
Published as a conference paper at COLM 2025

Training Large Language Models to Reason in a Continuous
Latent Space

Shibo Hao1,2∗, Sainbayar Sukhbaatar1, DiJia Su1, Xian Li1, Zhiting Hu2,
Jason Weston1, Yuandong Tian1

1FAIR at Meta, 2UC San Diego

§ https://github.com/facebookresearch/coconut

Abstract

Large language models (LLMs) are restricted to reason in the “language
space”, where they typically express the reasoning process with a chain-of-
thought (CoT) to solve a complex reasoning problem. However, we argue
that language space may not always be optimal for reasoning. For example,
some critical tokens require complex planning, making them difficult to
compute in a single forward pass, while many other tokens contribute little
to the actual reasoning process. To explore the potential of LLM reasoning in
an unrestricted latent space instead of using natural language, we introduce
a new paradigm COCONUT (Chain of Continuous Thought). We utilize
the last hidden state of the LLM as a representation of the reasoning state
(termed “continuous thought”). Rather than decoding this into a word
token, we feed it back to the LLM as the subsequent input embedding
directly in the continuous space. This latent reasoning paradigm leads to
the emergence of an advanced reasoning pattern: the continuous thought
can encode multiple alternative next reasoning steps, allowing the model
to perform a breadth-first search (BFS) to solve the problem, rather than
prematurely committing to a single deterministic path like CoT. COCONUT
outperforms CoT on certain logical reasoning tasks that require substantial
search during planning, and shows a better trade-off between accuracy
and efficiency. We hope these findings demonstrate the promise of latent
reasoning and offer insights for future research.

1 Introduction

Large language models (LLMs) have demonstrated remarkable reasoning abilities, emerging
from extensive pretraining on human languages (Dubey et al., 2024; Achiam et al., 2023).
While next token prediction is an effective training objective, it imposes a fundamental
constraint on the LLM as a reasoning machine: the explicit reasoning process of LLMs must
be generated in word tokens. For example, a prevalent approach, known as chain-of-thought
(CoT) reasoning (Wei et al., 2022), involves prompting or training LLMs to generate solutions
step-by-step using natural language. However, this stands in stark contrast to findings
from studies on human cognition. Neuroimaging studies have consistently shown that the
language network – a set of brain regions responsible for language comprehension and
production – remains largely inactive during various reasoning tasks (Amalric & Dehaene,
2019; Monti et al., 2012; 2007; 2009; Fedorenko et al., 2011). Further evidence indicates that
human language is optimized for communication rather than reasoning (Fedorenko et al.,
2024).

A significant issue arises when LLMs use language for reasoning: the amount of reasoning
required for each particular language token varies greatly, yet current LLM architectures
allocate nearly the same computing budget for predicting every token. Some critical tokens
require complex planning and pose huge challenges to LLMs, while most tokens in a
∗Work done at Meta.

1

https://github.com/facebookresearch/coconut

Published as a conference paper at COLM 2025

Figure 1: A comparison of Chain of Continuous Thought (COCONUT) with Chain-of-
Thought (CoT). In CoT, the model generates the reasoning process as a word token sequence
(e.g., [xi, xi+1, ..., xi+j] in the figure). COCONUT regards the last hidden state as a representa-
tion of the reasoning state (termed “continuous thought”), and directly uses it as the next
input embedding. This allows the LLM to reason in an unrestricted latent space instead of a
language space.

reasoning chain are generated solely for fluency, offering minimal contribution to the
reasoning process and consequently reducing overall efficiency. While previous work has
attempted to fix these problems by performing additional reasoning before generating some
critical tokens (Zelikman et al., 2024) or encouraging LLMs to generate succinct reasoning
chains (Madaan & Yazdanbakhsh, 2022; Nayab et al., 2024; Han et al., 2024), these solutions
remain constrained within the language space and do not solve the fundamental problems.
On the contrary, it would be ideal for LLMs to have the freedom to reason without any
language constraints, and then translate their findings into language only when necessary.

In this work we instead explore LLM reasoning in a latent space by introducing a novel
paradigm, COCONUT (Chain of Continuous Thought). It involves a simple modification to
the traditional CoT process: instead of mapping between hidden states and language tokens
using the language model head and embedding layer, COCONUT directly feeds the last
hidden state (a continuous thought) as the subsequent input embedding for the next token
(Figure 1). This modification frees the reasoning from being within the language space, and
the system can be optimized end-to-end by gradient descent. To enhance the training of
latent reasoning, we employ a multi-stage training strategy inspired by Deng et al. (2024),
which effectively utilizes language reasoning chains to guide the training process.

This proposed method leads to an efficient reasoning pattern: Unlike language-based
reasoning, continuous thoughts in COCONUT can encode multiple potential next steps
simultaneously, allowing for a reasoning process akin to breadth-first search (BFS). While
the model may not initially make the correct decision, it can maintain many possible
options within the continuous thoughts and progressively eliminate incorrect paths through
reasoning, guided by some implicit value functions. This advanced reasoning mechanism
surpasses traditional CoT, even though the model is not explicitly trained or instructed to
operate in this manner, as seen in previous works (Yao et al., 2023; Hao et al., 2023).

We further validate the feasibility of latent reasoning through additional analyses on three
datasets. On other planning-intensive tasks, such as ProntoQA (Saparov & He, 2022) and
our newly introduced ProsQA, COCONUT consistently achieves higher accuracy than CoT
while generating fewer tokens. For math reasoning tasks on GSM8k (Cobbe et al., 2021),
augmenting the LLM with six continuous thoughts doubles its performance. Additionally,
COCONUT surpasses the strong baseline iCoT (Deng et al., 2024) and offers a superior trade-
off between accuracy and efficiency compared to CoT. We believe these results underscore
the significant potential of latent reasoning and offer valuable insights to guide future
research.

2 Related Work

Chain-of-thought (CoT) reasoning. We use the term chain-of-thought broadly to refer to
methods that generate an intermediate reasoning process in language before outputting the

2

Published as a conference paper at COLM 2025

final answer. This includes prompting LLMs (Wei et al., 2022; Khot et al., 2022; Zhou et al.,
2022), or training LLMs to generate reasoning chains, either with supervised finetuning (Yue
et al., 2023; Yu et al., 2023) or reinforcement learning (Wang et al., 2024; Havrilla et al.,
2024; Shao et al., 2024; Yu et al., 2024a; Guo et al., 2025). Madaan & Yazdanbakhsh (2022);
Nayab et al. (2024); Han et al. (2024) designed methods to make LLMs generate shorter
reasoning chains. Recent theoretical analyses have demonstrated the usefulness of CoT
from the perspective of model expressivity (Feng et al., 2023; Merrill & Sabharwal, 2023; Li
et al., 2024). By employing CoT, the effective depth of the transformer increases because
the generated outputs are looped back to the input (Feng et al., 2023). These analyses,
combined with the established effectiveness of CoT, motivated our design that feeds the
continuous thoughts back to the LLM as the next input embedding. While CoT has proven
effective for certain tasks, its autoregressive generation nature makes it challenging to
mimic human reasoning on more complex problems (LeCun, 2022; Hao et al., 2023), which
require planning and search. There are works that equip LLMs with explicit tree search
algorithms (Xie et al., 2023; Yao et al., 2023; Hao et al., 2024), or train the LLM on search
dynamics and trajectories (Lehnert et al., 2024; Gandhi et al., 2024; Su et al., 2024). In our
analysis, we find that after removing the constraint of a language space, a new reasoning
pattern similar to BFS emerges, though the model is not explicitly trained this way.

