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TATKC: A Temporal Graph Neural Network for Fast Approximate
Temporal Katz Centrality Ranking

Anonymous Author(s)

ABSTRACT
Numerous real-world networks are represented as temporal graphs,
which capture the dynamics of connections over time. Identifying
important nodes on temporal graphs has a plethora of real-life ap-
plications, such as information propagation and influential user
identification, etc. Temporal Katz centrality, a popular temporal
metric, gauges the importance of nodes by taking into account both
the number of temporal walks and the timespan between the in-
teractions. The computation of traditional temporal Katz centrality
is computationally expensive, especially when applied to massive
temporal graphs. Therefore, in this paper, we design a temporal
graph neural network to approximate temporal Katz centrality com-
putation. To the best of our knowledge, we are the first to address
temporal Katz centrality computation purely from a learning-based
perspective. We propose a time-injected self-attention model that
consists of two phases. In the first phase, we utilize a time-injected
self-attention mechanism to acquire node representations that en-
compass both structural information and temporal relevance. The
second phase is structured as a multi-layer perceptron (MLP) which
uses the learned node representation to predict node rankings. Fur-
thermore, normalization and neighbor sampling strategies are inte-
grated into the model to enhance its overall performance. Extensive
experiments on real-world networks demonstrate the efficiency
and accuracy of TATKC. Particularly, TATKC achieves an accuracy
of up to 91.35% for the top-1% predictions and a prediction time of
less than 200 seconds on a temporal graph with 4 million nodes and
22 million edges. Compared with the state-of-the-art exact TKC
computation method, TATKC is capable of up to around 6 speedup.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; •
Computing methodologies→ Neural networks.
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Relevance to Web Research: Temporal Katz centrality can be
applied to web link graphs, social networks, etc. It enhances various
aspects of web-related tasks, including search, recommendations,
security, and understanding the dynamics of information flow.

1 INTRODUCTION
Many real-life networks are modeled as temporal graphs, such as
web-based social networks, communication networks, transporta-
tion networks, etc., where interactions between nodes evolve over
time. The use of centrality metrics to identify important nodes on
the temporal graphs has a wide range of applications, such as rumor
control [45], personalized content recommendation [28], identifica-
tion of super-propagators in virus propagation [14], and identifying
malicious network traffic [38]. The current temporal graph node
centrality can be mainly divided into two categories, (i) optimal
path-based temporal centrality, such as temporal betweenness cen-
trality [9] and temporal closeness centrality [30]. (ii) Walk-based
temporal centrality, e.g., temporal PageRank [35], temporal walk
centrality [31], and temporal Katz centrality (TKC) [3]. Temporal
PageRank is a generalization of PageRank for temporal networks.
Temporal walk centrality counts random walks passing through
a node. TKC is the weighted sum of temporal walks ending at a
node, it quantifies the ability of a node to send out or receive infor-
mation along the links. Considering that in real-life applications,
messages do not always propagate along the optimal path, such as
the spread of fake news in social networks and the spread of infec-
tious diseases in contact networks [31], we focus on the problem
of classic walk-based temporal centrality, TKC computation, which
has widely influenced the study of social networks.

Traditional temporal Katz centrality computation involves travers-
ing all edges of the entire temporal network and continuously updat-
ing node centrality values during the process. This computational
approach results in significant runtime delays for TKC calculations
on temporal graphs. More advanced data-centric techniques are
needed to calculate TKC efficiently. Recently, much attention has
been concentrated on how to learn graph algorithms by exploiting
the family of Deep Graph Networks (DGNs), e.g., Bellman-Ford [44],
graph clustering [26], which shows that it is indeed possible to train
DGNs to execute classical graph algorithms. There exist models for
betweenness centrality prediction on static graphs [16, 25]. How-
ever, it is important to note that these models, designed for static
topology, do not possess the capability to accurately account for the
impact of temporal fluctuations on node importance. We attempt
to train neural networks to incorporate temporal node ranking
reasoning by teaching them to execute classical TKC algorithms.
To the best of our knowledge, no prior research has tackled TKC
computation with a purely deep-learning model.

Designing a model for TKC is a non-trivial task due to the com-
plex nature of temporal graphs and the computational challenges
involved. Specifically, two challenges should be addressed.
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Challenge 1: How to capture complex temporal dependencies
and effectively simulate the TKC computation process in the
modeling?

Existing temporal neural networks are mostly tailored for spe-
cific tasks other than TKC, hence they often lack the capability to
effectively and efficiently simulate the TKC computation process.
Essentially, TKC is a decay function influenced by both time elapsed
and the length of temporal walks. To accurately simulate the tempo-
ral walks, assign weights to them, and accumulate the contribution
from all weighted temporal walks, we employ a self-attention mech-
anism in the modeling process. To emulate the time decay process,
we utilize continuous time encoding to capture the temporal rele-
vance between edges. Based on these, we propose a temporal graph
neural network model, called TATKC (Time-injected self-Attention
model for TKC), which comprises two phases. In the first phase,
we employ the time-injected self-attention mechanism to learn
information-rich embedding vectors, which capture structural and
temporal information in the original temporal graph. The second
phase is structured as amulti-layer perceptron (MLP), which utilizes
the acquired embedding vectors to predict node rankings based on
TKC values. A pair-wise ranking loss function is employed to train
the model. The model parameters undergo end-to-end training us-
ing various real-life temporal graphs, each annotated with ground
truth TKC values for all nodes. Once trained, the resulting ranking
model can be applied to any unseen temporal network for node
importance assessment in terms of TKC values.

Challenge 2: The computations involved in graph neural
networks (GNNs) can be computationally intensive and time-
consuming. How to efficiently train and predict TKC while
preserving accuracy?

Aggregating all neighbors in TATKC can be time-consuming, es-
pecially for massive graphs. Choosing the right aggregation method
is crucial for both computational efficiency and model performance.
we’ve observed that high TKC node values predominantly orig-
inate from a subset of crucial neighboring nodes. Consequently,
we introduce a range of neighbor aggregation sampling methods,
among which the degree-based neighbor sampling method proves
highly effective in aggregating information from these influen-
tial neighboring nodes while excluding aggregation of neighbor
nodes with little contribution. This reduces the complexity from
O(L · |𝐸 |) to O(L · |𝑉 | · |𝑆𝑎𝑚𝑝𝑙𝑒 |), where |𝑉 | and |𝐸 | are the number
of nodes and temporal edges, respectively, L represents the num-
ber of model layers, and |𝑆𝑎𝑚𝑝𝑙𝑒 | indicates the average number of
sampled neighbors. In our experiments, we found that TATKC can
efficiently process massive graphs with tens of millions of edges,
whereas TATKC without sampling encounters memory overflow
issues and cannot run on such large datasets. Furthermore, practical
testing on smaller datasets demonstrated that our sampling strategy
significantly reduces graphics memory consumption by over 60%.
Moreover, during the aggregation process, we have noticed that
many nodes tend to aggregate neighbors that share strong similari-
ties, leading to the over-smoothing phenomenon. To mitigate this
issue, L2 normalization is applied to the aggregated node features.
In brief, our contributions are summarized below.

