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Abstract

Radiation therapy, treating over half of all cancer patients, involves using special-
ized machines to direct high-energy beams at tumors, aiming to damage cancer
cells while minimizing harm to nearby healthy tissues. Customizing the shape and
intensity of radiation beams for each patient leads to solving large-scale constrained
optimization problems that need to be solved within tight clinical time-frame. At
the core of these challenges is a large matrix that is commonly sparsified for com-
putational efficiency by neglecting small elements. Such a crude approximation
can degrade the quality of treatment, potentially causing unnecessary radiation
exposure to healthy tissues—this may lead to significant radiation-induced side ef-
fects—or delivering inadequate radiation to the tumor, which is crucial for effective
tumor treatment. In this work, we demonstrate, for the first time, that randomized
sketch tools can effectively sparsify this matrix without sacrificing treatment qual-
ity. We also develop a novel randomized sketch method with desirable theoretical
guarantees that outperforms existing techniques in practical application. Beyond
developing a novel randomized sketch method, this work emphasizes the potential
of harnessing scientific computing tools, crucial in today’s big data analysis, to
tackle computationally intensive challenges in healthcare. The application of these
tools could have a profound impact on the lives of numerous cancer patients. Code
and sample data available at https://github.com/PortPy-Project/CompressRTP

1 Introduction

In 2020, an estimated 18.1 million new cancer cases and about 9.9 million cancer-related deaths
were reported globally [22]. Radiation therapy (RT) is integral to cancer treatment, utilized in
approximately half of all cases, either alone or in combination with other treatments like surgery or
chemotherapy [22]. RT involves using specialized machines to direct high-energy radiation beams
at tumors, with the primary goal of destroying cancer cells while minimizing damage to healthy
tissues. This process requires precise optimization of machine parameters, such as beam shapes
and angles, tailored to each patient’s unique anatomy. It involves solving large-scale, constrained,
non-linear optimization problems swiftly within clinical time constraints [22, 19]. The urgency of
this task is heightened in modern online adaptive radiotherapy techniques, where rapid solution is
essential since patients remain immobilized on the treatment couch during preparation [12]. Delays
not only compromise patient comfort but can also affect treatment outcomes, as any rapid anatomical
changes (e.g., bladder filling in prostate cancer) can render treatment plans based on initial anatomy
sub-optimal. Thus, quickly solving these optimization problems is crucial.
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We briefly describe the mathematical modeling of radiotherapy treatment (see [22, 19] for more
details). The patient’s body is discretized into small three-dimensional voxels (indexed by i =
1, . . . ,m), and each radiation beam is discretized into small two-dimensional beamlets (indexed
by j = 1, . . . , n). The radiation dose delivered to each voxel i from each beamlet j with unit
intensity is precalculated and represented by aij , forming a matrix A — commonly referred to as
the dose influence matrix. This matrix is typically large, containing about 100,000 to 500,000 rows
corresponding to the patient’s voxels, and 1,000 to 20,000 columns representing the beamlets of the
radiotherapy machine [18]. Our objective is to optimize the intensities of the beamlets, denoted by x,
in order to achieve a desired radiation dose, Ax, that is delivered to the patient’s body. For the tumor
voxels, we aim to achieve a radiation dose that approximates the dose prescribed by a physician while
for healthy voxels we aim to minimize the radiation dose as much as possible. The optimization
problem can be described in the following general form:

minimize f0(Ax) + f1(x)
subject to g(Ax) ≤ 0

h(x) ≤ 0,
(1)

where, f0(Ax) measures the quality and ‘goodness’ of the radiation dose Ax, f1(x) assesses the
quality of the beamlet intensities. The functions g and h represent constraints on the dose received by
the voxels and the intensities of the beamlets, respectively. Various formulations for these functions
have been suggested in existing research [17]; however, the following quadratic optimization problem
has arguably been the most commonly used formulation [22, 19]:

minimize
∑

s∈S̄

∑
i∈Is

(ws
+ max(As

ix− ds, 0)2 + ws
− max(ds −As

ix, 0)
2) + ||Px||22

subject to As
ix ≤ dsMax,∀s ∈ S̄, i ∈ Is

Mean(Asx) ≤ dsMean,∀s ∈ S̄
x ≥ 0,

(2)

where, S̄ represents the set of structures (i.e., organs, tumors), including tumor and healthy structures,
and Is represents the set of voxels belonging to structure s. The first term in the objective function
is a two-sided quadratic function penalizing the radiation overdose/underdose with the penalty
weight ws

+/ws
−, where the radiation overdose/underdose is defined as a delivered radiation dose, Asx,

exceeding/below the prescribed dose, ds, for each structure s ∈ S̄. For tumor-affiliated structures,
the prescribed dose is given by a radiation oncologist. For healthy structures, the prescribed dose
is zero, ds = 0, and there is no underdose penalty, ws

− = 0. The second term in the objective
function, f1(x) = ||Px||22, aims to penalize variations in intensities across neighboring beamlets to
promote smoothness in beamlet intensities for enhanced radiation delivery (each row of matrix P
has a value of 1 and -1 for two neighboring beamlets). The first/second set of constraints impose
maximum/mean dose constraints to satisfy the maximum/mean dose limits defined by a clinical
protocol for each structure s ∈ S̄, and the last constraint is a physical non-negativity constraint on the
beamlet intensities. The overdose/underdose penalty weights ws

+/ws
− need to be adjusted for each

patient and various techniques have been developed to automate this process (see [22] and references
therein).

We will use the second formulation (Eq. 2) for our experiments in this study. However, regardless
of the specific functions chosen in Problem 1 and the technique used to adjust the problem hyper-
parameters, the size and structure of matrix A are crucial in determining the computational intensity
of the problem. Considering that these large-scale, non-linear, constrained optimization problems are
often solved using the interior-point method with cubic computational complexity, the computational
time can increase significantly with the size and density of non-zero elements in matrix A. Therefore,
matrix sketching could be a compelling choice to improve the computational complexity of these
problems. There has been a body of research employing matrix sketching, often using a transformation
matrix S, resulting in SA with a reduced number of rows, to improve the computational efficiency
of the least-squares optimization problems commonly arising in machine learning applications
[14, 16, 21]. However, these sketching techniques cannot be used where matrix A is also involved
in the constraints, as is the case in radiotherapy applications. Reducing the number of rows would
prevent direct access to Ax, which is crucial for evaluating g(Ax) ≤ 0 in Problem 1. Thus, we
explore the potential of using matrix sparsification, a specific form of matrix sketching, to substitute
the dose influence matrix A with a sparse matrix S to improve the computational efficiency of our
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radiotherapy constrained optimization problems. In fact, a very simple form of matrix sparsification is
currently being used in practice, where all small elements of the matrix below a predefined threshold,
typically less than 0.01×max(A), are discarded [10]. This method, which we will refer to as the
"naive" approach, is clearly not the most optimal solution and may adversely affect the quality of the
treatment. The primary concern with this approach is that the radiation dose calculated and optimized
in Problem 1 using the modified matrix A may not accurately reflect the actual dose received by the
patient. This discrepancy arises from the inherent inaccuracies introduced by the truncation of matrix
A, which could potentially lead to sub-optimal treatment outcomes.

In this study, we demonstrate that using matrix sparsification techniques, primarily developed by
the machine learning community, we can enjoy the computational efficiency of working with sparse
matrices and still being able to solve constrained optimization problems within the clinical timeframe,
without significantly compromising the integrity of the original problem that could potentially degrade
the treatment quality. Matrix sparsification techniques carefully sample and scale the elements of the
original dense matrix A to create a sparse sketch matrix S that minimizes ||A− S||2. Prior research
predominantly utilized matrix sparsification for applications such as low-rank approximation and
principal component analysis (PCA) [1, 2]. This study uniquely demonstrates the utility of matrix
sparsification for efficiently addressing large-scale, constrained, nonlinear optimization challenges
within constrained timeframes. We demonstrate that applying a randomized sketch to the influence
matrix A in radiotherapy optimization significantly outperforms the current naive sparsification
approach. To the best of our knowledge, this is the first application of matrix sparsification with a
publicly available benchmark dataset, encouraging further research in this direction. Furthermore, we
have developed a novel randomized sketching algorithm that exhibits superior performance compared
to existing techniques and is supported by theoretical guarantees for its efficacy. As formally stated
in Theorem 3.6, Lemma 3.7, and Theorem 3.9, the proposed algorithm ensures a minimal impact on
the constraints, objective function and the optimal points of the original optimization Problem 2.