Latent reasoning in LLMs. Previous works mostly define latent reasoning in LLMs as the
hidden computation in transformers (Yang et al., 2024; Biran et al., 2024). Yang et al. (2024)
constructed a dataset of two-hop reasoning problems and discovered that it is possible to
recover the intermediate variable from the hidden representations. Biran et al. (2024) further
proposed to intervene the latent reasoning by “back-patching” the hidden representation.
Shalev et al. (2024) discovered parallel latent reasoning paths in LLMs. Another line of work
has discovered that, even if the model generates a CoT to reason, the model may actually
utilize a different latent reasoning process. This phenomenon is known as the unfaithfulness
of CoT reasoning (Wang et al., 2022; Turpin et al., 2024). To enhance the latent reasoning
of LLMs, previous research proposed to augment it with additional tokens. Goyal et al.
(2023) pretrained the model by randomly inserting a learnable <pause> tokens to the training
corpus. This improves LLM’s performance on a variety of tasks, especially when followed
by supervised finetuning with <pause> tokens. On the other hand, Pfau et al. (2024) further
explored the usage of filler tokens, e.g., “...”, and concluded that they work well for highly
parallelizable problems. However, Pfau et al. (2024) mentioned these methods do not extend
the expressivity of the LLM like CoT; hence, they may not scale to more general and complex
reasoning problems. Wang et al. (2023) proposed to predict a planning token as a discrete
latent variable before generating the next reasoning step. Recently, it has also been found
that one can “internalize” the CoT reasoning into latent reasoning in the transformer with
knowledge distillation (Deng et al., 2023) or a special training curriculum which gradually
shortens CoT (Deng et al., 2024). Yu et al. (2024b) also proposed to distill a model that can
reason latently from data generated with complex reasoning algorithms. These training
methods can be combined to our framework, and specifically, we find that breaking down
the learning of continuous thoughts into multiple stages, inspired by iCoT (Deng et al., 2024),
is very beneficial for the training. Other work explores alternative architectures for latent
reasoning, including looped transformers (Giannou et al., 2023; Fan et al., 2024), diffusion
models in sentence embedding space (Barrault et al., 2024), depth-recurrent models (Geiping
et al., 2025) or energy-based models (Gladstone et al., 2025). Different from these works, we
focus on general multi-step reasoning tasks and aim at investigating the unique properties of
latent reasoning in comparison to language space. Zhu et al. (2025) developed a theoretical
construction of a 2-layer transformer with COCONUT, leveraging the idea that continuous
thoughts serve as superpositional representations of multiple reasoning paths. It proves
to solve the directed graph reachability problem more efficiently than the best-known
theoretical results based on discrete CoT.

3 COCONUT: Chain of Continuous Thought

In this section, we introduce our new paradigm COCONUT (Chain of Continuous Thought)
for reasoning in an unconstrained latent space. We begin by introducing the background and

3

Published as a conference paper at COLM 2025

Figure 2: Training procedure of Chain of Continuous Thought (COCONUT). Given training
data with language reasoning steps, at each training stage we integrate c additional con-
tinuous thoughts (c = 1 in this example), and remove one language reasoning step. The
cross-entropy loss is then used on the remaining tokens after continuous thoughts.

notation we use for language models. For an input sequence x = (x1, ..., xT), the standard
large language modelM can be described as:

Ht = Transformer(Et)

M(xt+1 | x≤t) = softmax(Wht)

where Et = [e(x1), e(x2), ..., e(xt)] is the sequence of token embeddings up to position t;
Ht ∈ Rt×d is the matrix of the last hidden states for all tokens up to position t; ht is the last
hidden state of position t, i.e., ht = Ht[t, :]; e(·) is the token embedding function; W is the
parameter of the language model head.

Method Overview. In the proposed COCONUT method, the LLM switches between the
“language mode” and “latent mode” (Figure 1). In language mode, it operates as a standard
language model, autoregressively generating the next token. In latent mode, it directly uses
the last hidden state as the next input embedding. This last hidden state represents the
current reasoning state, termed as a “continuous thought”. Special tokens <bot> and <eot>
are employed to mark the beginning and end of the latent thought mode.

Training Procedure. In this work, we consider a problem-solving scenario where the model
receives a question as input and is expected to generate an answer through a reasoning
process. We leverage language CoT data to supervise continuous thought by implementing
a multi-stage training curriculum inspired by Deng et al. (2024). As shown in Figure 2, in
the initial stage, the model is trained on regular CoT instances. Assume the total number
of training stages (excluding the initial stage) is set to N (N = 6 in this example). In the
subsequent stages, at the k-th stage, the first k reasoning steps in the CoT are replaced with
k× c continuous thoughts1, where c is a hyperparameter controlling the number of latent
thoughts replacing a single language reasoning step. Following Deng et al. (2024), we also
reset the optimizer state when training stages switch.

During the training process, we optimize the negative log-likelihood loss as usual, but mask
the loss on questions and latent thoughts. It is important to note that the objective does
not encourage the continuous thought to compress the removed language thought, but rather
to facilitate the prediction of future reasoning. Therefore, it’s possible to learn more effective
representations of reasoning steps compared to human language.

1If a language reasoning chain is shorter than k steps, then all the language thoughts will be
removed.

4

Published as a conference paper at COLM 2025

Training Details. Our proposed continuous thoughts are fully differentiable and allow for
back-propagation. We perform n + 1 forward passes when n latent thoughts are scheduled
in the current training stage, computing a new latent thought with each pass and finally
conducting an additional forward pass to obtain a loss on the remaining text sequence.
While we have avoided redundant computations by reusing the KV cache across each
forward pass, the sequential computation of COCONUT poses challenges on parallelism for
the existing training infrastructure. Further optimizing the training efficiency of COCONUT
remains an important direction for future research (Pöppel et al., 2025).

Inference Process. The inference process for COCONUT is analogous to standard language
model decoding, except that in latent mode, we directly feed the last hidden state as the
next input embedding. One practical challenge is determining when the model should
switch between latent and language modes. As we focus on the problem-solving setting,
we insert a <bot> token immediately following the question tokens. For <eot>, we consider
two potential strategies: a) train a binary classifier on latent thoughts to enable the model
to autonomously decide when to terminate the latent reasoning, or b) always pad the
latent thoughts to a constant length. We found that both approaches work comparably
well. Therefore, we use the second option in our experiment for simplicity, unless specified
otherwise.

