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Abstract

Convex risk measures allow decision-makers to account for uncertainty beyond
standard expectations, and have become essential in safety-critical domains. One
widely used example is the Conditional Value-at-Risk (CVaR), a coherent risk
metric that targets tail outcomes. In this paper, we consider a more general family
of risk measures, the mean-LP risk for p > 1, defined as the LP-norm of a cost
distribution; this family includes CVaR as an extreme case (as p — o0). We
formulate a reinforcement learning problem in which an agent seeks to maximize
reward subject to a mean-LP risk constraint on its cumulative cost. This problem
is challenging due to the nested, non-Lipschitz structure of the L? risk measure,
which hinders the use of standard policy optimization or dynamic programming
techniques. To address this, we propose two complementary solution approaches:
(1) a primal-dual policy gradient algorithm that relaxes the risk constraint via
a Lagrange multiplier, and (2) a model-based dynamic programming method
that enforces the constraint by augmenting the state space with a cost budget.
We prove that the policy-gradient approach converges to an e-optimal safe policy
with O(1/¢2?) samples, matching the best-known rate for simpler (risk-neutral or
linear-constraint) cases. Meanwhile, the augmented MDP method computes a
policy that never violates the cost limit and is nearly optimal for large p. Our
results provide the first general-purpose algorithms for LP-risk-constrained RL,
generalizing prior approaches that were limited to CVaR or variance-based risk.
We validate our theoretical results through experiments in a gridworld environ-
ment, demonstrating that both algorithms successfully learn policies that respect
the risk constraint and adjust conservativeness as the risk sensitivity parameter
p varies. The code is available at https://anonymous.4open.science/r/
Lp-Risk-Constrained-Reinforcement-Learning-11FD/README.md

1 Introduction

In many stochastic decision problems, it is not sufficient to optimize only the expected outcome; one
must also account for risk or variability in the outcomes. Risk-averse optimization (also known as
mean-risk optimization) addresses this need by incorporating a risk measure into the objective func-
tion [1]]. Convex risk measures, in particular, satisfy desirable axioms for rational risk assessment [2]]
and have become standard tools in fields like finance, energy, and supply chain management. One
well-known example is the Conditional Value-at-Risk (CVaR) [3]], which quantifies the expected loss
in the worst a-fraction of scenarios and is celebrated for its coherence and tractable optimization
properties. Another important class is the mean-upper- semideviation risk measure of order p > 1 [4],
which captures higher-moment risk by penalizing the higher-end deviations of losses. This L,,-type
risk measure generalizes simpler cases: for instance, p = 1 recovers the mean-absolute deviation,
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p = 2 yields a mean-semivariance metric, and as p — oo the measure increasingly emphasizes
worst-case outcomes (bridging toward a max-loss criterion). By adjusting the order p, one can flexibly
model different degrees of risk sensitivity beyond what CVaR (focused on a fixed tail percentile)
offers.

Despite their appeal, general convex risk measures are often much harder to optimize than traditional
risk-neutral expectations. The CVaR at a given confidence level o can be optimized relatively
efficiently by introducing an auxiliary variable and linearizing the tail loss function [3]], or via
distributionally robust formulations that turn CVaR into a linear program [1]. In contrast, the mean-
L, risk objective does not admit such a straightforward transformation when p > 1. In fact, the
mean-L,, risk of a decision x € X can be written in nested form as

pola] = ElZ) + o(Bl(Z ~E(Z]7)) "

where Z, = F(z,§) is a random cost outcome, (-)+ = max{-,0} denotes the positive part, and
¢ > 01is a given risk-aversion weight. This formulation involves a composition of expectation and
a power function. Crucially, for p > 1 the outer mapping u — u'/? is concave and not globally
Lipschitz continuous on (0, c0), which means standard stochastic gradient methods cannot be directly
applied or would suffer poor convergence. Indeed, if one naively treats the above as a two-level
nested expectation problem, existing single-timescale stochastic approximation techniques [5] yield a
convergence rate on the order of O(1/e?) in the accuracy € (even under smoothness assumptions), far
worse than the O(1/€?) optimal rate for simpler convex objectives. The difficulty stems from the
non-convex (though quasi- convex) nesting and the “blow-up” of subgradients caused by the u!/?
term near v = 0 — informally, the problem is neither smooth nor Lipschitz in the usual sense, despite
the overall risk measure p,[-] being convex in x.