2 Related Work

In matrix sparsification, we typically aim for an unbiased approximation of a matrix A by another
matrix S such that ∥A− S∥2 ≤ τ for a given τ > 0, while minimizing the number of nonzero entries
in S [1, 2, 3, 7, 8, 15]. The ℓ2 norm of the difference between A and S serves as a measure of this
error, a choice that has been justified in the literature [2] for various applications. The sparsification
techniques proposed in the literature fall into two categories. The first involves randomly scaling
each matrix entry independently. Specifically, for an entry aij it is scaled to aij/pij with probability
pij , or is set to zero otherwise [1, 3, 8, 15]. This process increases the magnitude of certain matrix
entries and zeros out others, resulting in a sparse matrix. Importantly, the resulting matrix serves as
an unbiased estimator of the original matrix, with its entries acting as independent random variables.
The probability typically follows the formula pij = cf(aij), where c > 0 is a universal constant.
This method, first introduced by Achlioptas and McSherry [1], involves scaling each entry aij to
aij/pij with probability pij = ca2ij ; otherwise, the entry is set to zero. This technique, referred to
as ℓ2 scaling, laid a foundational basis in the domain of matrix sparsification. However, Achlioptas
and McSherry [1]’s approach faced limitations in theoretical guarantees and required a significant
number of non-zero entries to achieve a satisfactory ℓ2 norm bound. Additionally, scaling small
entries could disproportionately inflate values in the resulting matrix. Building upon this, Arora et al.
[3] introduced a variation focused on deterministically retaining the largest entries in the matrix while
randomly scaling the smaller ones. During the scaling phase, each matrix entry is scaled to aij/p
with a probability p = c|aij |, or set to zero otherwise. This method is fast in practice as it requires
only a single pass over all the non-zero entries and Arora et al. [3] demonstrated that their method
outperforms Achlioptas and McSherry [1] approach. However, this approach substitutes all small
entries, which are not reduced to zero, with a constant (c or −c). This could significantly affect its
performance, especially when the matrix undergoes extensive sparsification.

The second category of sparsification techniques, introduced later, involves independently sampling
from the entries of A using a probability distribution p. Each sample generates a matrix filled with
zeroes, except for the sampled entry. Subsequently, s samples are collected, and their average forms
a sparse approximation. Contrary to the first approach, the entries of the resulting matrix S are not
independent. Instead, S is formed by summing independent random matrices. To ensure that the
resulting matrix is an unbiased estimator of A, the sampled matrix’s entry should be aij/pij , where
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pij is derived from the probability distribution p. In this context, the choice of probability distribution
p is critical. Drineas and Zouzias [7] introduced a technique where pij is proportional to a2ij , termed
ℓ2 sampling, and used Bernstein inequality [20] to calculate the number of samples needed to achieve
a desired accuracy. Later, Achlioptas et al. [2] introduced a near-optimal probability distribution under
specific conditions. Additionally, Braverman et al. [4] developed a near-optimal method specifically
designed for numerically sparse matrices (this method belongs to the first category). While the
theoretical bounds of this method closely align with those of Achlioptas et al. [2], the approach by
Braverman et al. [4] is applicable to all matrices.

The primary issue with the second category of techniques is the increase in the required number of
non-zero elements in the sparse matrix, which grows in proportion to the inverse square of the error,
1/τ2, unlike the 1/τ growth rate seen in the first category. This is especially problematic given that
the interior point methods typically used to solve Problem 1 have cubic computational complexity,
which results in a cubic increase in processing time with the size of the input data. However, the
second category may be preferable in applications when data is only accessible in a streaming manner.
The first category necessitates access to the complete dataset. In this study, we assume that the matrix
A is precomputed—a time-intensive process that often takes as long as solving the optimization
problems themselves. Theoretically, these matrices could be computed on a row-by-row basis [6],
allowing the sparsification algorithm to operate concurrently, provided it can handle streaming data.
Our proposed hybrid approach can, in principle, be used in a streaming manner [2].

Notations. Let aij denote the element in the i-the row and j-th column of matrix A, and let nnz(A)
denote the number of non-zero entries in A. For matrix A, we consider the entry-wise ℓ1 norm,
defined as ∥A∥1 =

∑m
i=1

∑n
j=1 |aij |, and the spectral norm defined as ∥A∥2 = max∥x∥2=1 ∥Ax∥2.

Additionally, we introduce A(i) ∈ Rm×n, a matrix with all zero entries except for the i-th row, which
remains identical to the i-th row of A. Finally, for a vector a, we define its numerical sparsity as
ns(a) = min{k ≥ 0 : ∥a∥1 ≤

√
k ∥a∥2} and let ns(A) denote the maximum numerical sparsity of

its rows and columns.

3 Algorithm Description

In this study, we introduce an algorithm that matches the theoretical requirements of the first category
for the number of non-zero elements (i.e., the growth of the non-zero elements proportional to
1/τ ), while outperforming existing techniques in practical experiments. Our findings reveal that
this approach markedly enhances the accuracy of sparse sketches for large matrices that appear in
the context of cancer radiotherapy optimization. This method can be seen as a hybrid, combining
advantages from both categories. We deterministically retain the largest entries, akin to the strategy
suggested by Arora et al. [3]. This method is particularly relevant for our application, as the
matrices appearing in radiotherapy exhibit a distribution closely resembling an exponential curve.
Consequently, the number of elements exceeding any given threshold remains significantly small
relative to the total matrix size. This phenomenon occurs because radiation delivered from each
individual beamlet (corresponding to a matrix column) directly deposits radiation to a limited number
of voxels (corresponding to matrix rows), resulting in a few large matrix entries. However, radiation
also scatters, delivering smaller doses to additional voxels throughout the body, leading to small values
across all voxels. In contrast to the approach by Arora et al. [3], which involves substituting all minor
non-zeroed-out entries with ±c, our strategy seeks to counterbalance the effects of sparsification on
a row-by-row basis by redistributing the sum of all minor elements within that row. This method
is designed to preserve the integrity of each row, taking into consideration the diverse distribution
patterns across the matrix’s rows. Specifically, in our application, rows corresponding to tumor voxels
often exhibit higher values due to their position in the direct path ("cross-fire") of radiation, receiving
more substantial doses. Applying a uniform value for all substituted entities, in this context, results
in a more pronounced approximation for tumor voxels, potentially compromising the accuracy of the
final dose delivered to the tumor, as our results will demonstrate. After isolating the larger elements,
we apply ℓ1 sampling to the remaining entries in each row independently. This process generates
a random matrix, essentially the aggregate of several random matrices, which more closely aligns
with the practices of the second category. However, unlike conventional sampling methods (e.g.,
[7]), our technique automatically identifies the optimal number of samples for each row, consistently
less than the total number of columns, eliminating the necessity for tuning sampling parameters.
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Our method is nearly as fast as that proposed by Arora et al. [3] but provides superior accuracy,
particularly beneficial when high levels of sparsification needed. This is crucial in our application,
where approximately 96-98% sparsification is required to solve the large-scale non-linear constraint
optimization problems within a feasible clinical timeframe. Our algorithm, described in Algorithm 1,
is named the Randomized Minor-value Rectification (RMR), as it preserves the larger values while
rectifying a random selection of smaller values to offset those that have been zeroed out.

Algorithm 1 Randomized Minor-value Rectification (RMR)
input A ∈ Rm×n: The matrix to be sparsified, ϵ: The threshold for sparsification
output S: The sparsified matrix
S = deep copy of A
for each row i in {1, 2, . . . ,m} do
Ti = {j | 0 < |aij | ≤ ϵ}
set sij = 0 for all j ∈ Ti

Σi =
∑

j∈Ti
|aij |

ki = ⌈Σi/ϵ⌉
for t = 1, 2, . . . , ki do

randomly select j ∈ Ti (with probability proportional to |aij |) and update sij ← sij +
Σi/ki × sign(aij)

end for
end for

Lemma 3.1. For any matrix A ∈ Rm×n the number of samples taken by the RMR algorithm is
bounded above by nnz(A).

The nnz(A) upper bound in the above lemma, which also applies to the algorithm proposed by Arora
et al. [3], may not seem interesting at first; however, the number of samples could be much larger
than nnz(A) for other algorithms, as each entry of the matrix could be sampled multiple times. The
following theorems provide the theoretical guarantees of the RMR algorithm (proof in Appendix A).

In the remainder of this section, we assume that the sparse matrix S is obtained by applying Algorithm
1 to A. Instead of solving the original optimization problem 2 directly, we substitute the dense matrix
A with the sparse matrix S, thereby formulating an approximated optimization problem that we
refer to as the surrogate problem. Let xA and xS denote arbitrary optimal points for the original and
surrogate optimization problems, respectively.
Theorem 3.2 (Absolute ℓ2-norm error). Given a matrix A ∈ Rm×n, it can be shown that:

(a) The number of nonzero entries of S is less than m+ ∥A∥1 /ϵ.

(b) For any given δ, τ > 0, by setting

ϵ =
τ
(√

1 + 9max(m,n−1)

log m+n
δ

− 1
)

3
√
2max(m,n− 1)

,

it follows that P {∥A− S∥2 ≥ τ} ≤ δ.
Corollary 3.3 (Absolute ℓ2-norm error). In Algorithm 1, by setting

ϵ =
τ

4
√
max(m,n− 1) log(m+ n)

the resultant matrix S will contain no more than m + 4
√
max(m,n− 1) log(m+ n) ∥A∥1 /τ

nonzero entries, and we have P {∥A− S∥2 ≥ τ} ≤ 1/(m+ n).

