) will be designated SB-WNN-SRC

and MB-WNN-SRC, respectively. It should be noted here that our methods

are tested using three resolution levels of the Haar transform while selecting the295

wavelet subbands obtained at the third level. Our approaches will be compared

to different state-of-the-art methods. They include the following conventional

sparse representation-based methods:

• SRC [6]: It represents the original sparse representation-based classifica-

tion method.300

• LC-KSVD [12]: Unlike the previous method where the dictionary is formed

by all training samples of each class, this method aims to learn a dictionary

of small size from a selective dataset. The learning is achieved by using

an objective function with label consistency constraint. The optimization

problem is solved by applying the K-SVD algorithm [13].305

• FDDL [11]: It consists of learning a structured dictionary whose sub-

dictionaries have specific class labels. In this respect, a Fisher discrim-

ination criterion is included in the objective function to produce sparse

codes.

• SRWC [31]: It is an enhanced version of the original SRC method which310

is performed in the wavelet transform domain as described in Section 2.

• SCCRC [42]: It is a recent improved version of SRC which consists in

combining sparse and collaborative representations.

Moreover, we have considered the following deep learning-based methods:
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• Wide ResNet-SRC [18]: It corresponds to sparse representation-based clas-315

sification method using deep features extracted from a Wide ResNet archi-

tecture applied to the original dataset images. Note that other standard

deep architectures have also been tested as discussed later.

• WAE-VGG16-SRC [22]: It uses a wavelet-like auto-encoder which firstly

consists of applying an encoder to decompose the image in two channels320

containing low and high frequency information. Then, the low frequency

information is fed into a standard network (VGG16) to extract its fea-

tures. Finally, these features are fused with those extracted from the high

frequency information.

• Kernel-SARL [43]: It is based on a kernel formulation of spectral adver-325

sarial representation learning framework.

• DSRC [28]: It consists of using an encoder to extract embedding features

which are fed into the sparse coding layer. Then, the sparse codes of the

features are estimated and used for classification.

It is worth noting that, in addition to Wide ResNet, other existing architectures,330

developed for deep feature extraction, have also been tested like VGG19 [16],

ResNet50 [17] and AE [19] as it will be shown in Fig. 3. It should also be noted

that DSRC [28] is the recent state-of-the-art method which is more related to

the current work.

The comparison is performed using different criteria. First, the standard clas-335

sification accuracy criterion is used. Then, the different methods are evaluated

in terms of robustness against the proportion of employed training samples. Fi-

nally, the size of different neural networks (i.e. the number of parameters) will

be provided.

4.4. Results and discussion340

Before evaluating the different methods on the test datasets, we should first

determine the optimal values of the parameters introduced by the proposed MB-
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WNN-SRC approach. Thus, an analysis of the influence of these parameters on

the accuracy performance is conducted.

4.4.1. Influence of the parameters introduced by the proposed MB-WNN-SRC345

approach

With the proposed multi-branch architecture, and according to the loss func-

tion defined in (13), the different parameters λ
(o)
p with p ∈ {1,2,3} and o ∈ O

should be appropriately selected since their choice may impact the classification

performance. On the one hand, for a given subband o, our analysis aims to

find the relationship between the different values λ
(o)
1 , λ

(o)
2 and λ

(o)
3 which are

used to weight respectively the error due to the sparse coding layer, the sparsity

of the estimated codes and the reconstruction error. On the other hand, for a

given p value, the contributions of the different wavelet subbands o should be

established.

Therefore, based on the previous study of the single branch architecture [29],

we first propose to set λ
(LL)
2 to 1 and λ

(LL)
3 to 10. Then, different tests are

performed to find the best relation between λ
(o)
1 and λ

(o)
2 while assuming

∀o ∈ {LL,LH,HL,HH}, λ
(o)
1 = ηλ(o)2 , (17)

∀o ∈ {LH,HL,HH}, λ(o)p = 1

ω
λ(LL)
p , p ∈ {1,2,3}, (18)

where η and ω are positive constants.

While η will range from a small value (set to 0.25) to a high value (set to 10),

the tested ω values are chosen by considering three cases:

(i) In the first case, we set ω to 3, which means that the three detail subbands350

as well as the approximation one have the same level of importance during

training, and so they contribute in equal manner to the learned model.