4 Continuous Space Enables Latent Tree Search

In this section, we provide a proof of concept on the advantage of continuous latent space
reasoning. On ProsQA, a new dataset that requires extensive planning ability, COCONUT
outperforms language space CoT reasoning. Interestingly, our analysis indicates that the
continuous representation of reasoning can encode multiple alternative next reasoning steps.
This allows the model to perform a breadth-first search (BFS) to solve the problem, instead
of prematurely committing to a single deterministic path like language CoT.

We start by introducing the experimental setup (Section 4.1). By leveraging COCONUT’s
ability to switch between language and latent space reasoning, we are able to control the
model to interpolate between fully latent reasoning and fully language reasoning and test
their performance (Section 4.2). This also enables us to interpret the latent reasoning process
as tree search (Section 4.3). Based on this perspective, we explain why latent reasoning can
make the decision easier for LLMs (Section 4.4).

4.1 Experimental Setup

Dataset. We introduce ProsQA (Proof with Search Question-Answering), a new logical
reasoning dataset. A visualized example is shown in Figure 4. Each instance in ProsQA con-
sists of a directed acyclic graph (DAG) of logical relationships between concepts, presented
as natural language statements. The task requires models to determine logical relationships
by finding valid paths through this graph, demanding sophisticated planning and search
strategies. Unlike previous logical reasoning datasets like ProntoQA (Saparov & He, 2022),
ProsQA’s DAG structure introduces complex exploration paths, making it particularly
challenging for models to identify the correct reasoning chain. More comprehensive details
about the dataset construction and characteristics can be found in Appendix A.

Experimental Setup. We use a pre-trained GPT-2 model as the base model for all experi-
ments. The learning rate is set to 1× 10−4 while the effective batch size is 128. We train
a COCONUT model following the training procedure in Section 3. Since the maximum
reasoning steps in ProsQA is 6, we set the number of training stages to N = 6 in the training
procedure. In each stage, we train the model for 5 epochs, and stay in the last stage until the
50 epochs. The checkpoint with the best accuracy in the last stage is used for evaluation. As
reference, we report the performance of (1) CoT: the model is trained with CoT data, and
during inference, the model will generate a complete reasoning chain to solve the problem.
(2) no-CoT: the model is trained with only the question and answer pairs, without any
reasoning steps. During inference, the model will output the final answer directly.

5

Published as a conference paper at COLM 2025

Figure 3: The accuracy of final answer (left) and reasoning process (right) of multiple
variants of COCONUT and baselines on ProsQA.

To understand the properties of latent and language reasoning space, we manipulate the
model to switch between fully latent reasoning and fully language reasoning, by manually setting
the position of the <eot> token during inference. When we enforce COCONUT to use k
continuous thoughts, the model is expected to output the remaining reasoning chain in
language, starting from the k + 1 step. In our experiments, we test variants of COCONUT on
ProsQA with k ∈ {0, 1, 2, 3, 4, 5, 6}. Note that all these variants only differ in inference time
while sharing the same model weights.

Metrics. We apply two sets of evaluation metrics. One of them is based on the correctness
of the final answer, regardless of the reasoning process. It is also the main metric used in the
later sections (Section 5.3). To enable fine-grained analysis on ProsQA, we define another
metric on the reasoning process. We classify a reasoning chain into (1) Correct Path: The
output is one of the shortest paths to the correct answer. (2) Longer Path: A valid path
that correctly answers the question but is longer than the shortest path. (3) Hallucination:
The path includes nonexistent edges or is disconnected. (4) Wrong Target: A valid path
in the graph, but the destination node is not the one being asked. These four categories
naturally apply to the output from COCONUT (k = 0) and CoT, which generate the full path.
For COCONUT with k > 0 that outputs only partial paths in language (with the initial steps
in continuous reasoning), we classify the reasoning as a Correct Path if a valid explanation
can complete it. Also, we define Longer Path and Wrong Target for partial paths similarly.
If no valid explanation completes the path, it’s classified as Hallucination. In no-CoT and
COCONUT with larger k, the model may only output the final answer without any partial
path, and it falls into (5) Correct Label or (6) Incorrect Label. These six categories cover all
cases without overlap.

4.2 Overall Results

Figure 3 presents a comparative analysis of various reasoning methods evaluated on ProsQA.
The model trained using CoT frequently hallucinates non-existent edges or outputs paths
leading to incorrect targets, resulting in lower answer accuracy. In contrast, COCONUT,
which leverages continuous space reasoning, demonstrates improved accuracy as it utilizes
an increasing number of continuous thoughts. Additionally, the rate of correct reasoning
processes (indicated by “Correct Label” and “Correct Path”) significantly increases. At the
same time, there is a notable reduction in instances of “Hallucination” and “Wrong Target,”
issues that typically emerge when the model makes mistakes early in the reasoning process.

This improvement can be attributed to the inherent advantage of latent reasoning: it miti-
gates premature commitment to definitive choices by allowing the model to progressively
refine its decisions through subsequent steps. Consequently, incorrect options are systemati-
cally eliminated over time, culminating in higher final accuracy. An intuitive demonstration
of this benefit is provided by the case study depicted in Figure 4.

6

Published as a conference paper at COLM 2025

Figure 4: A case study of ProsQA. The model trained with CoT hallucinates an edge (Every
yumpus is a rempus) after getting stuck in a dead end. COCONUT (k=1) outputs a path that
ends with an irrelevant node. COCONUT (k=2) solves the problem correctly.

Figure 5: An illustration of the latent search trees. The example is the same test case as in
Figure 4. We show the probability of the first concept predicted by the model following
latent thoughts (e.g., “lempus” in the left figure). It is calculated as the multiplication of the
probability of all tokens within the concept. The height of a node (denoted as h in the figure)
is defined as the shortest distance to any leaf node in the graph.

4.3 Interpreting the Latent Reasoning as Tree Search

To better understand COCONUT, we probe the latent reasoning process by forcing the model
to explicitly generate language reasoning steps following intermediate continuous thoughts
(Figure 5). Using the example presented in Figure 4, at the initial reasoning step, the model
must select which immediate child node of ’Alex’ to consider next, specifically from the
set lempus, sterpus, zhorpus, grimpus. The distribution over these candidate next steps is
visualized in Figure 5, left. In the subsequent reasoning step, these nodes expand further
into an extended set of potential paths, including all grandchildren of ’Alex’ (Figure 5, right).

We define the predicted probability of a concept following continuous thoughts as a value
function (Figure 5), estimating each node’s potential for reaching the correct target. Interest-
ingly, the reasoning strategy employed by COCONUT is not greedy: while "lempus" initially
has the highest value (0.33) at the first reasoning step (Figure 5, left), the model subsequently
assigns the highest value (0.87) to "rorpus," a child of "grimpus," rather than following
"lempus" (Figure 5, right). This characteristic resembles a breadth-first search (BFS) ap-
proach, contrasting sharply with the greedy decoding typical of traditional CoT methods.
The inherent capability of continuous representations to encode multiple candidate paths
enables the model to avoid making immediate deterministic decisions. Importantly, this
tree search pattern is not limited to the illustrated example, but constitutes a fundamental
mechanism underlying the consistent improvement observed with larger values of k in
COCONUT.