Theorems 3.6 and 3.9 establish theoretical guarantees and provide bounds on the discrepancies
between the original and surrogate optimization problems with respect to their constraints and
objective functions, respectively. In essence, applying the RMR algorithm to sparsify the matrix and
subsequently solving the surrogate problem yields a near-optimal solution to the original problem.
Lemma 3.4 (Row-wise error). For every vector x ∈ Rn, the probability that the absolute value of
the i-th entry of the vector (A − S)x exceeds cϵ ∥x∥2 is less than 2 exp(−c2/(4 + 2

√
2c/3)), i.e.,

P {|((A− S)x)i| ≥ cϵ ∥x∥2} ≤ 2 exp(−c2/(4 + 2
√
2c/3)).
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Note that the upper bound obtained from Lemma (3.4) is significantly tighter than the bound derived
directly from Corollary (3.3). To understand this, consider the following inequality:

|((A− S)x)i| ≤ ∥(A− S)x∥2 ≤ ∥A− S∥2∥x∥2 ≤ 4
√
max(m,n− 1) log(m+ n)ϵ∥x∥2

with probability at least 1− 1/(m+ n), as stated in (3.3). However, if we set c = 5 log(m+ n), we
achieve the same failure probability, but the upper bound on the error becomes 5 log(m+ n)ϵ∥x∥2,
which is of a better order.
Lemma 3.5 (Feasibility gap). Let C ∈ Rk×m be a normalized matrix where the l1-norm of each
row is less than or equal to one, and assume that for an arbitrary x ∈ Rn, there exists u ∈ Rk for
which we have CSx ≤ u. Then, with a probability of 0.95, the maximum violation of any constraint
in CAx ≤ u is bounded above by (19 + 5 logm)ϵ∥x∥2. Conversely, if CAx ≤ u, then the maximum
violation of any constraint in CSx ≤ u is bounded above by (19 + 5 logm)ϵ∥x∥2 with a probability
of 0.95.

The feasible region of the optimization problem (2) satisfies the assumptions of Lemma 3.5, leading
to the following theorem.
Theorem 3.6 (Feasibility gap for Problem 2). An optimal point of the original problem, xA, violates
each constraint of the surrogate problem by no more than (19 + 5 logm)ϵ∥x∥2 with a probability of
at least 0.95. Conversely, an optimal point of the surrogate problem, xS , violates each constraint of
the original problem by no more than (19 + 5 logm)ϵ∥x∥2 with the same probability.
Lemma 3.7 (Objective function discrepancy). The absolute discrepancy between
the objective functions of the original and surrogate problems does not exceed
e
(
f0(Ax) +m(1 + e)

∑
s∈S̄

(
ws

+ + ws
−
))

with a probability of at least 0.95, where
e = (19 + 5 logm)ϵ∥x∥2.
Lemma 3.8. Suppose that for an x ∈ Rn satisfying the convex constraints h(x) ≤ 0, the maximum
violation of any convex constraint gi ≤ 0 in the optimization problem (1) is bounded above by e ≥ 0,
i.e., gi(Ax) ≤ e. Additionally, assume there exists an interior point of the feasible set x̃ ∈ Rn that is
strictly feasible by a margin of at least s > 0 for each constraint gi ≤ 0, i.e., gi(Ax̃) ≤ −s. Then,
there exists a feasible point x̂ ∈ Rn such that:

∥x− x̂∥ ≤ e

s
(∥x∥+ ∥x̃∥)

Theorem 3.9 (Sub-optimality gap for Problem 2). An optimal point of the surrogate problem, xS , is a
near-optimal solution to the original problem with a probability of at least 0.95, and the sub-optimality
gap of O(e), where

e = (19 + 5 logm) ϵ max (∥xA∥2, ∥xS∥2) .

In other words, we have:

[f0(AxS) + f1(xS)]− [f0(AxA) + f1(xA)] = O(e).

Remark 3.10. Note that the proof of Theorem (3.9) can be generalized to any matrix approximation
scheme with a bounded error norm for the general convex optimization problem (1), given the
key assumptions that the objective function is Lipschitz continuous and that there exists a strictly
feasible point with a lower bounded slackness for all approximated constraints. These assumptions
are crucial. If the objective function is not Lipschitz continuous, the error in matrix approximation
can significantly alter the value of the objective function, thereby drastically affecting the optimal
point. Additionally, if the assumption of Lemma (3.8) is not satisfied and no interior point exists for
the approximated constraints, the feasible set could be reduced to a single point in extreme cases.
Even with an arbitrarily small error in approximating the constraints, the feasible set might vanish,
rendering the approximated problem infeasible.

Now we conduct a comparative analysis of the performance of the RMR algorithm against the
algorithms proposed by Arora et al. [3], Drineas and Zouzias [7], Achlioptas et al. [2], and Braverman
et al. [4] denoted as “AHK06”, “DZ11”, “AKL13”, and “BKKS21” respectively. Table 1 presents the
sparsity of the resulting matrix S for each considered method, adhering to the constraint ∥A− S∥2 ≤
τ . The computational time required to solve the constrained optimization Problem 2 is strongly
correlated with the sparsity of the matrix, as also verified by our computational experiments (see
Figure 1). Therefore, we use sparsity as a proxy for computational efficiency. Although the values
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Table 1: Comparison of Theoretical Guarantees Across Various Algorithms.

Method Number of non-zero elements Failure Probability

AHK06[3] O
(√

m+ n ∥A∥1 /τ
)

exp(−Ω(m+ n))

DZ11[7] 28(m+ n) log
(√

2(m+ n)
)
∥A∥2F /τ2 1/(m+ n)

AKL13[2] O
(
log(n)

∑m
i=1

∥∥A(i)

∥∥2
1
/τ2 +

√
log(n) ∥A∥1 /τ

)
1/10

BKKS21[4] O
(
log(m)ns(A) ∥A∥2F /τ2 + log(m) ∥A∥F

√
ns(A)n/τ

)
Not specified

RMR m+ 4
√
max(m,n− 1) log(m+ n) ∥A∥1 /τ 1/(m+ n)

in Table 1 are not directly comparable, for DZ11, AKL13, and BKKS21 the number of non-zero
elements scales inversely with the square of the error rate (i.e., 1

τ2 ), while for RMR and AHK06,
it is determined by the inverse of the error rate (i.e., 1

τ ). As also confirmed by our computational
experiments (Figure 1), this makes RMR and AHK06 algorithms particularly beneficial at lower
error rates, which is needed for our application. Furthermore, due to the dependence of the BKKS21
on the numerical sparsity of the matrix, and considering that the matrices we tested exhibit low
numerical sparsity, this algorithm also performs well across various metrics. In terms of the runtime
and computational complexity of the algorithms themselves, it mainly depends on the number of
required samplings. For DZ11 and AKL13, the number of required samplings also depends on the
error rate, while for AHK06, BKKS21, and RMR, the dependency is solely on nnz(A). This also
gives AHK06, BKKS21, and RMR an edge in runtime, particularly for small error rates, as confirmed
by our experiments in Figure 1.

4 Experiments

Our objective is to illustrate that employing a randomized sparse sketch of the large dose influence
matrix in radiotherapy markedly surpasses the existing “naive" method used in practice, which simply
sparsifies the matrix by neglecting all minor elements. Additionally, we demonstrate the superior
performance of our RMR algorithm over the randomized sketch techniques introduced by Arora et al.
[3] (“AHK06”), Drineas and Zouzias [7] (“DZ11”), Achlioptas et al. [2] (“AKL13”) and Braverman
et al. [4] (“BKKS21”).

Dataset. Our analysis utilized real-world data recently made publicly available through the open-
source package PortPy [10]. We conducted experiments on data from 10 randomly selected lung
patients, with detailed information provided in the Appendix (Table 2). The dose influence matrices
in PortPy were derived from an FDA-approved commercial treatment planning system, Varian
EclipseTM, using its Application Programming Interface (API). Further detailed information about
the data can be found on PortPy’s GitHub page. Furthermore, we conducted experiments using data
from five prostate patients, which are not publicly available. The results of these experiments are
included in the Appendix.

Experiment Settings. Due to the inherent randomness of all the algorithms, except the naive one,
each experiment was repeated 5 times to assess and report variations and the algorithms’ robustness.
Each algorithm has a hyper-parameter threshold that determines the sparsity of the output matrix.
To ensure a fair comparison, we ran each algorithm with various threshold values and compared
the results based on different levels of sparsity in the output matrix (e.g., runtime of algorithm 1
vs. algorithm 2 for sparsity levels x, y). The experiments were conducted on a dual CPU system
(Intel(R) Xeon(R) 6248 2.5GHz) running Windows 10 with 128 GB of RAM. For each patient, the
optimization problem 2 was solved using the penalty weights, ws

+/w
s
−, recommended by the PortPy

package [10], along with the maximum and mean dose constraints presented in Table 3 in Appendix.
All optimization problems were modeled and solved using CVXPY [5] and MOSEK [13]. To report
the optimality gap, we needed to solve the original optimization problems using the original matrix
A. However, we encountered limited memory errors on the PC. Consequently, we solved the original
optimization problems on a powerful high-performance computing (HPC) system with approximately
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320 GB of memory, which was used exclusively to obtain the optimal solution xA for optimality gap
comparisons.