To overcome these challenges, we seek principled algorithmic solutions for general L, risk minimiza-
tion. It is closely related to a distributionally robust optimization (DRO) formulation: as shown by
Shapiro et al. [T} Section 6], the objective p,[x] can be interpreted as the worst-case expected cost
under all probability distributions that lie within an L,-neighborhood of the nominal distribution
(with 1/p + 1/q = 1). This DRO perspective underscores the importance of this risk criterion, but
also highlights its computational complexity: unlike the @-CVaR case (which corresponds to an ¢,
ambiguity set and is linear), the L,,-ball ambiguity set for p > 1 yields a hard nonlinear optimization
problem.

Several recent works have studied special cases of related nested optimization problems. For
p = 1, the risk measure p;[z] = E[Z,] 4+ cE[|Z, — EZ,|] is essentially a two-level expectation
(a convex composite), which can be solved by advanced stochastic approximation methods at the
optimal O(1/¢?) sample complexity [6]]. For general multi-level stochastic programs, Ghadimi et
al. [5] proposed a single-timescale stochastic mirror descent approach; however, as noted above,
its performance deteriorates on problems like p, due to the non-Lipschitz, concave outer layer.
Ruszezynski [7] studied a related class of nonconvex risk nested problems and developed a specialized
subgradient method, though without complexity guarantees. Overall, there remains a gap in the
literature for efficiently solving the mean-L,, risk minimization problem for p > 1 with provable
guarantees. This challenge is also evident in safe reinforcement learning, where risk constraints
beyond the expectation (or simple proxies like CVaR) have remained difficult to optimize reliably.

In this work, we bridge this gap by presenting the first efficient solution methods for reinforcement
learning with a general LP risk constraint (p > 1). Our contributions can be summarized as follows:

1. Primal-Dual Policy Gradient Algorithm: We develop a Lagrangian-based policy optimiza-
tion method (Algorithm 1) that provably converges to an optimal policy under convexity
assumptions. By performing simultaneous gradient updates on the policy parameters and a
dual variable, our approach achieves an O(1/¢?) sample complexity to reach an e-optimal,
e-feasible solution. Notably, this is the first algorithm with global convergence guarantees
for RL under a nonlinear L” risk constraint.

2. Augmented State Dynamic Programming: We propose a model-based planning algorithm
(Algorithm 2) that exactly enforces the risk constraint by augmenting the MDP state with
the remaining cost budget. Solving this augmented MDP via value iteration yields a policy
that never violates the cost limit (satisfying a strict po, criterion). We show that this policy is
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nearly optimal for the LP-constrained problem (especially for large p), making Algorithm 2
a reliable baseline for verifying the performance of the policy gradient method.

3. Broader Implications: Our framework handles any risk order p > 1, significantly gen-
eralizing prior risk-averse RL methods that focused on variance or CVaR-based criteria.
By interpolating between average-case and worst-case extremes, the LP family enables
flexible risk-sensitive policy design to suit different applications. We validate our theoretical
results through experiments in a gridworld environment, demonstrating that both algorithms
successfully learn policies that respect the risk constraint and adjust conservativeness as the
risk sensitivity parameter p varies.

2 Method

2.1 Problem Formulation and Risk Measure

We consider a risk-constrained Markov Decision Process (MDP) defined by (S, A, P,, ¢, ), where
S and A are state and action spaces, P(s’|s,a) is the transition probability, (s, a) is the reward,
(s, a) is the cost (encapsulating negative “safety” reward), and 0 < v < 1 is a discount factor.
Let my denote a policy with parameters 6. The agent’s performance is measured by the expected
return J(mg) = Exy[>,2 0 7' (e, ar )], while safety is quantified by a risk measure applied to the
cumulative cost. Specifically, define the random cumulative cost Jo (m) = >,° 7" ¢(s¢, a;) under
policy w. We impose a general LP risk constraint on Jo (), as introduced by [8]. This LP-risk
measure p,(Jc (7)) is defined as the LP-norm of the cost distribution:

pp(Je(m)) = (Ex [Jo(n)P]) /P 1)