(ii) In the second case, we set ω to 4, which means that less importance is

given to the three detail subbands compared to the approximation one.

(iii) In the third case, we set ω to 2, which means that more importance is355

given to the three detail subbands compared to the approximation one.
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Once the training is achieved, the probability-based classification rule, defined

in (16), is applied. In this respect, let us define the following weight vector:

α = (α(LL), α(LH), α(HL), α(HH))
⊺

. (19)

The classification accuracy results, obtained with different η values, are pro-

vided in Tables 2, 3 and 4 for cases (i), (ii) and (iii), respectively.

Table 2: Influence of the relationship between λ
(o)
p values on the classification accuracy (%),

while setting λ
(LL)
2 = 1, λ

(LL)
3 = 10, ω = 3 (i.e. case (i)), α = (0.5,0.2,0.2,0.1)

⊺
and using

Eqs. (17)-(18).

Datasets η = 10 η = 8 η = 4 η = 2 η = 1 η = 0.5 η = 0.25

USPS [34] 97.00 97.18 97.05 97.05 97.00 96.82 96.35

SVHN [35] 69.35 69.35 69.35 68.55 67.75 67.75 66.05

AR face [36] 97.65 98.37 98.37 97.70 97.70 97.55 95.55

AR gender [36] 96.55 97.05 97.00 96.80 96.48 96.48 95.40

UMDAA-01 [37] 95.00 95.45 95.40 94.80 94.40 92.10 92.10

COIL-100 [38] 93.00 93.20 92.20 91.65 91.32 90.35 90.35

Table 3: Influence of the relationship between λ
(o)
p values on the classification accuracy (%),

while setting λ
(LL)
2 = 1, λ

(LL)
3 = 10, ω = 4 (i.e. case (ii)), α = (0.5,0.2,0.2,0.1)

⊺
and using

Eqs. (17)-(18).

Datasets η = 10 η = 8 η = 4 η = 2 η = 1 η = 0.5 η = 0.25

USPS [34] 96.60 96.60 96.60 96.60 96.00 96.00 96.00

SVHN [35] 68.90 68.90 68.30 68.30 68.30 67.50 67.50

AR face [36] 97.50 98.30 98.32 97.50 97.50 97.50 95.00

AR gender [36] 96.60 96.80 96.80 96.80 96.48 96.48 95.40

UMDAA-01 [37] 95.00 95.00 95.00 94.40 94.40 92.10 92.10

COIL-100 [38] 92.50 92.80 92.80 91.50 91.50 91.50 90.20

Thus, two main observations can be made from these experiments: First, what-

ever the importance given to the approximation and detail wavelet subbands360
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Table 4: Influence of the relationship between λ
(o)
p values on the classification accuracy (%),

while setting λ
(LL)
2 = 1, λ

(LL)
3 = 10, ω = 2 (i.e. case (iii)), α = (0.5,0.2,0.2,0.1)

⊺
and using

Eqs. (17)-(18).

Datasets η = 10 η = 8 η = 4 η = 2 η = 1 η = 0.5 η = 0.25

USPS [34] 97.15 97.15 97.00 97.00 97.00 96.50 96.50

SVHN [35] 69.35 69.35 69.35 68.55 67.75 67.75 67.00

AR face [36] 97.50 98.32 98.32 98.32 97.70 97.55 95.55

AR gender [36] 96.55 97.05 97.05 96.50 96.50 96.50 95.50

UMDAA-01 [37] 95.45 95.45 95.45 94.00 94.00 93.50 93.50

COIL-100 [38] 93.00 93.17 92.20 91.50 91.50 90.20 90.20

(controlled by ω), the best accuracy results are achieved with η equal to 8 for

all datasets. Second, the highest accuracy values are obtained with ω equal to

3 (Table 2). It is important to note here that setting ω to 2 (Table 4) leads to

similar performance to the case where ω is equal to 3 (Table 2). However, a drop

in classification performance occurs where ω was set to 4 (Table 3) (i.e. when365

less importance is given to the three detail subbands compared to the approx-

imation one). This confirms the interest in exploiting both the approximation

and detail subbands in the multi-branch architecture. Based on this study, the

next simulations will be performed using ω = 3 and η = 8.