Code availability. Our code, which includes implementations of all models and experiment config-
urations, is available at https://github.com/PortPy-Project/CompressRTP.

4.1 Evaluation Metrics

The algorithms are compared using the following metrics:

Relative ℓ2-Norm Error. Defined as ∥A− S∥2 / ∥A∥2, this metric, widely adopted in existing
literature, indicates how closely the sparse matrix approximates the original matrix for a given level
of sparsity with respect to the spectral norm.

Relative Optimally Gap. This metric quantifies the sub-optimality resulting from solving the
approximated problem by measuring the relative difference between the optimal objective value
of the original problem (solved on HPC) and the objective value of the original problem using the
optimal solution of the approximated problem. It is defined as ( (f0(AxA)+f1(xA))−(f0(AxS)+f1(xS))

f0(AxA)+f1(xA) ).

Feasibility Gap. This metric measures how much the constraints of the original optimization
problem (i.e., g(Ax) ≤ 0) are violated when solving the approximated problem. It is defined as
||max(g(AxS), 0)||2.

Relative Dose Discrepancy. This metric, which is particularly relevant in the context of radiother-
apy applications, is defined as ∥AxS−SxS∥2

∥AxS∥2
and quantifies the discrepancy between the radiation dose

computed using the sparse optimization problem, SxS , and the actual dose received by the patient,
AxS .

Runtime. This includes the runtime of the sparsification algorithms and the runtime of the con-
strained optimization problems. It is worth noting that, in practice, the constrained optimization
problem needs to be solved multiple times for each patient, depending on the technique used to adjust
the hyper-parameter penalty weight.

Discrepancies in Dose Volume Histograms (DVH). DVH plots are two-dimensional graphs
specific to radiotherapy applications and are reported in the Appendix (Figures 7 and 8). These plots,
extensively used by clinicians, show how much radiation is delivered to different volumes of organs
(e.g., 10 Gray is delivered to at least 30% of the esophagus). Discrepancies between these plots for
AxS and SxS are illustrated for different algorithms.

4.2 Results

Figure 1 provides detailed comparisons with respect to the different levels of sparsity in the output
sparse matrix for one patient. Additional comparisons for the remaining nine patients can be found
in the Appendix (Figures 4 to 6). The Naive algorithm is excluded in some of the plots due to its
poor performance and significant deviation from other methods (impeding a meaningful comparison
of others). The incomplete range coverage in the plots for DZ11 is due to this algorithm exceeding
our predefined maximum time limit of 10 minutes for some of its threshold values. The standard
deviation band is plotted for all metrics (over 5 runs), however, due to the robust performance of the
algorithms, the bands are not visible except in the feasibility gap plot.

As demonstrated in Figure 1 (top-left plot), all randomized algorithms surpass the current naive
approach in balancing accuracy and sparsity. Among these, AHK06, BKKS21, and RMR stand out,
exhibiting superior performance. While AHK06 and BKKS21 marginally surpasses RMR in terms of
the ℓ2 norm, RMR significantly exceeds AHK06 and BKKS21 in terms of feasibility and optimality
gaps as well as the dose discrepancy error. This is further supported by reduced discrepancies among
DVH plots reported in the Appendix (Figures 7 and 8).

In terms of computational efficiency, the naive approach unsurprisingly leads in speed due to its simple
implementation, with AHK06 following closely behind. However, the relatively longer runtime
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Figure 1: (One patient, various sparsification levels) The performance of different algorithms in
terms of: relative ℓ2-norm error, relative optimality gap, feasibility gap, relative dose discrepancy,
algorithm runtime, and optimization runtime, for a lung patient.
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Figure 2: (Ten patients, one sparsification level) The performance of different algorithms in terms of:
relative ℓ2-norm error, relative optimality gap, feasibility gap, and algorithm runtime, for ten lung
patients.

of the RMR algorithm should not be seen as a significant limitation. The primary computational
challenge lies in solving the optimization problem 2, which often needs to be solved multiple times
for hyper-parameter tuning. For example, to achieve a relative optimality gap of 35% for patient 1,
the RMR algorithm necessitates a sparse matrix with 98.90% relative sparsification (approximately
2,850,000 non-zero elements), in contrast to the 95.05% sparsification (about 12,750,000 non-zero
elements) required by AHK06. Consequently, solving the optimization problem 2 with RMR’s sparse
sketch is considerably faster, taking 57 seconds, compared to 200 seconds for the sparse sketch
produced by AHK06. The bottom-right plot illustrates the strong correlation between the number of
non-zero elements in the matrix and the computational time of the constrained optimization problem,
indicating that relative sparsification serves as an excellent proxy for the computational time of the
optimization problems.

Figure 2 offers a high-level comparison across all patients at a fixed relative sparsity level of 98%,
which can also be interpreted as a fixed computational time for the constrained optimization problem.
Confirming the results of Figure 1 for more patients, this figure demonstrates the superior performance
of AHK06 in terms of the ℓ2 norm error and algorithm runtime, while highlighting the significant
advantage of the RMR algorithm in reducing optimality and feasibility gaps.
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Figure 3: Radiation dose maps: Naive (left), RMR (middle) and dose labels (right)

Figure 3 presents a qualitative comparison between treatment plans generated using the naive approach
(left) and RMR (middle), based on the radiation dose map commonly used by clinicians. The dose
map visually represents the distribution of radiation, with color-coding overlaid on a medical image.
Ideally, the high-dose regions (shown in red) should conform closely to the tumor’s shape, with
minimal radiation spillover into surrounding healthy tissues. While clinical expertise is required for a
detailed interpretation, it is clear that using the RMR sparse matrix, as opposed to the naive sparse
matrix, results in reduced radiation exposure to the right lung (visible on the left side of the figure).

4.3 Limitations and Broader Impacts

We acknowledge that this study primarily focused on leveraging advanced matrix sparsification
techniques to accurately and efficiently solve the computationally intensive optimization problems
in cancer radiotherapy. While we have presented dose maps and DVH figures to illustrate potential
improvements in treatment plan quality, our analysis remains limited. Future studies are necessary
to comprehensively evaluate the clinical benefits of our techniques. Additionally, this study was
reviewed by machine learning experts who focused on the technical aspects rather than the clinical
implications of the study. Another limitation of this study is that the theoretical bounds for feasibility
and optimality gaps are provided for the quadratic optimization problem 2, not the general problem 1.
It can be proven that, by assuming Lipschitz continuity for the functions f0 and g, a small ||A− S||2
ensures small feasibility and optimality gaps. However, the bounds will depend on the Lipschitz
constants of f0 and g.

Although our work primarily focused on Intensity Modulated Radiation Therapy (IMRT) with photon
radiation, a widely used treatment modality, our approach could have a much broader impact in
the field of radiotherapy. This is because all treatment modalities eventually boil down to solving
constrained optimization problems with large and dense matrices. As technology advances and new
digital machines with greater flexibility, such as those allowing couch movement, become available,
the resultant optimization problems are becoming larger, making efficient approximation techniques
increasingly essential to solve these problems within clinical timeframes [9, 11].

5 Conclusion

We introduced a novel and high-impact application of matrix sparsification alongside an innovative
algorithm that combines desirable theoretical guarantees with superior experimental performance.
Our algorithm creates a highly sparse, randomized sketch of the original dose influence matrix used
in radiotherapy optimization, preserving essential information. This enables solving the large-scale
radiotherapy optimization problems within clinically viable timeframes, ensuring minimal discrepancy
between the optimized radiation dose and the actual dose received by patients. It effectively tackles
the "garbage-in-garbage-out" problem prevalent in current radiotherapy optimization caused by
reliance on inaccurately sparsified matrices from the current “naive" approaches. This method holds
significant promise for enhancing the quality of radiotherapy treatments.
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A Proofs

A.1 Proof of Lemma 3.1

Proof. The proof proceeds through straightforward analysis. Consider that for each row i of matrix
A, the inequality Σi =

∑
j∈Ti
|aij | ≤ ϵ|Ti| holds. Consequently, the number of samples ki for row

i satisfies ki ≤ |Ti|. Furthermore, |Ti| is at most the count of non-zero entries in the i-th row of A.
Summing over all rows, the total number of samples is indeed less than or equal to nnz(A).

A.2 Proof of Theorem 3.2

We employ the following theorem and lemmas to prove Theorem 3.2. The initial theorem establishes
a probabilistic bound for the ℓ2 norm of the aggregate of random matrices, serving as an essential
instrument in various contexts. This theorem has also been utilized by Achlioptas et al. [2] and
Drineas and Zouzias [7] to establish their theoretical guarantees.