• We propose an efficient and scalable temporal graph neural net-
work model TATKC. Our model is inductive, capable of training

on small graphs and subsequently making direct predictions of
TKC rankings for massive graphs. To the best of our knowledge,
we are the first work addressing TKC ranking from a purely
learning-based approach.

• The proposed model TATKC is a two-phase temporal graph
neural network. In the first phase, it employs a time-injected self-
attention mechanism to learn node representations, mirroring
the TKC calculation process. Additionally, to mitigate the over-
smoothing phenomenon, L2 normalization is incorporated. In
the second phase, the learned embedding vectors are utilized
for node ranking score predictions. To improve computational
efficiency, we introduce a range of neighbor sampling methods,
among which the degree-based sampling proves highly effective
in aggregating information from crucial neighboring nodes while
excluding aggregation of neighbor nodes with little contribution.

• Extensive experiments are conducted to show the efficiency and
effectiveness of themodel. TATKC is trained on 50 small temporal
graphs with less than 4minutes, and tested on 8 real-life temporal
networks in different scales, achieving an accuracy of up to
91.35% for the top-1% predictions and a prediction time of less
than 200 seconds on a temporal graphwith 4million nodes and 22
million edges. Compared with the state-of-the-art exact method,
TATKC is capable of up to around 6 speedups.

2 RELATEDWORK
Centrality computation on static graphs. On static graphs,
the commonly used centrality includes degree centrality [18], be-
tweenness centrality [17], closeness centrality [2], PageRank [7]
and Katz centrality [19], etc. A comprehensive survey is provided
in [37]. Betweenness and closeness centralities are the shortest
path-based metrics. For betweenness centrality, the representative
literature is the Brandes algorithm [5] and its variants [1, 15, 36].
For closeness centrality, Saxena [37] offered a survey. PageRank [7]
and Katz centrality [19] are walk-based metrics. PageRank ranks
web pages by performing random walks. Katz centrality measures
influence by taking into account the total number of walks be-
tween a pair of nodes. However, the computational costs of both
shortest path-based and walk-based centralities become prohib-
itive for large-scale real-world networks. As a result, numerous
approximation algorithms have been developed. Approximation
algorithms can be categorized into traditional graph approxima-
tion algorithms [4, 6, 8, 10, 11, 13, 22–24, 27, 33, 34, 41] and deep
learning-based approximation algorithms [16, 25]. Traditional ap-
proximation methods are usually based on sampling. Deep learning
algorithms are mainly designed for betweenness centrality com-
putation. DrBC [16] employs a recurrent neural network model,
specifically the gated recurrent unit (GRU), to model static graphs.
GNN-Bet [25] uses constrained message passing of node features
to approximate betweenness centrality. Both DrBC and GNN-Bet
exhibit limitations in scalability on large-scale graphs, as they en-
counter issues related to graphics memory insufficiency when deal-
ing with massive graphs.

Centrality computation on temporal graphs. some pieces [3,
9, 20, 29–32, 35, 39] consider centrality on temporal graphs where
edges exist at specific points in time. For temporal graphs, vari-
ous optimal temporal paths (e.g., earliest arrival path, fastest path)

2
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Figure 1: Model architecture

were explored in [42]. Then optimal path-based centrality such as
temporal betweenness centrality [9] and temporal closeness cen-
trality [30] were studied. Crescenzi et al. [12] proposed a sampling-
based approximation algorithm for temporal closeness centrality
computation. Oettershagen et al. [30] proposed TC-ALL for com-
puting the exact temporal closeness centrality values. Tsalouchidou
et al. [39] proposed a temporal path type that combined path length
and temporal distance, and calculated betweenness centrality val-
ues on the static window with a fix-length. Buß et al. [9] introduced
TGB, which first constructed the predecessor graph, and then ex-
tended Brandes’ theory to the predecessor graph for calculation
temporal betweenness centrality. In addition, some works adapt the
walk-based centrality to temporal graphs. Hence temporal walk-
based centralities, e.g., temporal PageRank [35], temporal walk
centrality [31], and temporal Katz centrality [3, 32], are proposed.
Oettershagen et al. [31] proposed temporal walk centrality, which
counts temporal walks passing through a node. Ogura et al. [32]
first generalized the Katz centrality to Markovian temporal net-
works. Béres et al. [3] presented temporal Katz centrality, which
is the weighted sum of all temporal walks. Notably, there is a lack
of current efforts to apply deep learning models to approximate
walk-based centrality computation on temporal graphs.

3 PRELIMINARIES
Definition 3.1. (Temporal Graph). A directed temporal graph is de-

fined as𝐺 = (𝑉 , 𝐸,𝑇 ), where𝑉 , 𝐸, and𝑇 are the sets of the vertices,
the temporal edges, and the timestamps, respectively. Specifically, a
temporal edge 𝑒 = (𝑢, 𝑣, 𝑡) represents an instantaneous event from
𝑢 to 𝑣 taking place at time 𝑡 ∈ 𝑇 .

Definition 3.2. (Temporal Walk). A temporal walk 𝑧 from node
𝑢0 to 𝑢𝑛 is an ordered series of nodes and temporal edges in a
temporal network, represented by 𝑧 = (𝑢0, 𝑢1, 𝑡1), (𝑢1, 𝑢2, 𝑡2), . . . ,
(𝑢𝑛−1, 𝑢𝑛, 𝑡𝑛), such that ∀1 ≤ 𝑖 < 𝑛, 𝑡𝑖 < 𝑡𝑖+1. It is seen that tem-
poral walks encapsulate the chronological interactions between
nodes, highlighting their temporal attributes.

Definition 3.3. (Temporal Katz Centrality [3]). Given a temporal
graph 𝐺 = (𝑉 , 𝐸,𝑇 ), the temporal Katz centrality of a node 𝑢 ∈ 𝑉
at time 𝑡 is the weighted sum of all temporal walks that end in node
𝑢, denoted by:

𝑟𝑢 (𝑡) :=
∑︁
𝑣

∑︁
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑤𝑎𝑙𝑘𝑠 𝑧 𝑓 𝑟𝑜𝑚 𝑣 𝑡𝑜 𝑢

Γ(𝑧, 𝑡) (1)

where Γ(𝑧, 𝑡) is the weight of temporal walk 𝑧 at time 𝑡 . For a tem-
poral walk 𝑧 = (𝑢0, 𝑢1, 𝑡1), (𝑢1, 𝑢2, 𝑡2), . . . , (𝑢𝑛−1, 𝑢𝑛, 𝑡𝑛), its weight
Γ(𝑧, 𝑡) is represented as follows:

Γ(𝑧, 𝑡) :=
𝑛∏
𝑖=1

𝜑 (𝑡𝑖+1 − 𝑡𝑖 ) (2)

Here, 𝜑 is a weighting function, and when 𝑖 = 𝑛, 𝑡𝑛+1 = 𝑡 .