7

Published as a conference paper at COLM 2025

4.4 Why is a Latent Space Better for Planning?

Building upon the tree search perspective, we further examine why latent reasoning benefits
planning tasks—specifically, why maintaining multiple candidate paths and postponing
deterministic decisions enhances reasoning performance. Our hypothesis is that nodes
explored in the early reasoning stages are inherently more challenging to evaluate accurately
because they are farther from the final target nodes. In contrast, nodes positioned closer
to potential targets, having fewer subsequent exploration possibilities, can be assessed
accurately with higher confidence.

Figure 6: The correlation between
the predicted value of correct/incor-
rect nodes and their heights.

To systematically test this, we define the height
of a node as its shortest distance to any leaf node
and analyze the relationship between node height
and the model’s estimated value. Ideally, a correct
node—one that can lead to the target node—should
receive a high estimated value, whereas an in-
correct node—one that cannot lead to the target
node—should receive a low value.

Empirical results across the test set (Figure 6) sup-
port our hypothesis: nodes with lower heights con-
sistently receive more accurate and definitive prob-
ability evaluations. Conversely, nodes with greater
heights exhibit more ambiguous evaluations, reflect-
ing increased uncertainty.

These findings underscore the advantage of latent
space reasoning. By delaying deterministic decisions
and allowing exploration to proceed toward termi-
nal states, latent reasoning significantly enhances the
model’s ability to differentiate correct paths from
incorrect ones, thereby improving performance on
complex, planning-intensive tasks compared to tradi-
tional greedy methods. Motivated by these empirical
observations, Zhu et al. (2025) presented a theoretical
construction of a 2-layer transformer with COCONUT,
demonstrating that it can solve the directed graph reachability problem using O(n) steps,
where n is the number of vertices. This efficiency arises from the use of superposition to
represent multiple explored vertices in parallel. On the contrary, the best known theoretical
result for constant-depth transformers with discrete CoT requires O(n2) steps (Merrill &
Sabharwal, 2023). Experiments also confirm that the construction aligns well with the
empirical solution obtained via training dynamics.

5 Empirical Results with COCONUT

After showing the promising tree search pattern of COCONUT, we validate the feasibility
of LLM reasoning in a continuous latent space through more comprehensive experiments,
highlighting its better reasoning efficiency over language space, as well as its potential to
enhance the model’s expressivity.

5.1 Experimental Setup

Math Reasoning. We use GSM8k (Cobbe et al., 2021) as the dataset for math reasoning. It
consists of grade school-level math problems. To train the model, we use a synthetic dataset
generated by Deng et al. (2023). We use two continuous thoughts for each reasoning step
(i.e., c = 2), and set the number of training stages to 3.

Logical Reasoning. Logical reasoning involves the proper application of known conditions
to prove or disprove a conclusion using logical rules. We use the ProntoQA (Saparov & He,
2022) dataset, and our newly proposed ProsQA dataset, which is more challenging due to

8

Published as a conference paper at COLM 2025

Method
GSM8k ProntoQA ProsQA

Acc. (%) # Tokens Acc. (%) # Tokens Acc. (%) # Tokens

CoT 42.9 ±0.2 25.0 98.8 ±0.8 92.5 77.5 ±1.9 49.4

No-CoT 16.5 ±0.5 2.2 93.8 ±0.7 3.0 76.7 ±1.0 8.2
iCoT 30.0∗ 2.2 99.8 ±0.3 3.0 98.2 ±0.3 8.2

Pause Token 16.4 ±1.8 2.2 77.7 ±21.0 3.0 75.9 ±0.7 8.2

COCONUT (Ours) 34.1 ±1.5 8.2 99.8 ±0.2 9.0 97.0 ±0.3 14.2
- w/o curriculum 14.4 ±0.8 8.2 52.4 ±0.4 9.0 76.1 ±0.2 14.2

- w/o thought 21.6 ±0.5 2.3 99.9 ±0.1 3.0 95.5 ±1.1 8.2
- pause as thought 24.1 ±0.7 2.2 100.0 ±0.1 3.0 96.6 ±0.8 8.2

Table 1: Results on three datasets: GSM8k, ProntoQA and ProsQA. Higher accuracy indicates
stronger reasoning ability, while generating fewer tokens indicates better efficiency. ∗The
result is from Deng et al. (2024).

more distracting branches. We use one continuous thought for each reasoning step (i.e.,
c = 1), and set the number of training stages to 6.

More details of datasets and training settings are described in Appendix A and Ap-
pendix B.3.

5.2 Baselines and Variants of COCONUT

We consider the following baselines: (1) CoT, and (2) No-CoT, which were introduced in
Section 4. (3) iCoT (Deng et al., 2024): The model is trained with language reasoning chains
and follows a carefully designed schedule that “internalizes” CoT. As the training goes on,
tokens at the beginning of the reasoning chain are gradually removed until only the answer
remains. During inference, the model directly predicts the answer. (4) Pause token (Goyal
et al., 2023): The model is trained using only the question and answer, without a reasoning
chain. However, different from No-CoT, special <pause> tokens are inserted between the
question and answer, which provides the model with additional computational capacity to
derive the answer. The number of <pause> tokens is set the same as continuous thoughts in
COCONUT.

We also evaluate some variants of COCONUT: (1) w/o curriculum, which directly trains the
model in the last stage. The model uses continuous thoughts to solve the whole problem. (2)
w/o thought: We keep the multi-stage training, but don’t add any continuous latent thoughts.
While this is similar to iCoT in the high-level idea, the exact training schedule is set to be
consistent with COCONUT, instead of iCoT, for a strict comparison. (3) Pause as thought:
We use special <pause> tokens to replace the continuous thoughts, and apply the same
multi-stage training curriculum as COCONUT.

5.3 Results and Discussion

We show the overall results on all datasets in Table 1. Using continuous thoughts effectively
enhances LLM reasoning over the No-CoT baseline. For example, by using 6 continuous
thoughts, COCONUT achieves 34.1% accuracy on GSM8k, which significantly outperforms
No-CoT (16.5%). We list several key conclusions from the experiments as follows. More
discussions are in Appendix B.7.

“Chaining” continuous thoughts enhances reasoning. Language CoT proves to increase
the effective depth of LLMs and enhance their expressiveness (Feng et al., 2023). Thus,
generating more tokens serves as a way to inference-time scaling for reasoning (Guo et al.,
2025; Snell et al., 2024). This desirable property holds naturally for COCONUT too. On
GSM8k, COCONUT outperformed other architectures trained with similar strategies, includ-
ing COCONUT (pause as thought) and COCONUT (w/o thought). Particularly, it surpasses the

9

Published as a conference paper at COLM 2025

latest baseline iCoT (Deng et al., 2024), which requires a more carefully designed training
schedule.