Theorem A.1 (Matrix Bernstein [20]). Suppose that X1, X2, . . . Xt are independent, zero mean,
random matrices with dimensions m× n. If for each 1 ≤ i ≤ t, ∥Xi∥2 ≤ R almost surely and

max

(∥∥∥∥∥
t∑

i=1

E
[
XiX

⊤
i

]∥∥∥∥∥
2

,

∥∥∥∥∥
t∑

i=1

E
[
X⊤

i Xi

]∥∥∥∥∥
2

)
≤ σ2,

then for all τ ≥ 0,

P

{∥∥∥∥∥
t∑

i=1

Xi

∥∥∥∥∥
2

≥ τ

}
≤ (m+ n) exp

(
− τ2

2

σ2 + Rτ
3

)
.

Lemma A.2. Suppose that v = [v1 v2 · · · vn]
⊤ is a vector. Then the matrix M =

∥v∥1 diag(|v1|, |v2|, . . . , |vn|)− vv⊤ is a positive semi-definite matrix.

Proof. It is sufficient to prove that for every vector x = [x1 x2 · · · xn]
⊤, x⊤Mx ≥ 0. Notice

that

x⊤Mx = ∥v∥1
n∑

i=1

|vi|x2
i −

(
x⊤v

)2
=

(
n∑

i=1

|vi|

)(
n∑

i=1

|vi|x2
i

)
−

(
n∑

i=1

vixi

)2

≥ 0.

The last inequality is a result of Cauchy–Schwarz inequality because we can set ai =
√
|vi| for

vi ≥ 0, and ai = −
√
|vi| for vi ≤ 0 and bi =

√
|vi|xi, in the below Cauchy-Schwarz inequality:(

n∑
i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

Lemma A.3. Let α1, α2, . . . , αm be positive real numbers, v1, v2, . . . , vm ∈ Rn and M ∈ Rn×n. If
M ′ = M −

∑m
i=1 αiviv

⊤
i is a positive semi-definite matrix then ∥M ′∥2 ≤ ∥M∥2.

Proof. Since M ′ is a positive semi-definite matrix, ∥M ′∥2 = sup∥x∥2=1 x
⊤M ′x. Note that

x⊤M ′x = x⊤Mx−
m∑
i=1

αi

(
x⊤vi

)2 ≤ |x⊤Mx| ≤ ∥M∥2 ,

since M is a symmetric matrix. Hence ∥M ′∥2 ≤ ∥M∥2.

Now, we offer a proof for Theorem 3.2.
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Proof. Let Mi =
∑n

j=1 |aij | and define Ei = {|aij | | 1 ≤ j ≤ n, |aij | > ϵ}. As per Algorithm 1,
the sum of the elements in Ei equals Mi − Σi. Consequently, the cardinality of Ei, denoted by |Ei|,
is at most (Mi − Σi)/ϵ. Additionally, the number of samples is ⌈Σi/ϵ⌉. Therefore, the number of
nonzero entries in the i-th row is less than Mi/ϵ+ 1. Consequently, the total number of non-zero
(nnz) entries in S is less than m+

∑m
i=1 Mi/ϵ = m+ ∥A∥1 /ϵ.

Assume that in the i-th row and during the t-th iteration of the redistribution step in Algorithm 1,
index j is selected. Let Sit represent an m × n matrix characterized by a single non-zero entry,
sign(aij) · Σi, located in the i-th row and j-th column. Now, let us zero out all entries of A that
are greater than ϵ in absolute value and call the new matrix Â, and define r⊤i the i-th row of Â. It
becomes apparent that Σi = ∥ri∥1. Consequently, we have

S = A− Â+

m∑
i=1

1

ki

ki∑
t=1

Sit.

Then

A− S =

m∑
i=1

(
Â(i) −

1

ki

ki∑
t=1

Sit

)
=

m∑
i=1

(
1

ki

ki∑
t=1

Â(i) −
1

ki

ki∑
t=1

Sit

)
=

m∑
i=1

ki∑
t=1

1

ki

(
Â(i) − Sit

)
,

and given that

E [Sit]ij =
|âij |
Σi

sign(âij)Σi = âij ,

we have E [Sit] = Â(i). Now denote (Â(i) − Sit)/ki by Xit. Since Xit has just one nonzero row,
XitX

⊤
it has just one nonzero entry which is on its diagonal. This entry is equal to

1

k2i

(aij − Σisign(aij))2 +
n∑

l ̸=j

a2il

 =
1

k2i

(
∥ri∥22 − 2|aij |Σi +Σ2

i

)
,

for some 1 ≤ j ≤ n. Therefore ∥Xit∥2 =
√

(∥ri∥22 − 2|aij |Σi +Σ2
i )/k

2
i . Also√

1

k2i

(
∥ri∥22 − 2|aij |Σi +Σ2

i

)
≤

√
ϵ2

Σ2
i

(2Σ2
i ) =

√
2ϵ,

and due to Theorem A.1 one can let R =
√
2ϵ.

Note that
m∑
i=1

ki∑
t=1

E
[
X⊤

itXit

]
=

m∑
i=1

kiE
[
X⊤

i1Xi1

]
,

so we just need to calculate kiE
[
X⊤

i1Xi1

]
, which is equal to

kiE
[
1

k2i

(
Â⊤

(i) − S⊤
i1

)(
Â(i) − Si1

)]
=

1

ki

(
Â⊤

(i)Â(i) − Â⊤
(i)E [Si1]− E

[
S⊤
i1

]
Â(i) + E

[
S⊤
i1Si1

])
=

1

ki

(
−Â⊤

(i)Â(i) + E
[
S⊤
i1Si1

])
=

1

ki

(
−rir⊤i + E

[
S⊤
i1Si1

])
.

Recall that Si1 has just one nonzero entry, therefore S⊤
i1Si1 is a diagonal matrix. Also

E
[
S⊤
i1Si1

]
jj

=
|âij |
Σi

Σ2
i = |âij |Σi.

From Lemma A.2, one can deduce that
∑m

i=1

∑ki

t=1 E
[
X⊤

itXit

]
is a positive semi-definite matrix and

from Lemma A.3, its spectral norm is less than or equal to the spectral norm of
∑m

i=1 E
[
S⊤
i1Si1

]
/ki,

which is a diagonal matrix and(
m∑
i=1

1

ki
E
[
S⊤
i1Si1

])
jj

=

m∑
i=1

|âij |Σi

ki
≤

m∑
i=1

|âij |ϵ ≤ mϵ2.

14



Hence
∥∥∥∑m

i=1

∑ki

t=1 E
[
X⊤

itXit

]∥∥∥
2
≤ mϵ2.

According to Theorem A.1, there should also be an upper bound for
∥∥∥∑m

i=1

∑ki

t=1 E
[
XitX

⊤
it

]∥∥∥
2
.

Similarly,

kiE
[
Xi1X

⊤
i1

]
=

1

ki

(
−Â(i)Â

⊤
(i) + E

[
Si1S

⊤
i1

])
.

The resulting matrix consists of just a nonzero entry, the ii−th entry of which is equal to (−∥ri∥22 +
Σi

2)/ki ≥ 0. Therefore
∑m

i=1

∑ki

t=1 E
[
XitX

⊤
it

]
is a diagonal matrix. Then∥∥∥∥∥

m∑
i=1

ki∑
t=1

E
[
XitX

⊤
it

]∥∥∥∥∥
2

= max
1≤i≤n

(
1

ki

(
−∥ri∥22 +Σ2

i

))
≤ max

1≤i≤n

(
ϵ

Σi

(
−Σ2

i

n
+Σ2

i

))
= max

1≤i≤n

(
(n− 1)ϵ

n
Σi

)
≤ (n− 1)ϵ2.

So one can let σ2 = max(m,n− 1)ϵ2.
Building on Theorem A.1, the derivation of Theorem 3.2 becomes a straightforward computation.
We need to have

δ = (m+ n) exp

(
− τ2

2

max(m,n− 1)ϵ2 +
√
2ϵτ
3

)
.

Thus

log

(
m+ n

δ

)
max(m,n− 1)ϵ2 + log

(
m+ n

δ

) √
2τ

3
ϵ− τ2

2
= 0.

The above equation has just one non-negative root. Therefore

ϵ =

√
log2

(
m+n

δ

)
2τ2

9 + 2 log
(
m+n

δ

)
max(m,n− 1)τ2 − log

(
m+n

δ

) √
2τ
3

2 log
(
m+n

δ

)
max(m,n− 1)

=

τ

(√
1 + 9max(m,n−1)

log(m+n
δ )

− 1

)
3
√
2max(m,n− 1)

.

A.3 Proof of Corollary 3.3

Proof. Notice that
√
1 + c − 1 ≥

√
c/2 for every c ≥ 16/9. In Theorem 3.2 let δ = 1/(m + n).