for some p > 1. This formulation recovers standard criteria as special cases: p = 1 gives the
conventional expected cost constraint (risk-neutral CMDP), while p — oo yields an almost-sure
(worst-case) cost constraint. The agent’s objective is to maximize reward subject to an LP-risk safety

constraint:
H—1
Z V' (st at)}
t=0

st pp(Jo(n) = (Bx [Jo(n)P) " < B

where [ is a prescribed risk limit. This formulation generalizes prior risk-constrained RL settings
(e.g. using CVaR,, as the risk measure [8]) to a broad class of tail-sensitive criteria. The LP constraint
penalizes variability in the cost: higher p emphasize worst- case outcomes more strongly. We focus
on the discounted infinite-horizon case with a finite episodic cutoff at horizon H for ease of analysis;
in practice one often lets H — oo (as our theoretical guarantees hold in the limit).

max Jr(m) =E,

@

In a conventional constrained MDP (CMDP) with an expected cost constraint (p = 1), standard
Lagrange relaxation techniques can be used to solve for an optimal policy [9} 10, [L1]. Our setting
is more challenging because p,(.J¢) is a nonlinear function of the policy. Nonetheless, we can still
leverage a primal-dual approach to handle the constraint.

2.2 Policy Gradient with Lagrangian Relaxation

Our first approach directly optimizes the constrained objective by introducing a Lagrange multiplier
for the risk constraint. We form the Lagrangian function for policy 7y with dual variable A > 0:

L(0,\) = Jr(me) — A(pp(Jc(ma)) — B) 3)

which penalizes constraint violations when p,(Jc) > (. The constrained RL problem can then be
solved via a saddle-point optimization: maximize £ over policy parameters § while minimizing over
A (dual ascent). Intuitively, the Lagrange multiplier A adaptively adjusts the trade-off between reward
and risk: if the policy violates the risk limit, A increases to penalize cost more heavily; if the policy is
too conservative (risk well below ), A may decrease, allowing more reward-seeking behavior.

We adopt an iterative primal-dual policy gradient algorithm (Algorithm 1) to solve
miny>o maxg £(6, A). At each iteration, we evaluate the policy (by simulation or rollout) to estimate
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both Jr(mg) and the risk measure p,(Jc(mg)). Notably, p,(J¢) is a nonlinear function of the policy;
in practice we approximate its gradient via sampling. For instance, one can use policy gradient
for risk measures: Tamar et al. [12] developed gradient estimators for coherent risk objectives by
sampling trajectories and solving a convex subproblem per update. We leverage such techniques to
obtain an unbiased gradient Vg p,(Jc(mp)), which can be computed by reparameterization or score
function methods combined with distributional cost estimates (for example, using a distributional
critic to estimate higher moments of the cost [[13]).

The policy parameters 6§ are updated via gradient ascent on £ (improving reward and penalized cost),
while )\ is updated via projected gradient ascent on the dual (which corresponds to gradient descent
on L). We use step sizes a; for 6 and v, for A. To ensure A stays non-negative, each update projects
A onto [0,00). The pseudocode in Algorithm 1 summarizes this procedure. In implementation,
pp(Jc(m)) can be estimated from a batch of trajectories; for large p it may be high-variance, so we
employ techniques like mini-batch sampling or moving averages to stabilize the estimate.

Algorithm 1 Lagrange Policy Gradient for Safe RL under L? Risk Constraint

1: Input: initial policy parameters ¢, initial dual variable \° < 0, risk limit /3, step sizes
{ae}, {1}

2: fort=0,1,2,... do

Sample trajectories using policy mg:; estimate Jg (mg: ) and p, (Jo(mat)).

Compute policy gradient gy ~ Vo L(6", \'), where VoL = Vo Jg(mg) — XVgp,(Jc (o).

Update policy: 81! < 6% + o go.

Update multiplier (projected gradient ascent on dual): A+ < [)\t + v (pp(Je(mor)) — 6)}

7: end for

8: Output: optimized safe policy myr.

AN AN

+.