Moreover, regarding the multiple sparse codes-based classification stage, we have370

also studied the impact of the choice of the weighting terms α(o) associated to

the probabilities p(o) as shown in (16). To this end, three cases are considered.

The first case is α = (0.5,0.2,0.2,0.1)
⊺

which means that the same importance

is given to the approximation subband (α(LL) = 0.5) and the three detail sub-

bands (α(HL)+α(LH)+α(HH) = 0.5). The second case isα = (0.6,0.15,0.15,0.1)
⊺

375

which means that more importance is given to the approximation subband. The

third case is α = (0.4,0.2,0.2,0.2)
⊺

which means that more importance is given

to the three detail subbands.

Table 5 provides the accuracy results for the above considered three weight
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Table 5: Influence of the choice of the weight vector α = (α(LL), α(LH), α(HL), α(HH)
)

⊺
on

the classification accuracy (%) of MB-WNN-SRC approach, while setting η = 8 and ω = 3.

Datasets α = (0.6,0.15,0.15,0.1)
⊺

α = (0.5,0.2,0.2,0.1)
⊺

α = (0.4,0.2,0.2,0.2)
⊺

USPS [34] 97.05 97.18 97.05

SVHN [35] 69.35 69.35 69.35

AR face [36] 98.37 98.37 97.70

AR gender [36] 97.05 97.05 97.05

UMDAA-01 [37] 95.45 95.45 95.40

COIL-100 [38] 93.20 93.20 93.20

vectors. Thus, similarly to the previous analysis, giving the same level of380

importance to the approximation and the three detail subbands yields the

highest accuracy values. For this reason, the weight vector α will be set to

(0.5,0.2,0.2,0.1)
⊺

in the following experiments.

Finally, it should be noted that the performance of the proposed MB-WNN-

SRC approach has also been evaluated by considering different neural network385

structures. This has been achieved by modifying the number of convolution and

pooling layers as well as the kernel sizes in each branch. While the kernel size

slightly affects the accuracy performance, it has been observed that the number

of layers has more impact on the results. For instance, it can be seen from Ta-

ble 6 that a significant improvement can be achieved by increasing the number390

of layers up to three. However, adding more layers yields similar performance.

For these reasons, we have retained the neural network structure described in

Table 1.

4.4.2. Comparison with the state-of-the-art classification methods

Once the proposed MB-WNN-SRC method is analyzed and the optimal pa-395

rameter values are found (i.e. η = 8, ω = 3 and α = (0.5,0.2,0.2,0.1)⊺), we now

focus on the comparison of its performance with the aforementioned state-of-

the-art classification methods. The accuracy results of the different methods

are reported in Table 7 where the two best values are highlighted in bold.
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Table 6: Influence of the number of layers in the proposed MB-WNN architecture on the

classification accuracy.

Number of convolution and pooling layers

2 3 4 5

SVHN [35] 68.2640 69.3525 69.3525 69.3540

UMDAA-01 [37] 93.2550 95.4489 95.4489 95.4450

COIL-100 [38] 89.3685 93.2050 93.2050 93.2050

ARID [40] 80.5500 81.3680 81.3680 81.3680

Tiny ImageNet [41] 82.3250 84.7750 84.7750 84.5030

Table 7: Classification accuracy (%) of the proposed approach as well as the state-of-the-art

methods.

Methods/ Datasets USPS [34]
SVHN

[35]

AR face

[36]

AR gender

[36]

UMDAA-01

[37]

COIL-100

[38]

ETH-80

[39]

ARID

[40]

Tiny

ImageNet

[41]