Then we have

τ

(√
1 + 9max(m,n−1)

log(m+n
δ )

− 1

)
3
√
2max(m,n− 1)

=
τ
(√

1 + 9max(m,n−1)
2 log(m+n) − 1

)
3
√
2max(m,n− 1)

≥
τ
2

√
9max(m,n−1)
2 log(m+n)

3
√
2max(m,n− 1)

=
τ

4
√

max(m,n− 1) log(m+ n)
,

since 9max(m,n − 1)/(2 log(m + n)) ≥ 16/9. Therefore based on Theorem 3.2 the result
follows.

A.4 Proof of Lemma 3.4

We apply the Bernstein inequality to establish the result.
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Theorem A.4 (Bernstein inequality). Let X1, . . . , Xn be independent zero-mean random variables.
Suppose that |Xi| ≤M almost surely, for all i. Then, for all positive τ ,

P

{∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ τ

}
≤ 2 exp

(
− τ2

2∑n
i=1 E [X2

i ] +
Mτ
3

)
.

Now we present a proof for Lemma 3.4.

Proof. Analogous to the proof of Theorem 3.2, we define the Xit matrices. Let y⊤t be the i-th row of
Xit. From the proof of Theorem 3.2, the i-th row of A− S is given by

∑ki

t=1 y
⊤
t and E

[
y⊤t
]
= 0.

Then, for each x ∈ Rn, we have E
[
y⊤t x

]
= 0 and

E
[(
y⊤t x

)2]
= E

[
x⊤yty

⊤
t x
]
= E

[
tr
(
x⊤yty

⊤
t x
)]

= E
[
tr
(
xx⊤yty

⊤
t

)]
= tr

(
E
[
xx⊤yty

⊤
t

])
= tr

(
xx⊤E

[
yty

⊤
t

])
.

Based on the proof of Theorem 3.2, we know that E
[
yty

⊤
t

]
= (−rir⊤i + Y )/k2i , where Y is a

diagonal matrix and the jj-th entry of it equals |âij |Σi. Hence,

E
[(
y⊤t x

)2]
=

1

k2i
tr
(
−xx⊤rir

⊤
i + xx⊤Y

)
=

1

k2i
tr
(
−x⊤rir

⊤
i x+ x⊤Y x

)
=

1

k2i

−(r⊤i x)2 + n∑
j=1

|âij |Σix
2
j

 .

Therefore,

E

[
ki∑
t=1

(
y⊤t x

)2]
=

1

ki

−(r⊤i x)2 + n∑
j=1

|âij |Σix
2
j


=

1

ki

− n∑
j=1

â2ijx
2
j − 2

∑
1≤j<l≤n

âj âlxjxl +

n∑
j=1

â2ijx
2
j +

∑
1≤j<l≤n

|âij âil|(x2
j + x2

l )


=

1

ki

∑
1≤j<l≤n

|âij âil|(xj − sign(âij âil)xl)
2

≤ ϵ

Σi

∑
1≤j<l≤n

|âij âil|2(x2
j + x2

l )

=
2ϵ

Σi

n∑
j=1

|âij |x2
j

n∑
l ̸=j

|âil|

≤ 2ϵ2 ∥x∥22 .

Also, |y⊤t x| ≤ ∥yt∥2 ∥x∥2 and

∥yt∥2 =

√√√√√ 1

k2i

(aij − Σisign(aij))2 +
n∑

l ̸=j

a2il

 =

√
1

k2i

(
∥ri∥22 − 2|aij |Σi +Σ2

i

)

≤

√
ϵ2

Σ2
i

(2Σ2
i )

=
√
2ϵ.
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Now according to Theorem A.4 we have

P

{∣∣∣∣∣
ki∑
t=1

y⊤t x

∣∣∣∣∣ ≥ τ

}
≤ 2 exp

 − τ2

2

2ϵ2 ∥x∥22 +
√
2ϵ∥x∥2τ

3

 .

Setting τ = cϵ ∥x∥2 results in

2 exp

 − τ2

2

2ϵ2 ∥x∥22 +
√
2ϵ∥x∥2τ

3

 = 2 exp

(
−c2

4 + 2
√
2c
3

)
,

thereby completing the proof.

A.5 Proof of Lemma 3.5

Proof. Let dA and dS denote Ax and Sx, respectively. In Lemma 3.4 if we let c = 19 + 5 logm,
then we have

2 exp

(
−c2

4 + 2
√
2c
3

)
≤ 2 exp

(
−c2

4c+ 2
√
2c
3

)
= 2 exp

(
−c

4 + 2
√
2

3

)

= 2 exp

(
−19− 5 logm

4 + 2
√
2

3

)

<
0.05

m
.

Thus
P (|(dA − dS)i| ≥ (19 + 5 logm)ϵ∥x∥2) <

0.05

m
.

Applying the union bound, with probability 1−m · 0.05m = 0.95, we have

∥dA − dS∥∞ < (19 + 5 logm)ϵ∥x∥2.
Now, if cT is any arbitrary row of C, we have ∥c∥1 ≤ 1. Therefore,

|cT (dA − dS)| ≤
m∑
i=1

|ci||(dA − dS)i| ≤
m∑
i=1

|ci|∥dA − dS∥∞ ≤ ∥dA − dS∥∞,

which proves the result.

A.6 Proof of Lemma 3.7

Proof. Consider

f0(Ax) =
∑
s∈S̄

∑
i∈Is

(
ws

+ max(As
ix− ds, 0)2 + ws

− max(ds −As
ix, 0)

2
)
,

which is the term dependent on Ax in the objective function of the optimization problem (2). Note
that the remaining part of the objective function is independent of A and hence is unaffected by the
approximation.

Let e = (19 + 5 logm)ϵ∥x∥2. For all s ∈ S̄ and i ∈ Is, we have:

max(Ss
i x− ds, 0) ≥ max(As

ix− e− ds, 0) ≥ max(As
ix− ds, 0)− e.

Similarly, we have:

max(Ss
i x− ds, 0) ≤ max(As

ix+ e− ds, 0) ≤ max(As
ix− ds, 0) + e.

Therefore,
|max(As

ix− ds, 0)−max(Ss
i x− ds, 0)| ≤ e,

and,
|max(As

ix− ds, 0) + max(Ss
i x− ds, 0)| ≤ 2max(As

ix− ds, 0) + e.
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Altogether, we have that

|max(As
ix− ds, 0)2 −max(Ss

i x− ds, 0)2| ≤ e(2max(As
ix− ds, 0) + e).

By a similar argument, we have that

|max(ds −As
ix, 0)

2 −max(ds − Ss
i x, 0)

2| ≤ e(2max(ds −As
ix, 0) + e).

In conclusion,

|f0(Ax)− f0(Sx)| ≤
∑

s∈S̄,i∈Is

e
(
ws

+(2max(As
ix− ds, 0) + e) + ws

−(2max(ds −As
ix, 0) + e)

)
≤

∑
s∈S̄,i∈Is

e
(
ws

+(max(As
ix− ds, 0)2 + 1 + e) + ws

−(max(ds −As
ix, 0)

2 + 1 + e)
)

≤ e
(
f0(Ax) +

∑
s∈S̄,i∈Is

(ws
+ + ws

−)(1 + e)
)

≤ e
(
f0(Ax) +m(1 + e)

∑
s∈S̄

(ws
+ + ws

−)
)
.

Thus, in summary, for any arbitrary x ∈ Rn, we have that

|f0(Ax)− f0(Sx)| ≤ e
(
f0(Ax) +m(1 + e)

∑
s∈S̄

(ws
+ + ws

−)
)
,

with probability at least 0.95.

A.7 Proof of Lemma 3.8

Proof. It suffices to consider:

x̂ =
e

s
x̃+

(
1− e

s

)
x.

For each convex constraint gi ≤ 0,

gi(Ax̂) = gi

(
A
(e
s
x̃+ (1− e

s
)x
))

≤ e

s
gi(Ax̃) +

(
1− e

s

)
gi(Ax)

≤ e

s
(−s) +

(
1− e

s

)
e

≤ −e2

s
≤ 0.

Additionally,

∥x− x̂∥ =
∥∥∥x− (e

s
x̃+

(
1− e

s

)
x
)∥∥∥

=
∥∥∥e
s
(x− x̃)

∥∥∥
=

e

s
∥x− x̃∥

≤ e

s
(∥x∥+ ∥x̃∥).

This completes the proof.

A.8 Proof of Theorem 3.9

Proof. Let s = min(mins(d
s
Max),mins(d

s
Mean)). Then, x̃ = 0 satisfies the assumptions of Lemma

(3.8) for the approximated optimization problem. Therefore, with a probability of 0.95, there exists a
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feasible point of the approximated optimization problem x̂A ∈ Rn such that ∥xA − x̂A∥ ≤ e
s∥xA∥.

f0(AxS) + f1(xS) ≤ f0(SxS) + f1(xS) + e
(
f0(AxS) +m(1 + e)

∑
s∈S̄

(ws
+ + ws

−)
)

≤ f0(Sx̂A) + f1(x̂A) + e
(
f0(AxS) +m(1 + e)

∑
s∈S̄

(ws
+ + ws

−)
)

≤ f0(Ax̂A) + f1(x̂A) + e
(
f0(AxS) +m(1 + e)

∑
s∈S̄

(ws
+ + ws

−)
)

+ e
(
f0(Ax̂A) +m(1 + e)

∑
s∈S̄

(ws
+ + ws

−)
)

≤ f0 (A(xA +O(e))) + f1(xA +O(e)) +O(e)

≤ f0 (AxA) + f1(xA) +O(e)

The first and third lines follow from Lemma (3.7), the second line follows from the optimality of xS

for the approximated optimization problem, and the forth line follows from e
s∥xA∥ = O(e). Finally,

the last line follows from the Lipschitz continuity of the objective function over the feasible set which
is bounded. Altogether, the sub-optimality of the solution to the approximated optimization problem
is O(e).