Algorithm 1 essentially implements a constrained policy optimization in the spirit of prior safe RL
methods but extended to a nonlinear L? risk metric. Compared to methods that handle only expected-
cost constraints (e.g. CPO [9], RCPO [14]), our approach modifies the policy update by incorporating
the risk gradient Vyp, (J¢c), which properly accounts for tail-risk sensitivity (for example, if p,, is
CVaR,,, our update reduces to weighting high-cost trajectories more strongly, akin to the approaches
of [I15]]). This Lagrangian approach has low per-iteration complexity and is amenable to stochastic
approximation, making it suitable for high-dimensional or model-free settings.

Theoretical Properties: Under standard conditions (smooth policy parameterization, exact gradient
estimates, and a sufficiently small step size schedule), Algorithm 1 converges to a Karush-Kuhn-
Tucker (KKT) point of the constrained problem. In particular, if the problem is convex in the
occupancy measure (which holds here since the expected reward is linear and p,, is convex in the
cost distribution [13]]), strong duality holds and the primal-dual gradient procedure will approach
the global optimum. We can adapt recent convergence analyses of policy gradient methods [[13] to
establish explicit rates.

Lemma 1 (Policy Gradient Improvement): Let A; = p,(Jc(mg)) — [ denote the current constraint
violation. Then for sufficiently small o, the update in Algorithm 1 guarantees Jg (mge+1)—Jr(mgt ) >
a¢|VoJr|* — O(auAtA;), while the dual update yields X' A, < max(0, AX'A; — v;A2). (See
Appendix [G.T] for full proof.)

Proof Sketch: This follows from the update rules and first-order Taylor expansion of Jg and p,, [13]].
Building on this, one can show that feasible descent is achieved.

Theorem 1: Suppose there exists an optimal policy 7* that satisfies the constraint with multiplier \*.
If o, v; are chosen as diminishing step sizes (e.g. ay = O(1/+/1)), then (%, \*) converges to a saddle
point (6*, \*). Moreover, for any € > 0, after T = O(1/€?) iterations, the algorithm yields a policy
myr that is e-optimal and e-feasible with high probability. In other words, Jr(mgr) > Jr(7*) — €
and p,(Jo(myr)) < B + €. This convergence rate matches known results for constrained convex
optimization and policy gradient methods [13]]. (Proof in Appendix [G.2])

Notably, our method does not require the risk constraint to be linearized or approximated; thanks to
the convexity of p,,, the dual update is well- behaved and the overall procedure converges reliably
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even when p > 1. This stands in contrast to some earlier safe RL algorithms that guaranteed only
local convergence for nonlinear constraints (e.g. CVaR-PG in [[15], which lacked global guarantees).
By leveraging the dual formulation, we attain global convergence in tabular settings, and we expect
strong performance in practical function approximation settings as well. These theoretical guarantees
assume exact policy evaluation and gradients; in practice, one must account for sampling error.
Techniques from stochastic approximation theory (two-timescale updates, baseline subtraction,
variance reduction) can be applied to ensure convergence in expectation. Overall, Algorithm 1
provides a principled way to train safe policies with provable convergence to optimality while
satisfying LP-risk constraints.

2.3 Model-Based Dynamic Programming in Augmented State Space

Our second approach exploits model-based planning to exactly enforce the risk constraint by reformu-
lating the problem as an equivalent MDP in an augmented state space. The key idea, inspired by state
augmentation for safe exploration [[L6], is to incorporate the remaining “risk budget” into the state.
We construct an augmented state § = (s, k) where s € S is the original physical state and s € [0, ]
represents the allowable remaining cumulative cost along the trajectory before violating the constraint.
At the start of each episode, the augmented state is (sg, k = [3), meaning the agent has the full cost
budget 3. Every time the agent takes an action that incurs cost ¢(s, a), we update the remaining
budget: v’ = max(0, k — ¢(s,a)). If " would fall below 0, it indicates the action would violate the
cost limit — such actions are disallowed in the augmented MDP (they lead to an invalid next state).
By augmenting the state with «, we embed the constraint directly into the dynamics. A transition
that would exceed the budget does not exist (or transitions to a designated failure absorbing state,
which for planning purposes can be assigned a large negative reward). As a result, any policy feasible
in the augmented MDP is guaranteed to satisfy po(Jc) < /3 in the original problem. Although our
focus is an L? constraint with p < oo (which allows rare budget violations with penalties rather than
absolutely none), this augmented formulation serves as a conservative approximation that ensures
strict constraint satisfaction. In practice, we expect the optimal LP-constrained policy to nearly
saturate the budget without exceeding it with significant probability; hence, solving the stricter poo
version yields a policy close to the true optimum (we quantify this gap below).