According to the above definition, it is seen that the temporal
Katz centrality formula depends on the selection of the weighting
function 𝜑 (𝜏). The literature [3] proposes two important functions.

Function (i): 𝜑 (𝜏) = 𝛽 is constant.
Function (ii): 𝜑 (𝜏) = 𝛽 · 𝑒𝑥𝑝 (−𝑐𝜏) is an exponential function,

where 𝛽 < 1 and 𝑐 < 1 are constants.
If Function (i) is chosen, then the temporal Katz centrality is

irrespective of time elapsed. In contrast, if Function (ii) is selected,
then the temporal Katz centrality involves both a decay proportional
to the length of the temporal walk and an exponential decay of
time elapsed since the first interaction 𝑡1 over the temporal walk
occurred, which is capable of capturing the temporal decay of
information spreading and propagation. Hence, in the paper, we
use function (ii), i.e., 𝜑 (𝜏) = 𝛽 · 𝑒𝑥𝑝 (−𝑐𝜏), then 𝑟𝑢 (𝑡) in Eq. 1 is
rewritten as:

𝑟𝑢 (𝑡) :=
∑︁
𝑣

∑︁
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑤𝑎𝑙𝑘𝑠 𝑧 𝑓 𝑟𝑜𝑚 𝑣 𝑡𝑜 𝑢

𝑛∏
𝑖=1

(𝛽 · 𝑒𝑥𝑝 (−𝑐 (𝑡𝑖+1 − 𝑡𝑖 )))

:=
∑︁
𝑣

∑︁
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑤𝑎𝑙𝑘𝑠 𝑧 𝑓 𝑟𝑜𝑚 𝑣 𝑡𝑜 𝑢

(𝛽)𝑛 · 𝑒𝑥𝑝 (−𝑐 (𝑡 − 𝑡1))

(3)

4 PROPOSED MODEL
As shown in Definition 3.3, TKC calculation involves summariz-
ing all temporal walks with weights. Therefore, the corresponding
learning framework needs to iteratively aggregate neighbor infor-
mation, and different neighbors may have varying contributions to
the target node. Hence we decide to use the self-attention mecha-
nism [40] to learn the different weights of neighbors and aggregate
them. In addition, it is noticed that the weights of temporal walks
are influenced by a decay function that considers not only walk
length but also time information, hence the proposed model should
be adept at modeling and integrating the most critical temporal
aspects of the temporal graph. Based on this, we introduce our

3
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model TATKC, which consists of two phases, as shown in Figure 1.
The first phase leverages the self-attention mechanism fused with
time encoding to learn node representations. The second phase
utilizes the learned node representations to predict node rankings
based on TKC values with MLP. Next, we introduce each module
of TATKC in detail.

4.1 Node Representation Learning
Self-attention mechanism assigns different weights to neighboring
nodes when aggregating node features. Since it captures sequential
information only through positional encoding, temporal features
cannot be handled, we replace positional encoding with time en-
coding. Hence, in the first phase, we employ the time-injected self-
attention to learn embedding vectors, which capture both structural
and temporal information in the original temporal graphs.

4.1.1 Continuous time encoding. We employed the approach intro-
duced in [43], which applies Bochner’s theorem and Monte Carlo
integral to map a temporal domain 𝑇 = [0, 𝑡𝑚𝑎𝑥 ] (where 𝑡𝑚𝑎𝑥 is
the maximum timestamp among all the temporal edges in 𝐺) to
the 𝑑-dimensional vector space. Specifically, let Φ(𝑡) be the time
encoding of any time point 𝑡 ∈ 𝑇 . Given two time points 𝑡1, 𝑡2 ∈ 𝑇 ,
a temporal kernel function K(𝑡1, 𝑡2) which measures the timespan
between 𝑡1 and 𝑡2, can be expressed by the inner product of their
time encodings,

K(𝑡1, 𝑡2) = 𝜓 (𝑡1 − 𝑡2) = Φ(𝑡1) · Φ(𝑡2) ≈ Φ𝑑𝑇 (𝑡1) · Φ𝑑𝑇 (𝑡2) (4)

and

Φ𝑑𝑇 (𝑡) =
√︂

1
𝑑𝑇

[
cos(𝜔1𝑡), sin(𝜔1𝑡), ..., cos(𝜔𝑑𝑇 𝑡), sin(𝜔𝑑𝑇 𝑡)

]⊺
(5)

where 𝑑𝑇 is the finite dimension and 𝝎 = (𝜔1, . . . , 𝜔𝑑𝑇 )⊤ are learn-
able parameters.

4.1.2 Time-injected self-attention. Let ℎ𝑣 ∈ R𝑑 (𝑑 is the dimen-
sion of features) be the structural feature of node 𝑣 . Traditional
self-attention uses positional encoding, here, time-injected self-
attention utilizes time encoding Φ(𝑡) to replace the positional en-
coding. Given a temporal graph 𝐺 = (𝑉 , 𝐸,𝑇 ), a node 𝑣 ∈ 𝑉 is split
into a set of instances, denoted by 𝑆 (𝑣) = {(𝑣, 𝑡) | 𝑡 ∈ 𝑇𝑣}, where
𝑇𝑣 is the set of distinct time instances attached with the outgoing
edges of 𝑣 . We define the representation of (𝑣, 𝑡) asℎ𝑣 (𝑡) = ℎ𝑣 | |Φ(𝑡),
where | | denotes concatenation operation. To emulate the process of
aggregating temporal walks in TKC calculation, for a node 𝑣 at time
𝑡 , the in-neighbors from which an interaction occurred before time
𝑡 are aggregated. Let 𝑁𝑖𝑛 (𝑣)<𝑡 = {(𝑢, 𝑡𝑢 ) | (𝑢, 𝑣, 𝑡𝑢 ) ∈ 𝐸 ∧ (𝑡𝑢 < 𝑡)}
be the set of such in-neighbors of 𝑣 . Hence the input matrix of 𝑙𝑡ℎ
attention layer is:

𝑀𝑙 (𝑡) = [ℎ𝑙−1
𝑣 (𝑡) | |Φ(0), ℎ𝑙−1

𝑢1 (𝑡1) | |Φ(𝑡−𝑡1), ..., ℎ𝑙−1
𝑢𝑛

(𝑡𝑛) | |Φ(𝑡−𝑡𝑛)]𝑇
(6)

where ∀1 ≤ 𝑖 ≤ 𝑛, (𝑢𝑖 , 𝑡𝑖 ) ∈ 𝑁𝑖𝑛 (𝑣)<𝑡 , and ℎ𝑙−1
𝑣 (𝑡) is the hidden

representation output for (𝑣, 𝑡) (i.e., node 𝑣 at time 𝑡 ) from the (𝑙 −
1)𝑡ℎ layer. Note that Eq. 6 uses the encoding of the time difference
because Eq. 3 is a function of the time difference.