Additionally, we experimented with adjusting the hyperparameter c, which controls the
number of latent thoughts corresponding to one language reasoning step (Figure 7, II).
As we increased c from 0 to 1 to 2, the model’s performance steadily improved.2 This
further validates the potential of continuous thoughts to scale up to harder problem. In
two other synthetic tasks, we found that the variants of COCONUT (w/o thoughts or pause
as thought), and the iCoT baseline also achieves impressive accuracy. This indicates that
the model’s computational capacity may not be the bottleneck in these tasks. In contrast,
GSM8k involves more complex contextual understanding and modeling, placing higher
demands on computational capability.

Figure 7: Efficiency comparison of
reasoning space and COCONUT with
difference c.

Continuous thoughts are efficient representations
of reasoning. Compared to traditional CoT, CO-
CONUT generates fewer tokens while achieving
higher accuracy on ProntoQA and ProsQA (Ta-
ble 1). Although COCONUT does not surpass CoT on
GSM8k, it offers a superior trade-off between reason-
ing efficiency and accuracy (Figure 7, I). To illustrate
this, we train a series of CoT models that progres-
sively skip (or “internalize” (Deng et al., 2024)) the
initial m = {0, 1, 2, 3, ALL} reasoning steps, and plot
their accuracy versus the number of generated to-
kens (labeled as “language” in the figure). These
CoT models quickly lose accuracy as the token gener-
ation budget decreases. In contrast, by applying CO-
CONUT training strategy—replacing each language
reasoning step with two continuous thoughts—the
accuracy drop is substantially mitigated, maintain-
ing higher performance even when fewer tokens are
generated. Another interesting observation is that,
when we decode the first continuous thought, it often
corresponds to possible intermediate variables in the
calculation (Figure 9). This also suggests that the con-
tinuous thoughts are more efficient representations
of reasoning.

6 Conclusion

In this paper, we introduce COCONUT, a new paradigm for reasoning in continuous latent
space. Experiments demonstrate that COCONUT effectively enhances LLM performance
across a variety of reasoning tasks. Reasoning in latent space gives rise to advanced emergent
behaviors, where continuous thoughts can represent multiple alternative next steps. This
enables the model to perform BFS over possible reasoning paths, rather than prematurely
committing to a single deterministic trajectory as in Chain-of-Thought (CoT) reasoning.
Further research is needed to refine and scale latent reasoning to pretraining, which could
improve generalization across a broader range of reasoning challenges. We hope our
findings will spark continued exploration into latent reasoning, ultimately advancing the
development of more capable machine reasoning systems.

Acknowledgements

The authors express their sincere gratitude to Jihoon Tack for his valuable discussions
throughout the course of this work.

2We discuss the case of larger c in Appendix B.8.

10

Published as a conference paper at COLM 2025

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

Marie Amalric and Stanislas Dehaene. A distinct cortical network for mathematical knowl-
edge in the human brain. NeuroImage, 189:19–31, 2019.

Loïc Barrault, Paul-Ambroise Duquenne, Maha Elbayad, Artyom Kozhevnikov, Belen
Alastruey, Pierre Andrews, Mariano Coria, Guillaume Couairon, Marta R Costa-jussà,
David Dale, et al. Large concept models: Language modeling in a sentence representation
space. arXiv preprint arXiv:2412.08821, 2024.

Eden Biran, Daniela Gottesman, Sohee Yang, Mor Geva, and Amir Globerson. Hopping
too late: Exploring the limitations of large language models on multi-hop queries. arXiv
preprint arXiv:2406.12775, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers
to solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and
Stuart Shieber. Implicit chain of thought reasoning via knowledge distillation. arXiv
preprint arXiv:2311.01460, 2023.

Yuntian Deng, Yejin Choi, and Stuart Shieber. From explicit cot to implicit cot: Learning to
internalize cot step by step. arXiv preprint arXiv:2405.14838, 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

Ying Fan, Yilun Du, Kannan Ramchandran, and Kangwook Lee. Looped transformers for
length generalization. arXiv preprint arXiv:2409.15647, 2024.

Evelina Fedorenko, Michael K Behr, and Nancy Kanwisher. Functional specificity for high-
level linguistic processing in the human brain. Proceedings of the National Academy of
Sciences, 108(39):16428–16433, 2011.

Evelina Fedorenko, Steven T Piantadosi, and Edward AF Gibson. Language is primarily a
tool for communication rather than thought. Nature, 630(8017):575–586, 2024.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards
revealing the mystery behind chain of thought: a theoretical perspective. Advances in
Neural Information Processing Systems, 36, 2023.

Kanishk Gandhi, Denise Lee, Gabriel Grand, Muxin Liu, Winson Cheng, Archit Sharma,
and Noah D Goodman. Stream of search (sos): Learning to search in language. arXiv
preprint arXiv:2404.03683, 2024.

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R
Bartoldson, Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up
test-time compute with latent reasoning: A recurrent depth approach. arXiv preprint
arXiv:2502.05171, 2025.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dim-
itris Papailiopoulos. Looped transformers as programmable computers. In International
Conference on Machine Learning, pp. 11398–11442. PMLR, 2023.

Alexi Gladstone, Ganesh Nanduru, Md Mofijul Islam, Peixuan Han, Hyeonjeong Ha, Aman
Chadha, Yilun Du, Heng Ji, Jundong Li, and Tariq Iqbal. Energy-based transformers are
scalable learners and thinkers. arXiv preprint arXiv:2507.02092, 2025.

11

Published as a conference paper at COLM 2025

Fabian Gloeckle, Badr Youbi Idrissi, Baptiste Rozière, David Lopez-Paz, and Gabriel Syn-
naeve. Better & faster large language models via multi-token prediction. arXiv preprint
arXiv:2404.19737, 2024.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and
Vaishnavh Nagarajan. Think before you speak: Training language models with pause
tokens. arXiv preprint arXiv:2310.02226, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen.
Token-budget-aware llm reasoning. arXiv preprint arXiv:2412.18547, 2024.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and
Zhiting Hu. Reasoning with language model is planning with world model. arXiv preprint
arXiv:2305.14992, 2023.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan Shao, Xinyuan Wang, Shuhua Xie,
Haodi Ma, Adithya Samavedhi, Qiyue Gao, et al. Llm reasoners: New evaluation,
library, and analysis of step-by-step reasoning with large language models. arXiv preprint
arXiv:2404.05221, 2024.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane
Dwivedi-Yu, Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta
Raileanu. Teaching large language models to reason with reinforcement learning. arXiv
preprint arXiv:2403.04642, 2024.

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson, Peter Clark, and
Ashish Sabharwal. Decomposed prompting: A modular approach for solving complex
tasks. arXiv preprint arXiv:2210.02406, 2022.

Yann LeCun. A path towards autonomous machine intelligence version 0.9. 2, 2022-06-27.
Open Review, 62(1):1–62, 2022.