B Additional Experimental Results

Dataset and problem formulation. Table 2 presents data for ten randomly selected lung patients,
detailing the number of rows (i.e., patient’s voxels), columns (i.e., machine’s beamlets), and the
count of non-zero elements. Each patient received a prescribed radiation dose of 60 Gray. The
treatment plans involved 9 manually selected radiation beams, chosen by an expert clinical physicist
and tailored to each patient’s anatomy. Table 3 presents the maximum and mean dose constraints
used in the optimization problem 2. All the data have been downloaded from PortPy.

Table 2: Data size summary for the 10 patients in the study.

Number of voxels
(matrix rows, m)

Number of beamlets
(matrix columns, n)

Number of non-zeros
(nnz(A))

1 381,343 2,095 257,833,896

2 336,384 2,397 281,798,395

3 438,138 1,704 211,556,826

4 324,926 1,501 135,431,085

5 292,120 1,185 91,472,882

6 365,469 1,545 170,601,424

7 281,860 1,924 201,124,333

8 284,296 1,074 83,910,465

9 354,925 1,261 102,218,449

10 385,600 1,517 143,582,667

Optimization Runtime for Full and RMR Sparse Matrices. Table 4 provides a comparison
between the optimization runtime when using the full matrix and when employing the RMR sparse ma-
trix with 98% sparsity. The optimization using the full matrix was performed on a high-performance
computing (HPC) system with approximately 320 GB of memory, while the RMR sparse matrix
optimization was conducted on a system with 128 GB of RAM. Despite the more advanced hardware
for the full matrix, the results demonstrate significant improvements in optimization time with the
RMR sparse matrix, especially in higher-dimensional cases. Additionally, the execution time of
the RMR algorithm is reported, indicating the overhead introduced by the sparsification process.
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Table 3: Recommended clinical dose bounds for lung cancer patients.

Structure Dose constraint (Gray)

Tumor (PTV) max dose < 69

Esophagus max dose ≤ 66

mean dose ≤ 34

Heart max dose ≤ 66

mean dose ≤ 27

Cord max dose ≤ 50

Lungs max dose ≤ 66

Nevertheless, the total computational cost remains substantially lower compared to the full matrix
approach. The primary computational bottleneck in this application stems from the optimization
problem, where the computational time increases cubically with respect to the size of the input matrix.
In contrast, the computational time for the RMR algorithm grows linearly.

Table 4: Comparison of Optimization Runtime Using the Full Matrix vs. the RMR Sparse Matrix
(98% Sparsity) and RMR Algorithm Runtime

Full Matrix
Optimization Time (s)

RMR Sparse Matrix
Optimization Time (s)

RMR Algorithm
Execution Time (s)

1 2826 87.25 48.77

2 3212 122.5 46.80

3 2147 45.84 50.30

4 1277 53.30 32.78

5 870 32.17 25.33

6 1447 58.25 38.26

7 1492 81.47 33.65

8 714 29.18 23.88

9 838 33.20 29.95

10 1303 51.66 36.59

Ten patients, fixed sparsification level. Table 7 presents the performance of different algorithms in
terms of relative ℓ2-norm error, algorithm runtime, feasibility gap, and relative optimality gap for ten
lung patients with a fixed sparsification level of 98%. This table provides a detailed expansion of the
results shown in Figure 2. Better scores are highlighted in bold for easier visual comparison. Standard
deviations are provided for all algorithms, except the naive algorithm, which is deterministic. As can
be readily seen, the AHK06 algorithm excels in terms of ℓ2-norm error, while the RMR algorithm
consistently outperforms in terms of feasibility and optimality gaps. The naive algorithm is the fastest
due to its simple implementation.

Nine patients, various sparsification levels. Figures 4 to 6 expands the comparisons made for a
single patient in Figure 1 to nine additional patients. These figures confirm that the results observed
for one patient are consistent across other patients.

Dose Volume Histogram (DVH) comparisons. A DVH is a two-dimensional plot used in radio-
therapy to depict the distribution of radiation dose within the tumor and the surrounding normal
tissues (Figures 7 and 8). Each structure has its own curve on the DVH, where the horizontal axis

20



represents the dose, and the vertical axis indicates the percentage of the volume receiving at least
that dose. For instance, in the top-left figure for the lungs (i.e., left and right lungs), the solid line
intersects the point (20,10), signifying that 10% of the lungs receives at least a 10 Gy radiation dose.
By illustrating the volume of tissue exposed to various dose levels, DVHs help clinicians assess the
uniformity and adequacy of dose coverage to the tumor and ensure that surrounding healthy tissues
are spared as much as possible. This visualization is crucial for comparing and optimizing treatment
plans, enabling effective tumor control while minimizing adverse effects on normal tissues.

Figures 7 and 8 showcase three DVH plots: the naive approach (left), representing current practice; the
AHK06 algorithm (middle), representing the most competitive existing approach; and the proposed
RMR algorithm (right). In each plot, dashed lines illustrate the approximated radiation dose, SxS ,
used in the optimization problem 2, while solid lines depict the actual radiation dose, AxS . While
clinical expertise is necessary to fully interpret these curves, the gap between the solid and dashed
lines indicates the discrepancies resulting from using the approximated matrix S in the optimization
problem 2, with a smaller gap being preferred. It is readily apparent that the gap is much smaller,
especially for the tumor, when using the RMR algorithm, where the solid and dashed lines are closely
aligned and often overlap, making the dashed lines nearly invisible.

Prostate Patients. Previously, we focused exclusively on lung patients; we now examine the results
for five different prostate patients. As shown in Figures 9 and 10, the results are largely consistent with
those for lung patients, with only a few minor differences. The proposed RMR method demonstrates
a shorter runtime than AHK06 across all five patients. At high sparsity levels, such as 99%, however,
AKL13 outperforms RMR in terms of the relative ℓ2-norm metric. Additionally, DZ11 exhibits a
higher feasibility gap at lower sparsity levels, indicating that additional samples do not reduce the
feasibility gap for this method as expected. Table 5 reveals that the dose influence matrices for
prostate patients are considerably denser than those for lung patients, accounting for some observed
differences in results. Finally, Figure 11 presents the DVH plots for these five patients, with three
DVH plots for each patient: the left plot represents the naive approach, the middle plot shows the
AHK06 algorithm, and the right plot displays the RMR algorithm. These findings are consistent with
those observed for lung patients, except in the naive approach, which appears to outperform AHK06.
This suggests that prior sparsification methods may not consistently outperform the naive approach
within this application.

Table 5: Data size summary for the 5 prostate patients.

Number of voxels
(matrix rows, m)

Number of beamlets
(matrix columns, n)

Number of non-zeros
(nnz(A))

1 119,587 3,555 241,300,640

2 130,296 2,978 243,867,050

3 126,941 3,753 310,181,024

4 128,867 3,848 348,771,625

5 132,089 3,983 355,875,426

Table 6: Recommended clinical dose bounds for prostate cancer patients.

Structure Dose constraint (Gray)

Tumor (PTV) max dose ≤ 77.2

Rectum max dose ≤ 71.6

mean dose ≤ 25

Bladder max dose ≤ 75
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Table 7: The performance of different algorithms in terms of relative ℓ2-norm error, algorithm runtime,
feasibility gap, and relative optimality gap for ten lung patients with a fixed sparsification level of
98%.