SRC [6] 0.8778 0.1571 0.9761 0.9300 0.7900 0.9116 0.9177 0.6980 0.7115

FDDL [11] 0.9134 0.2254 0.9616 0.9400 0.8122 0.8822 0.9320 0.7115 0.7330

LC-KSVD [12] 0.8745 0.3531 0.9770 0.8680 0.8482 0.9142 0.9425 0.7320 0.7750

SRWC [31] 0.9545 0.2821 0.9839 0.9420 0.8529 0.9229 0.9315 0.7535 0.7660

SCCRC [42] 0.9465 0.6850 0.9363 0.9580 0.9450 0.8910 0.9420 0.7050 0.7840

Wide ResNet-

SRC [18]
0.9523 0.5050 0.9833 0.9580 0.8850 0.9221 0.9267 0.7082 0.7840

WAE-VGG16-

SRC [22]
0.9625 0.6850 0.9750 0.9650 0.9320 0.9100 0.9720 0.6520 0.7530

Kernel-

SARL [43]
0.9680 0.6820 0.9810 0.9708 0.9482 0.9235 0.9775 0.8220 0.8335

DSRC [28] 0.9625 0.6775 0.9812 0.9648 0.9339 0.9112 0.9573 0.7890 0.8078

SB-WNN-

SRC
0.9682 0.6824 0.9837 0.9654 0.9510 0.9235 0.9625 0.7930 0.8120

MB-WNN-

SRC
0.9718 0.6935 0.9837 0.9705 0.9545 0.9320 0.9877 0.8137 0.8478

It should be noted that, in addition to the deep learning based-methods400

kernel-SARL [43] and DSRC [28], we only reported in Table 7 the results of Wide

ResNet-SRC [18] and WAE-VGG16-SRC [22]. The latter have been selected

since they have shown better performance than the remaining neural networks-

based feature extraction techniques as illustrated in Fig. 3. Thus, it can be

firstly seen from Table 7 that the particular SB-WNN-SRC method outperforms405

the existing ones for most of the employed datasets. Further improvements are
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achieved thanks to the extended multi-branch architecture (MB-WNN-SRC).

For instance, the multi-branch architecture achieves higher gain compared to

the single branch variant, especially for the SVHN [35], COIL-100 [38], ETH-80

[39], ARID [40] and Tiny ImageNet [41] datasets. This can be explained by the410

fact that the multi-branch architecture combines various sparse codes produced

from both approximation and detail wavelet subbands of the image dataset.

Moreover, and since neural networks are well known to be very efficient when

they are trained on large scale datasets, we propose to evaluate the performance

of different deep learning-based methods with respect to the number of labeled415

training samples. For this reason, for each employed dataset, four subsets are

created by randomly selecting 20%, 40%, 60% and 80% of the samples of the

whole dataset. Then, after separating the training/validation/testing samples

in each subset, we tested the different classification methods. Fig. 3 shows the

performance of these methods for the different employed datasets while varying420

their sizes. As previously stated, the plots confirm the high efficiency of the

recent DSRC [28] method as well as the WAE-VGG16-SRC [22] one compared

to the previous deep learning-based methods (i.e VGG19-SRC [16], ResNet50-

SRC [17], Wide ResNet-SRC [18] and AE-SRC [19]) aiming at extracting deep

features from original images. Regarding the effect of the dataset size, it can be425

observed that the aforementioned neural networks-based methods fail and result

in a significant drop of performance when the number of samples is relatively

small. However, the recent methods WAE-VGG16-SRC [22] and DSRC [28] as

well as the proposed method are less sensitive to the training image dataset

size. Most importantly, our MB-WNN-SRC method outperforms the state-of-430

the-art approaches and appears more robust to the size of the employed training

dataset.

Finally, the different deep learning-based methods have been compared in terms

of number of the network parameters and execution time as shown in Table 8

and Table 9, respectively. Indeed, one can see that the proposed multi-branch435

architecture has more parameters compared to the DSRC and SB-WNN models,

since the latter are based on a single branch architecture. However, the number
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of parameters in our MB-WNN architecture are much smaller than that of the

other neural networks (VGG19, ResNet50, etc) based methods. It should be

noted here that the reduced number of parameters explains the good behavior440

of the proposed methods, whatever the size of the training dataset. Another

advantage of designing an efficient model with a small size is it allows to achieve

a gain in storage memory.

Similarly to the complexity of the different methods in terms of number of

parameters, the execution times obtained with ARID image dataset (of size 256×445

256) show that our proposed multi-branch architecture requires an additional

time of about 0.4 seconds compared to the single branch and DSRC approaches.