Formally, we define an augmented MDP M with state space S = {(s,x) : s € S,0 <
k < B} U {unsafe}, where unsafe is an absorbing failure state. The action space remains

A. Transition dynamics P are defined as: from (s, ) taking action a, if ¢(s,a) < &, then

P((s', k—c(s,a))|(s,k),a) = P(s'|s,a) forall s' € S;if ¢(s,a) > k, then P(unsafel(s, ), a) =
1. We assign a reward to augmented transitions equal to the original reward (s, a) (and for the
unsafe state, we can set r(unsafe) = 0 or a large negative terminal reward to discourage ever

entering it). By construction, any viable policy in M respects the cost limit at every step: the agent
can never enter unsafe if it never chooses an action with cost exceeding remaining budget. Moreover,

each trajectory under a policy 7 in M corresponds to a trajectory in the original MDP that satisfies
>-:c(s¢,a¢) < B. Thus, optimizing expected reward in M yields the optimal policy for the strict
risk constraint p = co. We solve this via Bellman dynamic programming.

Value Iteration in M: Since we assume the model (P, 7, ¢) is known (or can be accurately learned),
we can perform value iteration to compute the optimal policy on the augmented state space. Let

Vi (s, k) be the optimal value function (maximum expected return) starting from augmented state
(s, k). The Bellman optimality equation for (s, k) # unsafe is:

V*(s,k) = max <r(s,a)+ 'yZP(S’ | 5,a)V*(s', k — c(s,a)) (€))

a:c(s,a)<k

and V*(unsafe) = 0. This defines a contraction mapping, and we can iterate to convergence.
Algorithm 2 details the procedure. At each iteration, we sweep over all augmented states, update
V (s, k) by considering all feasible actions a (those that do not immediately violate the remaining
budget) and taking the best a according to the Bellman update. After convergence, an optimal policy
7* is recovered by choosing in each (s, k) the maximizing action. By restricting actions when  is
low, the agent automatically plans more conservatively near the budget limit — a behavior analogous

to non-stationary “budget-aware” policies advocated in recent work [[16]. Note that the size of S
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is |S| x B if we discretize the budget interval [0, 5] into B steps. Thus, the complexity of value
iteration scales linearly with B; for reasonable B (or if costs are integer and 3 not too large), this is
tractable. In deterministic environments or those with small stochasticity, one can often take B = 3
if costs are unit increments. Otherwise, B controls the resolution of risk allocation. In our setting, we
choose B such that the gap between p,, and the hard constraint is negligible (e.g. B equal to 3 in
cost units yields a policy that never violates the budget, which is slightly conservative for p < oo but
nearly optimal when violations are suboptimal anyway).

Algorithm 2 Augmented State Value Iteration (ASVI) for Risk-Constrained MDP
Input: MDP (S, A, P,r,c,7), cost limit (5, budget discretization B.

1:

2: Construct augmented state set S = {(s,k):5€8,k e~{0, %, %, ..., f}} U {unsafe}.

3: Initialize value function Vj(s, k) = 0 for all (s, ) and V;(unsafe) = 0. Set n = 0.

4: repeat

5 n<n+1l ~

6:  for each state (s,x) € S\ {unsafe} do

7 Valsr) & {rs P(s']s,a) Vr (s, 5 = c(s,a)) }.
() a7 5D PSP 5= cls0)

8: If no action satisfies ¢(s, a) < & (no feasible action), set V,, (s, k) < 0.

9:  end for _ ~
10: until max, ) |V (s, &) — Vi_1(s, k)| < 0 for some tolerance 6 > 0
11: Output: Optimal value V* = V,,; optimal policy 7*(s, k) = arg MaX,.c(s,q)<x17(s,a) +

VY20 P(s,a) V(s 6 —¢(s,a))}.