Lucas Lehnert, Sainbayar Sukhbaatar, Paul Mcvay, Michael Rabbat, and Yuandong Tian.
Beyond a*: Better planning with transformers via search dynamics bootstrapping. arXiv
preprint arXiv:2402.14083, 2024.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers trans-
formers to solve inherently serial problems. arXiv preprint arXiv:2402.12875, 2024.

Aman Madaan and Amir Yazdanbakhsh. Text and patterns: For effective chain of thought,
it takes two to tango. arXiv preprint arXiv:2209.07686, 2022.

William Merrill and Ashish Sabharwal. The expresssive power of transformers with chain
of thought. arXiv preprint arXiv:2310.07923, 2023.

Martin M Monti, Daniel N Osherson, Michael J Martinez, and Lawrence M Parsons. Func-
tional neuroanatomy of deductive inference: a language-independent distributed network.
Neuroimage, 37(3):1005–1016, 2007.

Martin M Monti, Lawrence M Parsons, and Daniel N Osherson. The boundaries of language
and thought in deductive inference. Proceedings of the National Academy of Sciences, 106(30):
12554–12559, 2009.

Martin M Monti, Lawrence M Parsons, and Daniel N Osherson. Thought beyond language:
neural dissociation of algebra and natural language. Psychological science, 23(8):914–922,
2012.

Sania Nayab, Giulio Rossolini, Marco Simoni, Andrea Saracino, Giorgio Buttazzo, Nicola-
maria Manes, and Fabrizio Giacomelli. Concise thoughts: Impact of output length on llm
reasoning and cost. arXiv preprint arXiv:2407.19825, 2024.

12

Published as a conference paper at COLM 2025

Jacob Pfau, William Merrill, and Samuel R Bowman. Let’s think dot by dot: Hidden
computation in transformer language models. arXiv preprint arXiv:2404.15758, 2024.

Korbinian Pöppel, Maximilian Beck, and Sepp Hochreiter. Flashrnn: I/o-aware optimization
of traditional rnns on modern hardware. In The Thirteenth International Conference on
Learning Representations, 2025.

Abulhair Saparov and He He. Language models are greedy reasoners: A systematic formal
analysis of chain-of-thought. arXiv preprint arXiv:2210.01240, 2022.

Yuval Shalev, Amir Feder, and Ariel Goldstein. Distributional reasoning in llms: Parallel
reasoning processes in multi-hop reasoning. arXiv preprint arXiv:2406.13858, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li,
Yu Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in
open language models. arXiv preprint arXiv:2402.03300, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute opti-
mally can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314,
2024.

DiJia Su, Sainbayar Sukhbaatar, Michael Rabbat, Yuandong Tian, and Qinqing Zheng.
Dualformer: Controllable fast and slow thinking by learning with randomized reasoning
traces. arXiv preprint arXiv:2410.09918, 2024.

Miles Turpin, Julian Michael, Ethan Perez, and Samuel Bowman. Language models don’t
always say what they think: unfaithful explanations in chain-of-thought prompting.
Advances in Neural Information Processing Systems, 36, 2024.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen, You Wu, Luke Zettlemoyer, and Huan
Sun. Towards understanding chain-of-thought prompting: An empirical study of what
matters. arXiv preprint arXiv:2212.10001, 2022.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and
Zhifang Sui. Math-shepherd: Verify and reinforce llms step-by-step without human
annotations. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 9426–9439, 2024.

Xinyi Wang, Lucas Caccia, Oleksiy Ostapenko, Xingdi Yuan, William Yang Wang, and
Alessandro Sordoni. Guiding language model reasoning with planning tokens. arXiv
preprint arXiv:2310.05707, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in neural information processing systems, 35:24824–24837, 2022.

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and
Michael Xie. Self-evaluation guided beam search for reasoning. Advances in Neural
Information Processing Systems, 36, 2023.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large
language models latently perform multi-hop reasoning? arXiv preprint arXiv:2402.16837,
2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models.
Advances in Neural Information Processing Systems, 36, 2023.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning:
Efficient training of llm policy with divergent thinking. arXiv preprint arXiv:2406.05673,
2024a.

13

Published as a conference paper at COLM 2025

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T
Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own
mathematical questions for large language models. arXiv preprint arXiv:2309.12284, 2023.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1. arXiv
preprint arXiv:2407.06023, 2024b.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu
Chen. Mammoth: Building math generalist models through hybrid instruction tuning.
arXiv preprint arXiv:2309.05653, 2023.

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D Good-
man. Quiet-star: Language models can teach themselves to think before speaking. arXiv
preprint arXiv:2403.09629, 2024.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale
Schuurmans, Claire Cui, Olivier Bousquet, Quoc Le, et al. Least-to-most prompting
enables complex reasoning in large language models. arXiv preprint arXiv:2205.10625,
2022.

Hanlin Zhu, Shibo Hao, Zhiting Hu, Jiantao Jiao, Stuart Russell, and Yuandong Tian.
Reasoning by superposition: A theoretical perspective on chain of continuous thought.
arXiv preprint arXiv:2505.12514, 2025.

A Datasets

A.1 Examples

We provide some examples of the questions and CoT solutions for the datasets used in our
experiments.

GSM8k

Question = "John cuts his grass to 2 inches. It grows .5 inches per month.
When it gets to 4 inches he cuts it back down to 2 inches. It cost $100 to
get his grass cut. How much does he pay per year?"
Steps = ["«4-2=2»", "«2/.5=4»", "«12/4=3»", "«100*3=300»"]
Answer = "300"

ProntoQA

Question = "Brimpuses are not luminous. Shumpuses are amenable. Each yumpus
is a lorpus. Gorpuses are shumpuses. Each zumpus is a grimpus. Gorpuses
are rompuses. Dumpuses are not floral. Lempuses are cold. Brimpuses are
impuses. Every lorpus is floral. Every rompus is transparent. Grimpuses
are muffled. Rompuses are yumpuses. Rompuses are wumpuses. Zumpuses are
fast. Wumpuses are bitter. Every sterpus is orange. Each lorpus is a vumpus.
Yumpuses are feisty. Each yumpus is a lempus. Gorpuses are snowy. Zumpuses
are gorpuses. Every lorpus is a sterpus. Stella is a brimpus. Stella is a
zumpus. True or false: Stella is not floral."
Steps = ["Stella is a zumpus. Zumpuses are gorpuses.", "Stella is a gorpus.
Gorpuses are rompuses.", "Stella is a rompus. Rompuses are yumpuses.",
"Stella is a yumpus. Each yumpus is a lorpus.", "Stella is a lorpus. Every
lorpus is floral.", "Stella is floral."]
Answer = "False"

14

Published as a conference paper at COLM 2025

Nodes # Edges Len. of Shortest Path # Shortest Paths

23.0 36.0 3.8 1.6

Table 2: Statistics of the graph structure in ProsQA.