However, it is much faster than the remaining neural networks-based methods.

Table 8: Evaluation of different deep neural networks in terms of number of parameters.

VGG19-

SRC [16]

ResNet50-

SRC [17]

Wide

ResNet-

SRC [18]

WAE-

VGG16-

SRC [22]

Kernel-

SARL [43]

DSRC

[28]

SB-WNN-

SRC

MB-WNN-

SRC

#param 138M 25.6M 8.8M 57.4M 2.83M 24.5K 12.7K 2.25M

Table 9: Execution times (in seconds) for different deep learning-based classification methods.

Method
VGG19-

SRC [16]

ResNet50-

SRC [17]

Wide

ResNet-

SRC [18]

WAE-

VGG16-

SRC [22]

Kernel-

SARL [43]

DSRC

[28]

SB-WNN-

SRC

MB-WNN-

SRC

Time 4.91 2.36 1.36 2.87 1.02 0.19 0.15 0.57

5. Conclusion and perspective450

An object classification method, exploiting simultaneously the advantages

of neural networks as well as sparse coding techniques and multi-scale wavelet

decompositions, is proposed. More precisely, a set of auto-encoders combined

with sparse coding layers are applied to different wavelet subbands yielding a

new multi-branch neural network architecture. Unlike existing sparse repre-455

sentation classification methods, the proposed architecture presents two main
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Figure 3: Effect of the training dataset size on the accuracy for different deep learning-based

methods.

advantages: First, it exploits both low and high frequency information located

in the approximation and detail wavelet subbands. Secondly, it allows to pro-
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duce various sparse codes resulting in better discrimination ability. However,

the main limitation of the proposed approach is the complexity of the architec-460

ture, since the number of involved branches is directly related to the retained

wavelet subbands. Overall, the simulations carried out on various types of stan-

dard datasets have shown the benefits that can be drawn from the proposed

architecture. Despite its good performance, the proposed architecture could be

improved with further investigation. It is important to recall that the training465

of our architecture aims only to find the optimal sparse codes that are then

exploited in the test phase for classification purposes. Therefore, a more effi-

cient architecture could be designed by integrating the classification stage and

resorting to an end-to-end learning approach. Moreover, as the proposed ar-

chitecture operates in the wavelet transform domain, it would be interesting470

to investigate other decompositions like the recent neural network-based multi-

scale transforms [44, 45].

Funding

This work has received funding from the European Union’s Horizon 2020

research and innovation programme under grant agreement No. 722068.475

References

[1] Z. Yang, Q. Li, L. Wenyin, J. Lv, Shared multi-view data representation

for multi-domain event detection, IEEE Transactions on Pattern Analysis

and Machine Intelligence 42 (5) (2020) 1243–1256.

[2] P. Li, B. Chen, D. Wang, H. Lu, Visual tracking by dynamic matching-480

classification network switching, Pattern Recognition 107 (2020) 107419.

[3] Z. A. Khan, A. Beghdadi, M. Kaaniche, F. A. Cheikh, Residual networks

based distortion classification and ranking for laparoscopic image quality

assessment, in: IEEE International Conference on Image Processing (ICIP),

2020, pp. 176–180.485

25



[4] M. Elad, Sparse and Redundant Representations: From Theory to Ap-

plications in Signal and Image Processing, Springer Science and Business

Media, USA, 2010.

[5] J. Lee, S.-U. Cheon, J. Yang, Connectivity-based convolutional neural net-

work for classifying point clouds, Pattern Recognition 112 (2021) 107708.490

[6] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, Y. Ma, Robust face recog-

nition via sparse representation, IEEE Transactions on Pattern Analysis

and Machine Intelligence 31 (2) (2009) 210–227.

[7] C. Zhang, S. Wang, Q. Huang, J. Liu, Image classification using spatial

pyramid robust sparse coding, Pattern Recognition Letters 34 (9) (2013)495

1046–1052.

[8] S. H. Gao, I. W.-H. Tsang, L.-T. Chia, Kernel sparse representation for im-

age classification and face recognition, in: European Conference on Com-

puter Vision, 2010, pp. 1–14.