Then𝑀𝑙 (𝑡) are fed into three linear projections to obtain "query"
matrix𝑄𝑙 (𝑡) = [𝑀𝑙 (𝑡)]0 ·𝑊𝑄 , "key" matrix𝐾𝑙 (𝑡) = [𝑀𝑙 (𝑡)]1:𝑛 ·𝑊𝐾 ,
and "value" matrix 𝑉 𝑙 (𝑡) = [𝑀𝑙 (𝑡)]1:𝑛 ·𝑊𝑉 , where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈

R(𝑑+𝑑𝑇 )×𝑑ℎ are projection matrices capturing interactions between
time encoding and node features, and 𝑑ℎ is the dimension of hidden
layer. Next, the scaled dot-product attention is used in self-attention
layers, i.e.,

Attn(𝑄𝑙 (𝑡), 𝐾𝑙 (𝑡),𝑉 𝑙 (𝑡)) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄
𝑙 (𝑡) (𝐾𝑙 (𝑡))𝑇√︁

𝑑ℎ

)𝑉 𝑙 (𝑡) ∈ R𝑑ℎ

(7)
To improve training performance, multi-head attention is em-

ployed. In the sequel, to get ℎ𝑙𝑣 (𝑡), the results of multi-head atten-
tion and the node representations learned in the (𝑙 − 1)𝑡ℎ layer are
aggregated using a two-layer MLP with ReLU activation function.

ℎ𝑙𝑣 (𝑡) = MLP(ℎ𝑙 (0)𝑣 (𝑡) | |ℎ𝑙 (1)𝑣 (𝑡) | |...| |ℎ𝑙 (𝑘−1)
𝑣 (𝑡) | |ℎ𝑙−1

𝑣 (𝑡)) (8)

where 𝑘 is the number of heads, and ℎ𝑙 ( 𝑗 )𝑣 (𝑡) (0 ≤ 𝑗 < 𝑘) is the
dot-product self-attention output of 𝑗𝑡ℎ head, computed by Eq. 7.

A single attention layer described above aggregates the localized
one-hop neighborhood, andL hops neighborhood and time encoder
information are aggregated by stacking L such attention layers.

Note that as defined in Definition 3, TKC collects temporal walks,
i.e., walks that respect time order. Hence for the node 𝑣 at time 𝑡 , the
self-attention mechanism aggregates neighbors that satisfy time
constraint, i.e., interaction occurs before 𝑡 . Then a natural question
is raised, how to set 𝑡? There are two cases.

case (i): If 𝑣 is the target node, then 𝑡 = 𝑡𝑚𝑎𝑥 , where 𝑡𝑚𝑎𝑥 is
the maximum timestamp among all the temporal edges. Thus the
model can predict the current TKC values.

case (ii): Otherwise 𝑣 is the intermediate node, then 𝑡 =𝑚𝑖𝑛{𝑡 |
(𝑣,𝑤, 𝑡) ∈ 𝐸𝑜𝑢𝑡 (𝑣)}, where 𝐸𝑜𝑢𝑡 (𝑣) refers to the set of 𝑣 ′𝑠 outgoing
temporal edges. In this way, temporal walks are aggregated, and
walks that are unordered are excluded.

Normalization.The node representations obtained by the above-
mentioned self-attention mechanism demonstrate unsatisfactory
performance, especially in predicting the top-1% key nodes. This
issue is potentially due to the over-smoothing phenomenon, where
nodes within the graph progressively become more similar, render-
ing them virtually indistinguishable. The underlying problem stems
from the aggregation of neighbor information. Many nodes tend to
aggregate neighbors that share strong similarities, leading to closely
clustered representations. To address this issue, we implement L2
normalization on the aggregated node features.

ℎ𝑙𝑣 (𝑡)norm =
ℎ𝑙𝑣 (𝑡)

∥ℎ𝑙𝑣 (𝑡)∥2
=

ℎ𝑙𝑣 (𝑡)√︃
𝑥2

1 + 𝑥2
2 + . . . + 𝑥2

𝑛

(9)

where ℎ𝑣 (𝑡) = (𝑥1, 𝑥2, · · · , 𝑥𝑛). L2 normalization ensures that
features have consistent scales and prevents certain features from
dominating others, ultimately improving the ability to differentiate
among the top-N% TKC nodes, especially in top-1%.

4.1.3 Strategy of neighbor sampling. For temporal graphs with a
power-law degree distribution, the nodes with the maximum de-
gree, often referred to as "hubs," always dominate the computation
costs. This is because these hub nodes have an exceptionally high
number of connections (the neighbor degrees of these hubs can
tend to be nearly the size of the entire graph), which can lead to
time-consuming aggregation. To prevent the number of neighbors
from increasing without limitation as time flows, TATKC samples
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neighbors for information aggregation to improve efficiency and
stabilization. We consider five different neighbor sampling methods.

(i) Uniform sampling: Neighbors are selected with equal prob-
ability. It’s straightforward to sample neighbors. However, this
uniform sampling approach can lead to information overlap, where
the same neighboring nodes are chosen multiple times, potentially
leading to bias in the learned representations. This can cause the
model to overlook the importance of other neighbors.

(ii) Recent interaction sampling: Neighbors are chosen based
on the recency of their interactions. Specifically, neighbors that
have the most recent interactions with the focal node are chosen
preferentially. It enables capturing the most up-to-date interactions.
However, this approach may not adequately capture long-term
trends that are important for comprehending network evolution.

(iii) Farthest interaction sampling: Unlike recent interaction
sampling, which prioritizes recent interactions, farthest interaction
sampling selects neighbors that have the farthest interaction time,
which gains insight into learning how the interactions of neighbors
change over time. However, information from neighbors that are
too distant may have become outdated.

(iv) Expanded neighbor sampling: It considers the temporal
order of interactions between the target node and its in-neighbors.
In-neighbor instances are sorted along the time axis. The sampled
neighbors are not adjacent in time but are separated by "𝑟 - 1" other
neighbors in chronological order, where 𝑟 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
.

It allows the model to access neighbor information from various
time points. However, if there are substantial differences among
neighbors from different time points, this approach may introduce
potential sources of noise.

(v)Degree-based sampling: It chooses to sample a user-specified
number of nodes with the highest degrees. Since nodes with high
TKC values are often associated with a high degree, the degree-
based sampling method is useful for targeting highly connected
nodes with high TKC values.

Based on these methods, the pseudo-code of the first phase is
illustrated in Algorithm 1 in Appendix A.