1 2 3 4 5 6 7 8 9 10
R

el
at

iv
e
ℓ 2

-n
or

m
(%

)

Naive 27.22 22.24 21.62 28.08 25.47 24.11 19.2 26.18 27.38 28.18

AHK06 8.64
±0.03

6.77
±0.01

7.55
±0.01

10.09
±0.08

11.23
±0.02

9.06
±0.02

6.48
±0.02

10.78
±0.02

10.82
±0.04

10.2
±0.04

DZ11 14.43
±0.30

11.27
±0.32

13.68
±0.25

16.42
±0.28

18.14
±0.21

15.03
±0.07

10.53
±0.23

16.99
±0.23

17.39
±0.17

17.39
±0.36

AKL13 12.27
±0.02

10.02
±0.01

12.39
±0.03

14.78
±0.01

16.17
±0.05

13.88
±0.03

10.57
±0.02

16.12
±0.04

15.46
±0.03

14.74
±0.03

BKKS21 8.79
±0.02

6.76
±0.01

7.95
±0.01

10.75
±0.05

11.81
±0.09

9.20
±0.02

6.43
±0.01

11.23
±0.03

11.01
±0.04

10.54
±0.02

RMR 9.32
±0.05

7.03
±0.01

8.31
±0.02

11.34
±0.01

11.86
±0.05

9.70
±0.01

7.02
±0.02

11.73
±0.01

11.38
±0.03

11.42
±0.07

R
un

tim
e

(s
ec

on
ds

)

Naive 21.84 24.7 18.31 10.42 6.11 12.30 14.05 5.24 9.59 13.23

AHK06 46.91
±0.11

53.33
±0.19

40.19
±0.06

24.02
±0.04

14.73
±0.04

27.94
±0.09

30.69
±0.06

12.63
±0.04

21.90
±0.05

30.06
±0.04

DZ11 3.3e2
±1.7

4.3e2
±2.00

3.3e2
±2.35

1.0e2
±0.77

68.09
±0.42

1.9e2
±0.36

3.2e2
±1.00

51.53
±0.44

84.56
±0.58

1.2e2
±0.95

AKL13 57.51
±0.38

60.71
±0.52

48.54
±0.36

30.54
±0.05

18.99
±0.12

38.10
±0.06

39.88
±0.23

17.06
±0.08

26.42
±0.19

34.13
±0.02

BKKS21 78.79
±0.14

85.07
±0.24

67.96
±0.17

40.93
±0.12

28.28
±0.26

49.28
±0.44

51.35
±0.03

24.36
±0.07

37.80
±0.24

51.13
±0.11

RMR 48.77
±0.04

46.80
±0.04

50.30
±1.33

32.78
±0.03

25.33
±0.03

38.26
±0.17

33.65
±0.02

23.88
±0.19

29.95
±0.07

36.59
±0.03

Fe
as

ib
ili

ty
ga

p

Naive 1.3e4 6.2e3 7.9e3 7.6e3 2.8e3 5.1e3 3.6e3 4.9e3 6.1e3 8.2e3

AHK06 0.06
±0.04

0.40
±0.16

0.09
±0.05

0.34
±0.21

0.15
±0.14

0.61
±0.26

0.04
±0.04

0.16
±0.10

0.27
±0.16

0.28
±0.17

DZ11 1.98
±0.64

5.83
±1.05

1.10
±0.26

3.20
±1.55

3.60
±0.62

3.61
±0.57

0.57
±0.10

2.28
±0.72

2.23
±1.05

3.03
±1.44

AKL13 0.48
±0.16

1.03
±0.25

0.16
±0.14

0.49
±0.33

0.99
±0.48

0.97
±0.27

0.21
±0.06

0.26
±0.30

0.25
±0.17

0.30
±0.21

BKKS21 0.02
±0.03

0.26
±0.09

0.07
±0.04

0.05
±0.03

0.04
±0.04

0.43
±0.02

0.03
±0.04

0.06
±0.06

0.08
±0.06

0.07
±0.08

RMR 0.00
±0.01

0.39
±0.08

0.05
±0.02

0.04
±0.02

0.00
±0.00

0.45
±0.08

0.04
±0.02

0.00
±0.00

0.10
±0.09

0.01
±0.01

O
pt

im
al

ity
ga

p
(%

)

Naive 1.2e4 5.0e3 7.2e3 1.5e4 8.1e3 4.3e3 3.7e3 1.2e4 1.4e4 1.3e4

AHK06 1.8e2
±3.80

1.2e2
±3.69

1.5e2
±4.50

2.7e2
±5.99

3.0e2
±18.6

1.3e2
±7.97

1.0e2
±0.85

3.3e2
±13.4

3.5e2
±19.1

2.5e2
±7.72

DZ11 3.6e2
±10.8

3.0e2
±6.32

3.0e2
±6.59

4.3e2
±26.8

5.6e2
±17.3

2.2e2
±6.84

2.9e2
±12.1

4.7e2
±12.6

5.3e2
±32.7

4.6e2
±26.4

AKL13 3.5e2
±7.67

3.0e2
±10.2

4.4e2
±27.7

6.8e2
±68.5

1.0e3
±72.4

3.7e2
±22.7

3.0e2
±17.2

9.2e2
±51.8

9.7e2
±1.2e2

7.4e2
±60.2

BKKS21 98.86
±1.04

65.79
±0.63

74.98
±2.52

1.4e2
±6.16

1.4e2
±5.92

54.88
±2.91

62.29
±1.84

1.5e2
±3.40

1.8e2
±10.9

1.4e2
±2.43

RMR 18.89
±0.30

13.91
±0.24

11.61
±0.38

25.59
±1.48

21.18
±1.16

9.44
±1.75

11.58
±0.22

23.20
±0.78

32.81
±1.63

26.86
±0.31
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Figure 4: (Various sparsification levels, Lung patients 2-4) The performance of different algorithms
in terms of: relative ℓ2-norm error, relative optimality gap, feasibility gap, relative dose discrepancy,
algorithm runtime, and optimization runtime, for patients 2 (first two rows), 3 (second two rows), and
4 (third two rows).
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Figure 5: (Various sparsification levels, Lung patients 5-7) The performance of different algorithms
in terms of: relative ℓ2-norm error, relative optimality gap, feasibility gap, relative dose discrepancy,
algorithm runtime, and optimization runtime, for patients 5 (first two rows), 6 (second two rows), and
7 (third two rows).
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Figure 6: (Various sparsification levels, Lung patients 8-10) The performance of different algorithms
in terms of: relative ℓ2-norm error, relative optimality gap, feasibility gap, relative dose discrepancy,
algorithm runtime, and optimization runtime, for patients 8 (first two rows), 9 (second two rows), and
10 (third two rows).

25



0 10 20 30 40 50 60 70 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

Tumor (PTV) Lungs Esophagus Heart Cord

Figure 7: (DVH discrepancies, Lung patients 1-5) The discrepancies in Dose Volume Histogram
(DVH) plots for patients 1 to 5, from top to bottom, respectively. The plots compare the results of
the naive approach (left), AHK06 (middle), and the RMR method (right). In each plot, dashed lines
represent the approximated radiation dose, SxS , while solid lines depict the actual radiation dose,
AxS . A smaller gap between the dashed and solid lines is preferred, indicating a more accurate dose
approximation. Note that for RMR, the solid and dashed lines often overlap, making the dashed lines
nearly invisible.
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Figure 8: (DVH discrepancies, Lung patients 6-10) The discrepancies in Dose Volume Histogram
(DVH) plots for patients 6 to 10, from top to bottom, respectively. The plots compare the results of
the naive approach (left), AHK06 (middle), and the RMR method (right). In each plot, dashed lines
represent the approximated radiation dose, SxS , while solid lines depict the actual radiation dose,
AxS . A smaller gap between the dashed and solid lines is preferred, indicating a more accurate dose
approximation. Note that for RMR, the solid and dashed lines often overlap, making the dashed lines
nearly invisible.
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Figure 9: (Various sparsification levels, Prostate patients 1-3) The performance of different algorithms
in terms of: relative ℓ2-norm error, relative optimality gap, feasibility gap, relative dose discrepancy,
algorithm runtime, and optimization runtime, for patients 1 (first two rows), 2 (second two rows), and
3 (third two rows).
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Figure 10: (Various sparsification levels, Prostate patients 4-5) The performance of different al-
gorithms in terms of: relative ℓ2-norm error, relative optimality gap, feasibility gap, relative dose
discrepancy, algorithm runtime, and optimization runtime, for patients 4 (first two rows), 5 (second
two rows).

29



0 10 20 30 40 50 60 70 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 20 40 60 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 20 40 60 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70 80
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

0 10 20 30 40 50 60 70
Dose (Gy)

0

20

40

60

80

100

Vo
lu

m
e 

Fr
ac

tio
n 

(%
)

Tumor (PTV) Rectum Bladder

Figure 11: (DVH discrepancies, Prostate patients 1-5) The discrepancies in Dose Volume Histogram
(DVH) plots for patients 1 to 5, from top to bottom, respectively. The plots compare the results of
the naive approach (left), AHK06 (middle), and the RMR method (right). In each plot, dashed lines
represent the approximated radiation dose, SxS , while solid lines depict the actual radiation dose,
AxS . A smaller gap between the dashed and solid lines is preferred, indicating a more accurate dose
approximation. Note that for RMR, the solid and dashed lines often overlap, making the dashed lines
nearly invisible.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A separate section address the limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Given the nature of the study, there is no training and test dataset. Instead, the
problem formulation and relevant hyper-parameters are thoroughly explained.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Our computing resource specifications are provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: There is a designated section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not anticipate any misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification:

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The research has used existing publicly available datasets.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: Although this research included human subjects, it posed no risk, as it was
retrospective and conducted in silico (i.e., simulation mode). The lung patient dataset is
publicly available, and GJ and MZ obtained IRB approval (16-422A(6)) for access to the
prostate dataset used in the appendix.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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