Dataset Training Validation Test

GSM8k 385,620 500 1319
ProntoQA 9,000 200 800

ProsQA 17,886 300 500

Table 3: Statistics of the datasets.

ProsQA

Question = "Every shumpus is a rempus. Every shumpus is a yimpus. Every
terpus is a fompus. Every terpus is a gerpus. Every gerpus is a brimpus.
Alex is a rempus. Every rorpus is a scrompus. Every rorpus is a yimpus.
Every terpus is a brimpus. Every brimpus is a lempus. Tom is a terpus.
Every shumpus is a timpus. Every yimpus is a boompus. Davis is a shumpus.
Every gerpus is a lorpus. Davis is a fompus. Every shumpus is a boompus.
Every shumpus is a rorpus. Every terpus is a lorpus. Every boompus is a
timpus. Every fompus is a yerpus. Tom is a dumpus. Every rempus is a rorpus.
Is Tom a lempus or scrompus?"
Steps = ["Tom is a terpus.", "Every terpus is a brimpus.", "Every brimpus
is a lempus."]
Answer = "Tom is a lempus."

A.2 Construction of ProsQA

To construct the dataset, we first compile a set of typical entity names, such as "Alex" and
"Jack," along with fictional concept names like "lorpus" and "rorpus," following the setting
of ProntoQA (Saparov & He, 2022). Each problem is structured as a binary question: "Is
[Entity] a [Concept A] or [Concept B]?" Assuming [Concept A] is the correct answer, we
build a directed acyclic graph (DAG) where each node represents an entity or a concept.
The graph is constructed such that a path exists from [Entity] to [Concept A] but not to
[Concept B].

Algorithm 1 describes the graph construction process. The DAG is incrementally built by
adding nodes and randomly connecting them with edges. To preserve the validity of the
binary choice, with some probability, we enforce that the new node cannot simultaneously
serve as a descendant to both node 0 and 1. This separation maintains distinct families of
nodes and balances their sizes to prevent model shortcuts.

After the graph is constructed, nodes without parents are assigned entity names, while other
nodes receive concept names. To formulate a question of the form "Is [Entity] a [Concept
A] or [Concept B]?"", we designate node 0 in the graph as [Entity], a leaf node labeled 1
as [Concept A], and a leaf node labeled 2 as [Concept B]. This setup ensures a path from
[Entity] to [Concept A] without any connection to [Concept B], introducing a moderately
complex reasoning path. Finally, to avoid positional biases, [Concept A] and [Concept B]
are randomly permuted in each question.

A.3 Statistics

We show the size of all datasets in Table 3.

15

Published as a conference paper at COLM 2025

Algorithm 1 Graph Construction for ProsQA

edges← {}
nodes← {0, 1}
labels← {0 : 1, 1 : 2}

▷ Labels: 1 (descendant of node 0), 2 (descendant of node 1), 3 (both), 0 (neither).
groups← {0 : {}, 1 : {0}, 2 : {1}, 3 : {}}
idx ← 2
while idx < N do

▷ For each new node, randomly add edges from existing nodes
n_in_nodes← poisson(1.5)
rand← random()
if rand ≤ 0.35 then

candidates← groups[0] ∪ groups[1] ▷ Cannot be a descendant of node 1.
else if rand ≤ 0.7 then

candidates← groups[0] ∪ groups[2] ▷ Cannot be a descendant of node 0.
else

candidates← nodes
end if
n_in_nodes← min(len(candidates), n_in_nodes)
weights← [depth_to_root(c) · 1.5 + 1 ∀c ∈ candidates]

▷ Define sampling weights to prioritize deeper nodes.
▷ This way, the solution reasoning chain is expected to be longer.

in_nodes← random_choice(candidates, n_in_nodes, prob = weights/sum(weights))
cur_label ← 0
for in_idx ∈ in_nodes do

cur_label ← cur_label | labels[in_idx] ▷ Update label using bitwise OR.
edges.append((in_idx, idx))

end for
groups[cur_label].append(idx)
labels[idx]← cur_label
nodes← nodes ∪ {idx}
idx ← idx + 1

end while

16

Published as a conference paper at COLM 2025

Figure 8: Analysis of parallelism in latent tree search. The left plot depicts the cumulative
value of the top-1, top-2, and top-3 candidate nodes for the first thoughts, calculated across
test cases and ranked by percentile. The significant gaps between the lines reflect the
model’s ability to explore alternative latent thoughts in parallel. The right plot shows
the corresponding analysis for the second thoughts, where the gaps between lines are
narrower, indicating reduced parallelism and increased certainty in reasoning as the search
tree develops. This shift highlights the model’s transition toward more focused exploration
in later stages.

B More Discussion on Empirical Results

B.1 COCONUT Generates Better Reasoning Chains

As shown in Figure 3, even when COCONUT is forced to generate a complete reasoning
chain, the accuracy of the answers is still higher than CoT. The generated reasoning paths are
also more accurate with less hallucination. From this, we can infer that the training method
of mixing different stages improves the model’s ability to plan ahead. The training objective
of CoT always concentrates on the generation of the immediate next step, making the model
“shortsighted”. In later stages of COCONUT training, the first few steps are hidden, allowing
the model to focus more on future steps. This is related to the findings of Gloeckle et al.
(2024), where they propose multi-token prediction as a new pretraining objective to improve
the LLM’s ability to plan ahead.

B.2 Analysis of Parallelism in Latent Tree Search

We present an analysis of the model’s ability to explore alternative latent thoughts in parallel.
As shown in Figure 8, the model makes use of the latent space to explore multiple paths in
parallel, and this ability is more pronounced in the early stages of the search.

B.3 Training Details

Math Reasoning. By default, we use 2 latent thoughts (i.e., c = 2) for each reasoning
step. We analyze the correlation between performance and c in Section 5.3. The model goes
through 3 stages besides the initial stage. Then, we have an additional stage, where we still
use 3× c continuous thoughts as in the penultimate stage, but remove all the remaining
language reasoning chain. This handles the long-tail distribution of reasoning chains longer
than 3 steps. We train the model for 6 epochs in the initial stage, and 3 epochs in each
remaining stage.

Logical Reasoning. We use one continuous thought for every reasoning step (i.e., c = 1).
The model goes through 6 training stages in addition to the initial stage, because the
maximum number of reasoning steps is 6 in these two datasets. The model then fully
reasons with continuous thoughts to solve the problems in the last stage. We train the model
for 5 epochs per stage.

For all datasets, after the standard schedule, the model stays in the final training stage, until
the 50th epoch. We select the checkpoint based on the accuracy on the validation set. For

17

Published as a conference paper at COLM 2025

Figure 9: A case study where we decode the continuous thought into language tokens.

inference, we manually set the number of continuous thoughts to be consistent with their
final training stage. We use greedy decoding for all experiments.

B.4 Hyperparameter Searching

We perform a hyperparameter search over learning rates in the set
1× 10−3, 1× 10−4, 1× 10−5 and batch sizes in 32, 64, 128, 256. The maximum num-
ber of training epochs is set to 50, as we observe convergence across all runs within this
limit. Additionally, we tune the number of training epochs per stage for COCONUT over the
set 1, 3, 5 individually for each task.