4.2 TKC Ranking Prediction
In the second phase, we take the node representations generated
during the first phase as inputs for forecasting the TKC ranking
scores of nodes, denoted as 𝑝𝑣 (𝑡). The process is facilitated through
the utilization of a three-layered multi-layer perceptron (MLP) in-
tegrated with rectified linear unit (ReLU) activation functions:

𝑝𝑣 (𝑡) = 𝑀𝐿𝑃 (ℎL𝑣 (𝑡)norm), 𝑣 ∈ 𝑉 (10)

Loss function. As our task can be viewed as a ranking task, we
utilize the pair-wise ranking loss function [25] to train the model for
approximating TKC ranking scores of nodes. This loss function is
applied to compute the dissimilarity between the predicted ranking
scores and ground truth TKC values. Given an arbitrary node pair
(𝑣1,𝑣2), 𝑣1, 𝑣2 ∈ 𝑉 , our model output scores 𝑝𝑣1 (𝑡𝑚𝑎𝑥 ) and 𝑝𝑣2 (𝑡𝑚𝑎𝑥 )
and we abbreviate it as 𝑝1 and 𝑝2, respectively. Let 𝑦1 and 𝑦2 be the
corresponding ground truth TKC values of 𝑣1 and 𝑣2. As such, the
pair-wise ranking loss function is formulated as follows:

Loss(𝑝1, 𝑝2, 𝑦) = max(0,−𝑦 · (𝑝1 − 𝑝2) +Margin), (11)

Table 1: Statistics of the datasets

Dataset |V| |E| |T|
tgwiktionary 33,968 81,516 67,065
mlwikiquote 43,889 142,340 137,389
mgwikipedia 220,064 750,811 736,680
plwikiquote 581,646 1,472,273 1,452,278
ltwiktionary 689,678 1,693,277 1,633,334
zhwiktionary 1,347,094 5,276,371 4,448,306
warwikipedia 2,877,072 6,145,080 5,918,117
mgwiktionary 4,064,239 22,720,139 19,759,219

𝑦 =


1 if 𝑦1 > 𝑦2;
0 if 𝑦1 = 𝑦2;
−1 if 𝑦1 < 𝑦2;

whereMargin refers to a difference value, which is a hyper-parameter.
A larger value for this parameter implies a greater expected separa-
tion between 𝑣1 and 𝑣2.

4.3 Complexity Analysis
Training complexity. The time complexity scales linearly with
the number of training iterations, making it difficult to provide a
precise theoretical analysis. However, in empirical experiments,
TATKC demonstrates rapid convergence, as illustrated in Table 3.

Inference complexity. It is primarily dominated by the first
phase, which costs O(L · |𝑉 | · |𝑆𝑎𝑚𝑝𝑙𝑒 |). L is the number of model
layers, |𝑉 | and |𝐸 | are the number of nodes and temporal edges,
respectively, and |𝑆𝑎𝑚𝑝𝑙𝑒 | indicates the average number of sampled
neighbors. On massive real-world graphs, |𝑉 | · |𝑆𝑎𝑚𝑝𝑙𝑒 | << |𝐸 |.

Space complexity. The space complexity of TATKC is charac-
terized by the graphic memory requirements needed to store node
features during both training and inference. To control graphic
memory consumption, we adopted a similar approach to batch
sub-graph processing as described in [43]. In summary, the spatial
complexity of our model is O(𝑏 · ( |𝑆𝑎𝑚𝑝𝑙𝑒 |)L · 𝑑), where 𝑏 is the
batch size of the sub-graph.

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. We utilize 8 real datasets from Konect1 for eval-
uation. The statistics are summarized in Table 1. The wiktionary,
wikiquote, and wikipedia datasets represent edit networks specific
to their respective platforms. These datasets encompass both editors
and pages, interconnected through edit events or editor commu-
nication. Within these networks, edges can be classified into two
categories: a majority of edges between users and pages are accom-
panied by timestamps that precisely indicate when edits occurred.
while a small subset of edges connecting editors is associated with
timestamps that denote when the editors initiated communication.
Our training dataset consists of 50 real-world datasets from Konect,
each ranging from 1,000 to 12,000 nodes.

5.1.2 Comparisons. To the best of our knowledge, there are cur-
rently no TKC approximation algorithms or deep learning models.

1Konect is available at http://konect.cc/
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Table 2: Top-N% accuracy(× 0.01) and Kendall’s tau (KT) scores(× 0.01) on varying scale real-world temporal graphs. The bold
results indicate the best performance. For each dataset, we report the mean and standard deviation over 5 tests.

Dataset Top-1% Top-5% Top-10% Top-20% KT
TATKC TATKC* TGAT TATKC TATKC* TGAT TATKC TATKC* TGAT TATKC TATKC* TGAT TATKC TATKC* TGAT

tgwiktionary 90.68±0.96 75.39±1.98 64.87±1.90 93.77±0.17 85.44±0.59 80.44±1.19 88.41±0.54 84.12±0.31 81.07±0.65 92.53±0.21 88.42±0.40 86.07±0.36 80.02±0.42 78.87±0.21 77.67±0.76
mlwikiquote 85.27±0.88 60.86±1.43 61.19±1.67 89.37±0.82 73.56±1.72 69.02±1.23 89.12±0.61 76.35±1.17 73.73±0.70 91.82±0.29 81.85±0.26 80.49±0.42 86.60±0.23 82.70±0.37 82.04±0.38
mgwikipedia 80.01±0.46 65.96±0.51 49.41±0.48 86.67±0.14 76.88±1.02 67.67±0.33 97.47±0.05 94.92±0.19 91.29±0.14 94.85±0.03 94.55±0.08 94.12±0.08 76.98±0.08 76.58±0.12 76.29±0.14
plwikiquote 85.34±0.18 73.33±0.93 66.98±0.58 85.08±0.02 74.37±0.38 70.95±0.24 84.76±0.27 76.02±0.18 73.69±0.23 85.97±0.18 78.74±0.22 77.47±0.12 82.49±0.17 79.60±0.03 79.03±0.04
ltwiktionary 88.14±0.82 60.45±0.13 56.48±0.21 94.32±0.08 89.51±0.08 83.99±0.13 95.29±0.05 94.03±0.04 92.67±0.11 94.98±0.03 94.48±0.05 94.38±0.02 70.68±0.04 70.34±0.06 70.17±0.04
zhwiktionary 72.20±0.41 57.48±0.11 55.40±0.18 91.48±0.31 82.31±0.68 73.42±0.31 88.89±0.36 83.13±0.29 79.13±0.31 91.88±0.03 89.93±0.14 87.90±0.17 84.90±0.03 83.13±0.29 82.14±0.11
warwikipedia 91.35±0.08 72.02±0.28 58.46±0.21 95.74±0.03 94.01±0.05 93.48±0.14 76.32±0.11 75.08±0.27 75.63±0.09 78.13±0.03 78.04±0.04 78.07±0.09 71.28±0.02 71.13±0.04 71.10±0.02
mgwiktionary 90.25±0.21 60.33±0.87 46.59±1.43 89.81±0.26 76.84±0.40 62.69±0.98 90.10±0.14 79.21±0.19 69.29±0.73 97.61±0.16 84.41±0.09 78.17±0.48 84.65±0.06 79.42±0.10 75.12±0.33

Hence we compare TATKC with the up-to-date exact TKC meth-
ods [3], a temporal node representation learning model TGAT [43],
and two deep models [16, 25] designed for betweenness centrality
rankings, which are detailed below.
• ETKC2: ETKC computes exact TKC values by Eq. 3, which serves

as the ground truth. Follow [3], we set 𝛽 = 0.01, 𝑛 = 2. In Eq. 3, 𝑐
is a weight associated with the time span of the temporal walks,
we set 𝑐 = 1

2(𝑡𝑚𝑎𝑥−𝑡𝑚𝑖𝑛 ) , where 𝑡𝑚𝑎𝑥 and 𝑡𝑚𝑖𝑛 are the maximum
and minimum timestamps among all the temporal edges in a
graph, respectively.