[9] C.-G. Li, J. Guo, H.-G. Zhang, Local sparse representation based classi-500

fication, in: International Conference on Pattern Recognition, 2010, pp.

649–652.

[10] Y. Wang, Y. Y. Tang, L. Li, X. Zheng, Block sparse representation for

pattern classification: Theory, extensions and applications, Pattern Recog-

nition 88 (2019) 198–209.505

[11] M. Yang, L. Zhang, X. Feng, D. Zhang, Fisher discrimination dictionary

learning for sparse representation, in: 2011 International Conference on

Computer Vision, Barcelona, Spain, 2011, pp. 543–550.

[12] Z. Jiang, Z. Lin, L. S. Davis, Label consistent K-SVD: Learning a discrim-

inative dictionary for recognition, IEEE Transactions on Pattern Analysis510

and Machine Intelligence 35 (11) (2013) 2651–2664.

26



[13] Q. Zhang, B. Li, Discriminative K-SVD for dictionary learning in face

recognition, in: IEEE Conference on Computer Vision and Pattern Recog-

nition, CA, USA, 2010, pp. 2691–2698.

[14] J. Song, X. Xie, G. Shi, W. Dong, Multi-layer discriminative dictionary515

learning with locality constraint for image classification, Pattern Recogni-

tion 91 (2019) 135–146.

[15] Y. Li, Y. Chai, H. Zhou, H. Yin, A novel dimension reduction and dictio-

nary learning framework for high-dimensional data classification, Pattern

Recognition 112 (2021) 107793.520

[16] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, in: International Conference on Learning Repre-

sentations, CA, USA, 2015.

[17] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recog-

nition, in: IEEE Conference on Computer Vision and Pattern Recognition525

(CVPR), Nevada, USA, 2016, pp. 770–778.

[18] S. Zagoruyko, N. Komodakis, Wide residual networks, in: Proceedings of

the British Machine Vision Conference (BMVC), no. 87, York, UK, 2016,

pp. 1–12.

[19] A. Gogna, A. Majumdar, Discriminative autoencoder for feature extrac-530

tion: Application to character recognition, Neural Processing Letters 49 (4)

(2018) 1723–1735.

[20] S. Said, O. Jemai, S. Hassairi, R. Ejbali, M. Zaied, C. Ben Amar, Deep

wavelet network for image classification, in: IEEE International Conference

on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 2016, pp.535

922–927.

[21] T. Williams, R. Li, Advanced image classification using wavelets and con-

volutional neural networks, in: IEEE International Conference on Machine

Learning and Applications (ICMLA), CA, USA, 2016, pp. 233–239.

27



[22] T. Chen, L. Lin, W. Zuo, X. Luo, L. Zhang, Learning a wavelet-like auto-540

encoder to accelerate deep neural networks, in: AAAI Conference on Arti-

ficial Intelligence, Louisiana, USA, 2018, pp. 6722–6729.

[23] Q. Li, L. Shen, S. Guo, Z. Lai, Wavelet integrated CNNs for noise-robust

image classification, in: IEEE Conference on Computer Vision and Pattern

Recognition, 2020, pp. 7243–7252.545

[24] P. Liu, H. Zhang, W. Lian, W. Zuo, Multi-level wavelet convolutional neural

networks, IEEE Access 7 (2019) 74973–74985.

[25] S. Zhang, J. Wang, X. Tao, Y. Gong, N. Zheng, Constructing deep sparse

coding network for image classification, Pattern Recognition 64 (2017) 130–

140.550

[26] L. Feng, W. Wei, J. Zurada, Sparse representation learning of data by

autoencoders with ℓ1/2 regularization, Neural Network World 28 (2018)

133–147.

[27] X. Sun, N. M. Nasrabadi, T. D. Tran, Supervised deep sparse coding net-

works for image classification, IEEE Transactions on Image Processing 29555

(2019) 405 – 418.

[28] M. Abavisani, V. M. Patel, Deep sparse representation-based classification,

IEEE Signal Processing Letters 26 (6) (2019) 948–952.