B.5 Clock-Time Reasoning Efficiency Metric

We present a clock-time comparison to evaluate reasoning efficiency. The reported values
represent the average inference time per test case (in seconds), with a batch size of 1,
measured on an Nvidia A100 GPU. For the no-CoT and CoT baselines, we employ the
standard generate method from the transformers3 library. Our results show that clock time
is generally proportional to the number of newly generated tokens, as detailed in Figure 7.

Method GSM8k ProntoQA ProsQA

No-CoT 0.03 0.03 0.08
CoT 0.26 0.85 0.47
COCONUT 0.09 0.11 0.15

Table 4: Inference time (in seconds) comparison across tasks and methods.

B.6 Interpretation of Continuous Thoughts

In Figure 9, we show a case study where we decode the continuous thought into language
tokens. The first continuous thought can be decoded into tokens like “180”, “ 180” (with
a space), and “9”. Note that, the reasoning trace for this problem should be 3× 3× 60 =
9× 60 = 540, or 3× 3× 60 = 3× 180 = 540. The interpretations of the first thought happen
to be the first intermediate variables in the calculation. Moreover, it encodes a distribution of
different traces into the continuous thoughts. This is consistent to the analysis in Section 4.3.

B.7 More Discussions on Empirical Results

Performance Differences among Different Datasets. We discuss the performance dif-
ferences among different datasets, to understand which tasks benefit more from latent
reasoning.

3https://github.com/huggingface/transformers

18

https://github.com/huggingface/transformers

Published as a conference paper at COLM 2025

• Real-World vs. Synthetic Domains: GSM8k represents a real-world, open-domain
question-answering task. Unlike the synthetic datasets used in our study, it de-
mands more complex contextual understanding and modeling, which can place
greater demands on computational capabilities. This hypothesis is supported by
the observation that COCONUT outperforms all other latent reasoning methods, and
its accuracy steadily improves as the number of thoughts per step (c) increases from
0 to 2. Additionally, GSM8k requires diverse commonsense and world knowledge.
This may give CoT an advantage, as it aligns closely with the pretraining objectives
of the underlying language model, enabling it to better leverage its knowledge
compared to COCONUT.

• Planning Requirements: Complex reasoning tasks often require the model to "look
ahead" to determine whether a particular step is optimal (also known as planning).
Among the datasets in our experiments, GSM8k involves grade-school-level math
word problems that allow for intuitive judgment of the next reasoning step. Simi-
larly, ProntoQA includes distracting branches of limited size, making it relatively
straightforward to identify the correct next step. In contrast, ProsQA, based on a
randomly generated Directed Acyclic Graph (DAG) structure, presents a signifi-
cant challenge to the model’s planning abilities. Our experimental results suggest
that tasks requiring extensive planning benefit more from latent space reasoning
(including COCONUT, some of its variants, and iCoT) than from reasoning using
language tokens (CoT).

The LLM still needs guidance to learn continuous thoughts. In the ideal case, the model
should learn the most effective continuous thoughts automatically through gradient descent
on questions and answers (i.e., COCONUT w/o curriculum). However, from the experimental
results, we found the models trained this way do not perform any better than no-CoT. With
the multi-stage curriculum which decomposes the training into easier objectives, COCONUT
is able to achieve top performance across various tasks. The multi-stage training also
integrates well with pause tokens (COCONUT- pause as thought). Despite using the same
architecture and similar multistage training objectives, we observed a small gap between
the performance of iCoT and COCONUT (w/o thoughts). The finer-grained removal schedule
(token by token) and a few other tricks in iCoT may ease the training process. We leave
combining iCoT and COCONUT as a future work. While the multi-stage training used
for COCONUT has proven effective further research is definitely needed to develop better
and more general strategies for learning reasoning in latent space, especially without the
supervision from language reasoning chains

B.8 Using More Continuous Thoughts

In Figure 7 (II), we present the performance of COCONUT on GSM8k using c ∈ {0, 1, 2}.
When experimenting with c = 3, we observe a slight performance drop accompanied by
increased variance. Analysis of the training logs indicates that adding three continuous
thoughts at once – particularly during the final stage transition – leads to a sharp spike
in training loss, causing instability. Future work will explore finer-grained schedules,
such as incrementally adding continuous thoughts one at a time while removing fewer
language tokens, as in iCoT (Deng et al., 2024). Additionally, combining language and
latent reasoning—e.g., generating the reasoning skeleton in language and completing the
reasoning process in latent space—could provide a promising direction for improving
performance and stability.

B.9 COCONUT with Larger Language Models

We experimented with COCONUT on GSM8k using Llama 3.2-3B and Llama 3-8B (Dubey
et al., 2024) with c = 1. We train them for 3 epochs in Stage 0, followed by 1 epoch per
subsequent stage. The results are shown in Table 5.

We observe consistent performance gains across both Llama 3.2-3B and Llama 3-8B models
compared to the no-CoT baseline, though these improvements are not as pronounced as
those previously demonstrated with GPT-2. One possible reason is that larger models have

19

Published as a conference paper at COLM 2025

Model no-CoT COCONUT (Ours)

Llama 3.2-3B 26.0 31.7
Llama 3-8B 42.2 43.6

Table 5: Experimental results of applying COCONUT to larger Llama models. We report per-
formance comparisons between models without CoT reasoning (no-CoT) and our proposed
COCONUT method.

already undergone extensive language-focused pre-training, making the transition to latent
reasoning more challenging.

We emphasize that the primary goal of this paper is to highlight the promising attributes
of latent-space reasoning and to initiate exploration in this new direction. Universally
surpassing language-based CoT likely requires significant research efforts dedicated to
latent space pre-training. We are encouraged by recent progress in this area (Geiping
et al., 2025; Barrault et al., 2024). While these recent models provide scalable methods for
latent representation learning, their latent spaces have not yet been explicitly optimized for
reasoning. Integrating these recent advancements with COCONUT presents an exciting and
promising avenue for future research.

20

	Introduction
	Related Work
	Coconut: Chain of Continuous Thought
	Continuous Space Enables Latent Tree Search
	Experimental Setup
	Overall Results
	Interpreting the Latent Reasoning as Tree Search
	Why is a Latent Space Better for Planning?

	Empirical Results with Coconut
	Experimental Setup
	Baselines and Variants of Coconut
	Results and Discussion

	Conclusion
	Datasets
	Examples
	Construction of ProsQA
	Statistics

	More Discussion on Empirical Results
	Coconut Generates Better Reasoning Chains
	Analysis of Parallelism in Latent Tree Search
	Training Details
	Hyperparameter Searching
	Clock-Time Reasoning Efficiency Metric
	Interpretation of Continuous Thoughts
	More Discussions on Empirical Results
	Using More Continuous Thoughts
	Coconut with Larger Language Models