• DrBC3: DrBC is an encoder-decoder based framework network.
The encoder leverages the GRU network to represent each node
as an embedding vector. The decoder converts the embedding
vectors into scalars, signifying the node’s relative ranking con-
cerning its betweenness centrality values.

• GNN-Bet4: GNN-Bet is a graph neural network-based frame-
work, which restricts the flow of feature information to the edges
located on the shortest paths and uses constrained message pass-
ing of node features to approximate betweenness centrality.

• TATKC*: TATKC* removes the L2 normalization setting in
TATKC, while keeping all other configurations unchanged.

• TGAT5: TGAT is a temporal graph attention network designed
for learning temporal node representations using time features
and uniform neighbor sampling.

5.1.3 Evaluation metrics. We evaluate the model’s effectiveness in
terms of top-N% accuracy and Kendall’s tau correlation [21].

Top-N% accuracy is defined as the percentage of overlap between
the top-N% nodes as returned by an approximation method and the
top-N% nodes considered as the ground truth:

Top-N% =
|predicted top-N% nodes ∩ true top-N% nodes|

⌈|𝑉 | × N%⌉ (12)

where |𝑉 | is the number of nodes, and ⌈.⌉ is the ceiling function. In
our paper, wemainly compare top-1%, top-5%, top-10%, and top-20%,
as real applications often focus on highly influential entities.

Kendall’s tau (KT) correlation is defined as (#concordant pairs
- #discordant pairs) /|𝑉 | ( |𝑉 | − 1), where #concordant pairs is the
number of concordant pairs of centrality rankings; #discordant
pairs is the number of discordant pairs of centrality rankings. KT
scores range between -1 and +1, where 0 indicates that there is no

2Code of ETKC is available at https://github.com/ferencberes/online-centrality
3Code of DrBC is available at https://github.com/FFrankyy/DrBC
4Code of GNN-Bet is available at https://github.com/sunilkmaurya/GNN-Bet
5Code of TGAT is available at https://github.com/StatsDLMathsRecomSys/Inductive-
representation-learning-on-temporal-graphs

correlation between the two rankings; 1 indicates that there is a
completely positive correlation between the two rankings; and -1
indicates that there is a completely negative correlation between
the two rankings.

5.1.4 Hyper-parameters. The model is implemented in PyTorch,
utilizing the Adam optimizer with a learning rate of 0.01. We con-
figured the node and time embedding dimension as 128, set the
number of neighbor samples to 20, and employed a model with
2 layers, conducting training for 15 epochs. To compute the loss
during training, we followed the same configuration as in GNN-Bet,
which involved randomly sampling node pairs equivalent to 20
times the total number of nodes in the graph.

5.1.5 Hardware and software setup. All experiments were con-
ducted on a server equipped with an Intel Core i9-9940X CPU, 128
GB of RAM, and an NVIDIA GeForce RTX 2080Ti GPU with 11GB
of graphics memory.

Next, the conducted experiments answer the following questions:

• 𝑄1. Accuracy: How is the accuracy of TATKC compared to the
exact TKC rankings?

• 𝑄2. Efficiency: Is TATKC efficient both in the training and in
predicting TKC rankings? Does it scale to massive networks?

• 𝑄3. Factors Affecting Model Performance: How do different
factors (e.g., neighbor samplingmethod, the number of neighbors,
etc.) affect the performance of our model?

• 𝑄4. Node Ranking Correlation: What is the level of corre-
lation between the TKC rankings predicted by our model and
betweenness centrality rankings predicted by other deep learn-
ing models?

5.2 Experimental Result
𝑄1. Accuracy.We evaluate the accuracy of TATKC, TATKC* and
TGAT using both top-N% and KT scores. The result is shown in
Table 2. It is observed that TATKC outperforms TATKC* and TGAT
across all datasets in terms of the top-N% accuracy, as well as KT
scores. Particularly, in the case of top-1%, TATKC consistently out-
performs both TATKC* and TGAT, with improvements ranging
from 12% to 30% compared to TATKC* and 17% to 43% compared
to TGAT. This observation highlights that incorporating L2 nor-
malization effectively improves the model’s capability to predict
top-N% nodes, particularly in the top-1%. The prediction perfor-
mance of TGAT is subpar, primarily because it struggles to sample
suitable temporal neighbors that can adequately simulate the TKC
computation process.
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Figure 2: Model efficiency

Table 3: Training time comparison

Model name TATKC DrBC GNN-Bet

Training time (s) 164.92 73071.55 1088.63

Table 4: Model comparison(×0.01) on mlwikiquote (small-
scale dataset)

Model name Top-1% Top-5% Top-10% KT

TATKC 85.27 89.37 89.12 86.60
DrBC 76.94 51.67 100.0 31.60
GNN-Bet 41.54 80.08 65.54 97.02

Table 5: Model comparison(×0.01) on ltwiktionary (middle-
scale dataset)

Model name Top-1% Top-5% Top-10% KT

TATKC 88.14 94.32 95.29 70.68
DrBC 100.0 100.0 100.0 6.48
GNN-Bet 42.68 77.27 85.56 98.47

𝑄2. Efficiency. We evaluated the prediction time of TATKC
against the exact TKC computation method ETKC. Figure 2 depicts
the result. It is observed that TATKC is from 3 to 6 times faster
than ETKC over different datasets. This is because, ETKC requires
each node to traverse all temporal walks that reach it, continuously
calculating temporal walk weights and iteratively updating the
node’s TKC value. In contrast, TATKC samples a subset of the direct
neighbors for each node, aggregating information from a portion
of its neighbors, thus reducing the time complexity. Particularly,
TATKC completes TKC rankings of all nodes within 168 seconds on
mgwiktionary dataset with 4 million nodes and 22 million edges.

Additionally, we investigated the training efficiency of TATKC.
As there is currently no deep learning model available for calculat-
ing TKC, we compare TATKC with DrBC and GNN-Bet, which are
betweenness centrality ranking prediction models. Since DrBC and
GNN-Bet predict betweenness centrality for static graphs rather
than temporal graphs, we omit the timestamps in the datasets dur-
ing the calculation. According to [16] and [25], DrBC is trained on
1,000 synthetic graphs with node sizes in the range of 4000∼5000;

Table 6: Model comparison(×0.01) onmgwiktionary (massive-
scale dataset): NA denotes memory overflow

Model name Top-1% Top-5% Top-10% KT

TATKC 90.25 89.81 90.10 84.65
DrBC NA NA NA NA
GNN-Bet NA NA NA NA

GNN-Bet is trained on 400 synthetic graphs with 10,000 nodes.
TATKC is trained on 50 real graphs with node sizes spanning
1000∼12,000. Table 3 shows the training time of these models. We
also report the top-1%, 5%, 10% accuracy, and KT scores across small,
middle, and massive scale datasets, the results are illustrated in Ta-
bles 4, 5 and 6, respectively. The first observation is that, as shown
in Table 3, TATKC can be trained in less than 4 minutes, which is
6 times faster than GNN-Bet and two orders of magnitude faster
than DrBC. The reason is that, our model’s training datasets are
relatively smaller, and the neighbor sampling strategy is adopted
to reduce computational costs, resulting in shorter training time.