[29] T.-S. Nguyen, L. H. Ngo, M. Luong, M. Kaaniche, A. Beghdadi, Convo-

lution autoencoder-based sparse representation wavelet for image classifi-560

cation, in: IEEE International Workshop on Multimedia Signal Processing

(MMSP), 2020, pp. 1–6.

[30] J. Wei, J. Lv, C. Xie, A new sparse representation classifier (SRC) based

on probability judgement rule, in: International Conference on Information

System and Artificial Intelligence (ISAI), Hong Kong, China, 2016, pp.565

338–342.

28



[31] L. H. Ngo, M. Luong, N. M. Sirakov, T. Le-Tien, S. Guerif, E. Viennet,

Sparse representation wavelet based classification, in: IEEE International

Conference on Image Processing (ICIP), Athens, Greece, 2018, pp. 2974–

2978.570

[32] E. Mooi, M. Sarstedt, I. Mooi-Reci, Principal component analysis and fac-

tor analysis, in: Principal Component Analysis, Springer Series in Statis-

tics, New York, NY, 1986.

[33] D. P. Kingma, J. L. Ba, Adam: A method for stochastic optimization, in:

International Conference on Learning Representations, San Siego, USA,575

2015, pp. 1–15.

[34] J. Hull, Database for handwritten text recognition research, IEEE Trans-

actions on Pattern Analysis and Machine Intelligence 16 (1994) 550 – 554.

[35] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, A. Ng, Reading digits

in natural images with unsupervised feature learning, in: NIPS Workshop580

on Deep Learning and Unsupervised Feature Learning, Granada, Spain,

2011.

[36] A. Martinez, R. Benavente, The AR face database, Tech. rep., Ohio State

University, Barcelona, Spain (01 1998).

[37] H. Zhang, V. M. Patel, S. Shekhar, R. Chellappa, Domain adaptive sparse585

representation-based classification, in: IEEE International Conference and

Workshops on Automatic Face and Gesture Recognition, Vol. 1, Ljubljana,

Slovenia, 2015, pp. 1–8.

[38] S. A. Nene, S. K. Nayar, H. Murase, Columbia Object Image Library

(COIL-20), Tech. rep., Department of Computer Science, Columbia Uni-590

versity (Feb 1996).

[39] B. Leibe, B. Schiele, Analyzing appearance and contour based methods

for object categorization, in: IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Vol. 2, 2003, pp. II–409.

29



[40] M. R. Loghmani, B. Caputo, M. Vincze, Recognizing objects in-the-wild:595

Where do we stand?, in: IEEE International Conference on Robotics and

Automation (ICRA), 2018.

[41] Y. Le, X. Yang, Tiny imagenet visual recognition challenge, CS 231N 7 7

(2015) 3.

[42] Z.-Q. Li, J. Sun, X.-J. Wu, H.-F. Yin, Multiplication fusion of sparse and600

collaborative-competitive representation for image classification, Interna-

tional Journal of Machine Learning and Cybernetics 11 (2020) 2357–2359.

[43] B. Sadeghi, R. Yu, V. N. Boddeti, On the global optima of kernelized

adversarial representation learning, International Conference on Computer

Vision (ICCV) (2019) 7970–7978.605

[44] L. Li, L.-J. Ma, L. Jiao, F. Liu, Q. Sun, J. Zhao, Complex contourlet-CNN

for polarimetric SAR image classification, Pattern Recognition 100 (2020)

107110.

[45] T. Dardouri, M. Kaaniche, A. Benazza-Benyahia, J.-C. Pesquet, Dynamic

neural network for lossy to lossless image coding, IEEE Transactions on610

Image Processing 31 (2021) 569–584.

30


	Introduction
	Conventional classification techniques
	Neural networks-based classification techniques
	Contributions

	Background on Sparse Representation Wavelet-based Classification
	Proposed multi-branch wavelet neural network architecture and classification scheme
	Architecture description
	Learning approach
	Multiple sparse codes-based classification stage

	Experimental results
	Experimental settings
	Experimental datasets
	Comparison methods and performance evaluation
	Results and discussion
	Influence of the parameters introduced by the proposed MB-WNN-SRC approach
	Comparison with the state-of-the-art classification methods


	Conclusion and perspective