The second observation is that, as seen in Tables 4 and 5, for
small and middle scale datasets, DrBC achieves the highest top-N%
accuracy on most cases, albeit with the trade-off of exhibiting the
lowest KT scores. This is because, DrBC is designed to identify
highly influential nodes with high betweeness centrality scores, dis-
regarding the rankings among nodes with lower scores. Conversely,
GNN-Bet attains the highest KT scores while lagging behind in
terms of top-N% accuracy. The reason is that, GNN-Bet focuses on
the betweenness centrality computation, which is based on shortest
paths. To simulate information propagation along shortest paths,
GNN-Bet selectively omits the aggregation of vertices with between-
ness centrality scores of 0. While the proportion of these vertices
is very large, overlooking them can lead to the model not fully un-
derstanding the graph topology, resulting in low accuracy. TATKC
consistently demonstrates impressive and stable performance in
both top-N% accuracy and KT scores. This is mainly because the
time-injected self-attention mechanism effectively simulates the
process of aggregating temporal walks in TKC computation defined
in Eq. 3. As depicted in Table 6, for the massive-scale dataset, both
DrBC and GNN-Bet encounter graphic memory overflow issues
as they need to load the sparse adjacency matrix onto the GPU,
which strains the available memory resources. In contrast, TATKC
continues to perform efficiently and effectively, attributed to the
utilization of the neighbor sampling strategy, allowing it to selec-
tively aggregate crucial neighbor information, thus alleviating the
memory burden on the GPU.
𝑄3. Factors Affecting Model Performance.We investigated

the effects of different neighbor sampling strategies on the model’s
prediction accuracy of top-1% and top-5% nodes. Tables 7 and 9
(Table 9 is shown in Appendix B) show the results. First, it is ob-
served that uniform sampling performs the worst in all datasets.
Degree-based sampling performs the best in 6 out of the 8 datasets
in terms of top-1% accuracy, and it achieves the best top-5% accu-
racy in four datasets. On other datasets, top-1% or top-5% accuracy
is close to the best result. The reason is that nodes with high degrees
often dominate the TKC scores. These nodes are exactly obtained
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Table 7: Top-1% Accuracy(×0.01) under different sampling strategies

Dataset Uniform Recent Interaction Farthest Interaction Expanded Neighbor Degree-based

tgwiktionary 68.36 90.42 90.30 90.66 90.68
mlwikiquote 58.21 86.56 82.83 83.08 85.27
mgwikipedia 47.72 75.95 71.73 73.93 80.01
plwikiquote 66.16 84.83 85.11 84.74 85.34
ltwiktionary 54.71 88.89 89.03 89.08 88.14
zhwiktionary 54.07 61.65 68.45 65.85 72.20
warwikipedia 56.74 91.21 91.25 91.08 91.35
mgwiktionary 45.15 90.21 90.16 90.20 90.25
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Figure 3: Top-1% accuracy and prediction time vs. the number of samples

Table 8: KT correlation between the rankings of top-1% key
nodes computed by TATKC and DrBC, TATKC and GNN-Bet

Dataset DrBC vs TATKC GNN-Bet vs TATKC

tgwiktionary 0.0711 0.0137
mlwikiquote 0.0149 0.0113
mgwikipedia 0.1779 0.2305
plwikiquote -0.1138 -0.1292
ltwiktionary -0.0017 0.0071

by degree-based sampling method and aggregated by self-attention,
leading to high top-N% accuracy. As a result, we use the degree-
based sampling strategy by default.

In addition, we also investigate the impact of the number of
samples on the top-1% accuracy and prediction time. The number
of samples is varied from 5 to 30, and Figure 3 illustrates the results
on 4 datasets. First, it is observed that the prediction time increases
with the growth of the number of samples. This is because more
node information is involved in the aggregation. Additionally, we
observe that top-1% accuracy first significantly increases and then
gradually stabilizes as the number of samples ascends. This trend
can be attributed to increased valid information with more samples.
However, when the number of samples reaches a certain number,
key neighborhood information has been all aggregated and the
top-1% accuracy reaches the highest value. In the sequel, increasing
the number of samples again does not improve the accuracy, but
only increases the computation costs. There is a trade-off between
accuracy and efficiency. As depicted in Figure 3, we set the number
of samples to 20 by default to achieve high accuracy.

𝑄4. Node Ranking Correlation. Table 8 shows the KT scores
between the rankings of top-1% nodes computed by TATKC and
DrBC, as well as TATKC and GNN-Bet. As observed, KT scores are
between -0.1295 and 0.2305, which shows that rankings computed
by TATKC and DrBC (or GNN-Bet) are pairwise dissimilar. This
is because, DrBC and GNN-Bet ignore the timestamps on edges,
and they measure the impact of shortest paths on node importance,
while TKC considers the impact of all temporal walks.

Furthermore, we also conducted a case study to show the dif-
ference between TKC and betweenness centrality, and performed
ablation experiments to dissect various components of TATKC. Due
to space limitations, the case study and ablation experiments are
provided in Appendix C and Appendix D, respectively.

6 CONCLUSION
In this paper, we explore the potential of temporal graph neural
networks for approximating temporal Katz centrality rankings of
nodes. To the best of our knowledge, we are the first to address
TKC rankings from a purely learning-based approach. A two-phase
model, named TATKC, is designed. In the first phase, TATKC uses
continuous time encoding and time-injected self-attention to emu-
late the process of exact TKC computation and learn node represen-
tations. In the second phase, based on the learned node representa-
tions, TATKC predicts TKC ranking scores with MLP. To improve
performance, normalization and neighbor sampling strategies are
integrated. Extensive experiments on real-world networks demon-
strate the efficiency and accuracy of TATKC. In the future, we plan
to design models for approximating other complex temporal cen-
trality measures, such as temporal closeness centrality or temporal
betweenness centrality.
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Table 9: Top-5% Accuracy(×0.01) under different sampling strategies

Dataset Uniform Recent Interaction Farthest Interaction Expanded Neighbor Degree-based

tgwiktionary 78.63 93.60 93.89 93.94 93.77
mlwikiquote 68.66 89.47 88.77 88.82 89.37
mgwikipedia 66.28 85.97 86.18 86.28 86.67
plwikiquote 70.27 85.03 85.11 85.07 85.08
ltwiktionary 83.31 94.36 94.32 94.27 94.32
zhwiktionary 73.62 91.43 91.41 91.13 91.48
warwikipedia 93.39 95.73 95.72 95.67 95.74
mgwiktionary 60.60 89.72 89.61 89.77 89.81

(a) Nodes ranked by BC (b) Nodes ranked by TKC

Figure 4: Nodes ranked by BC and TKC on the subgraph of tgwiktionary

A LEARNING NODE REPRESENTATION
Algorithm 1 outlines the entire process of TATKC’s first-stage node
representation learning.

Algorithm 1: Learning Node Representation
Input: Network 𝐺 = (𝑉 , 𝐸,𝑇 ); model layer L; the number

of heads 𝑘 , time 𝑡 ∈ N.
Output: Node representations ℎL𝑣 (𝑡)𝑛𝑜𝑟𝑚 .

1 Initialize ℎ0
𝑣 (𝑡);

2 for layer 𝑙 = 1 to L do
3 for 𝑣 ∈ 𝑉 do
4 Neighbor sampling and form matrix𝑀𝑙 (𝑡) by Eq. 6;
5 𝑄𝑙 (𝑡) = [𝑀𝑙 (𝑡)]0 ·𝑊𝑄 ; 𝐾𝑙 (𝑡)=[𝑀𝑙 (𝑡)]1:𝑛 ·𝑊𝐾 ;

𝑉 𝑙 (𝑡)=[𝑀𝑙 (𝑡)]1:𝑛 ·𝑊𝑉 ;
6 ℎ

𝑙 ( 𝑗 )
𝑣 (𝑡)=Attn( 𝑗 ) (𝑄𝑙 (𝑡),𝐾𝑙 (𝑡),𝑉 𝑙 (𝑡)), 0 ≤ 𝑗 < 𝑘 ;

7 Aggregate multi-head attention output ℎ𝑙 ( 𝑗 )𝑣 (𝑡);

8 ℎ𝑙𝑣 (𝑡)norm = ℎ𝑙𝑣 (𝑡 )
∥ℎ𝑙𝑣 (𝑡 ) ∥2

,∀ 𝑣 ∈ 𝑉 ;

B ADDITIONAL RESULTS
Table 9 shows the top-5% accuracy of TATKC under different sam-
pling strategies. The bold values indicate the best results. Degree-
based sampling achieves the best performance in four datasets.

C CASE STUDY
We extract a subgraph from the tgwiktionary dataset and employ
an open graph viz platform Gephi6 to visualize nodes ranked by
betweenness centrality (BC) and TKC. Figure 4 presents the node
ranked by both BC and TKC in the case study. Figure 4(a) displays
the BC node rankings. Figure 4(b) showcases the TKC node rank-
ings. Nodes with higher TKC/BC scores are represented with darker
colors and larger sizes. Nodes 1-10 correspond to editors, the re-
maining nodes represent articles. It is observed that in Figure 4(a),
nodes 5, 3, and 4 are the top-3 important nodes ranked by BC.While
in Figure 4(b), nodes 19, 17, and 3 are identified as the top-3 impor-
tant nodes according to TKC. As can be seen, Figure 4 reflects the
disparity between these two centrality measures. Nodes boasting
high BC scores are representative of wiktionary editors who act as
"bridges" linking various vertices within the graph. While nodes
with elevated TKC scores signify influential editors or pivotal wik-
tionary articles that attract substantial attention from a multitude
of editors.

D ABLATION EXPERIMENT
We perform experiments to dissect various components of TATKC.
Multiple variations are created to gain deeper insights into the
respective contributions and efficacy of components. We analyze
the practical effects of time-injected self-attention and continuous
time encoding.
6Gephi is available at https://gephi.org/
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Table 10: Top-1% and Top-5%(×0.01) ablation results of continuous time encoding

datasets Top-1% Top-5%
Time encoding Position Empty Time encoding Position Empty

edit-tgwiktionary 90.68 52.50 0.53 93.77 80.14 5.29
edit-mlwikiquote 85.27 73.33 1.24 89.37 56.52 5.64
edit-mgwikipedia 80.01 73.90 0.55 86.67 60.36 8.96
edit-plwikiquote 85.34 79.22 4.25 85.08 80.65 7.99
edit-ltwiktionary 88.14 52.80 1.42 94.32 60.21 14.1
edit-zhwiktionary 72.20 44.20 0.18 91.48 51.48 5.04
edit-warwikipedia 91.35 74.32 0.48 95.74 95.55 6.22
edit-mgwiktionary 90.25 38.79 0.15 89.81 64.60 4.48

Table 11: Top-1% and Top-5%(×0.01) ablation results of time-injected self-attention mechanism

datasets Top-1% Top-5%
Self-attention LSTM Mean Self-attention LSTM Mean

edit-tgwiktionary 90.68 85.23 86.83 93.77 92.86 90.97
edit-mlwikiquote 85.27 85.17 70.99 89.37 89.28 89.02
edit-mgwikipedia 80.01 71.88 34.35 86.67 83.11 81.80
edit-plwikiquote 85.34 81.06 80.54 85.08 82.53 81.53
edit-ltwiktionary 88.14 86.14 57.34 94.32 93.54 93.33
edit-zhwiktionary 72.20 71.04 46.83 91.48 91.11 91.46
edit-warwikipedia 91.35 88.43 80.33 95.74 95.26 94.50
edit-mgwiktionary 90.25 85.41 76.28 89.81 86.82 88.27

D.1 Continuous Time Encoding
To assess the impact of continuous time encoding, we substitute
it with a learnable positional embedding, similar to the approach
in [40], or simply replace it with a zero vector as empty embedding.
The results are presented in Table 10. It is seen that continuous
time encoding achieves the best performance across all datasets,
both in the top-1% and top-5%. Positional embedding achieves the
second-best result, while empty embedding performs the worst in
all datasets. This result proves time information is vital to predict
node rankings in terms of TKC and continuous time encoding could
help self-attention learning time information. Positional encoding
can introduce temporal information by sorting neighbors based
on timestamps, but it cannot capture the complex time difference
information involved in TKC computation. Empty embedding is
equivalent to not providing any information about node order or
time, resulting in significant information loss, and rendering TATKC
incapable of learning the temporal relationships between nodes.

D.2 Time-injected Self-attention Mechanism
We substitute the proposed time-injected self-attention mechanism
with either a mean pooling or LSTM module. Both of these al-
ternatives are commonly employed for sequence encoding. The
results are presented in Table 11. First, It is observed that the time-
injected self-attention achieves the highest performance across
all datasets, both in the top-1% and top-5%. LSTM ranks as the
second-best performer in most datasets. For example, in terms of
top-1% accuracy, LSTM outperforms Mean pooling in 7 out of the
8 datasets. This indicates that considering both the time sequence
and neighbor contributions is beneficial for predicting the top-N%
most important nodes. However, though LSTM is capable of captur-
ing time sequence information, it falls short in learning neighbor
contributions. Mean pooling, unlike LSTM, cannot learn either time
sequence or neighbor contributions, leading to unstable and poor
performance.

Received 12 October 2023; revised xx xx 2023; accepted xx xx 2024
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