Correctness and Optimality: Algorithm 2 is essentially a classical value iteration on a modified
MDP; therefore it converges to the optimal value function V* uniformly, with convergence rate
O(log(1/6)/(1 — ~)) for accuracy 6 (stemming from the Bellman contraction by factor v < 1).
The output policy 7 is optimal for the hard budget constraint. By construction, executing 7* in the
original MDP yields a policy that never violates the cost threshold /3. This policy is feasible for the
LP-risk constraint for any p (since zero probability of violation trivially implies p, < ). It remains
to argue about near-optimality: how far is 7 from the true L”-constrained optimum 7 () ? In general,
7(P) might occasionally allow slight budget exceedance if it yields significantly higher reward, but
for large p this is highly penalized. In fact, one can show that as p — oo, 7(P) — 7r*oo) = 7*. For
finite p, under mild regularity conditions on the cost distribution, the performance loss of enforcing
a hard cutoff is of order O(¢) where € = (P, {Jc > B})/? (the probability of violation under
the p-optimal policy). Since 7(P) is optimal, it will only violate the cost with small probability if p
is large (otherwise it would incur a huge L? penalty). Thus € is negligible and 7 is nearly optimal.
In summary, the augmented state method produces a policy that is provably safe (no constraint
violations) and approximately reward-maximizing for large p. Empirically, one can observe that for
risk thresholds of interest, 7, achieves virtually the same reward as the policy found by Algorithm 1
for finite p, while strictly enforcing safety.

Practical Considerations: The augmented state value iteration method requires a known model
or a reliable simulator to plan with. Its computation scales with |S| x B, which can be large if S
is huge or if high resolution in cost budget is needed. However, for tabular or low- dimensional
MDPs, this approach is very effective and finds the globally optimal constrained policy (whereas
Algorithm 1 might converge to a local optimum if the policy class is restricted). This method is
related to approaches in safe exploration research such as the “Saute RL” framework by [17]], which
augments state with a continuously decaying budget to ensure almost-sure safety.

3 Experiments

We conducted experiments in a small 5x5 grid world environment to validate the two proposed
algorithms (primal-dual policy gradient and augmented MDP). This toy domain provides a convenient
testbed to illustrate how increasing risk sensitivity (larger p in the Mean-L,, constraint) influences
learned policies. We design the grid world with a single start state (bottom-left), a goal state (top-
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Figure 1: Gridworld setup and experimental results. (a) 5x5 grid world. S = Start, G = Goal, H =
Hazard. The agent starts at S and must reach G. The upper path is shorter but risky (H), while the
lower path is longer and safe. (b) Performance across p values. Left: average return. Right: mean-L,,
risk. Higher p yields lower risk but also lower return.

right), and a hazardous cell in the middle (Figure[Ta). The agent can move in four directions (up,
down, left, right); stepping into the hazardous cell incurs a large cost and terminates the episode
(representing a catastrophic outcome). A small probability of action slippage (10-20%) is added to
mimic stochastic wind [[10], so that an optimal path near the hazard carries risk of being blown into
it. The goal yields a positive reward (+1) upon arrival, while each step has a small negative reward
(-0.01) to encourage efficiency. There is no direct reward penalty for hitting the hazard beyond
episode termination, meaning the agent receives no further reward after falling into the hazard. This
induces an implicit risk vs. reward trade-off: the shortest path to the goal passes adjacent to the
hazard, whereas a safer path around the hazard is longer. The cost function for risk measurement
is defined such that C'(s,a) = 1 when the agent enters the hazardous cell (and 0 otherwise), so the
Mean-L,, risk in this domain corresponds to the L, norm of the distribution of episode costs (e.g. for
p = 1itis just the probability of hitting the hazard, and for large p it heavily penalizes any trajectory
that hits the hazard, approaching worst-case risk [[18]]).

Risk-Sensitive Objective: The agent’s overall objective is to maximize the expected return (fre-
quency of reaching the goal minus step costs) while keeping the Mean-L,, risk below a threshold .
For our experiments, we set 5 = 0.3 (i.e. the policy must keep the probability/impact of hazardous
outcomes < 30%). This formalizes a constrained MDP: maximize E[R] subject to (E[C?])'/? < .
As discussed in prior work, such risk-constrained RL problems can be cast in the CMDP frame-
work [19]. We compare two solution approaches: (1) a primal-dual policy gradient (PD-PG) method
that uses Lagrange multipliers to enforce the risk constraint, and (2) an augmented MDP (Aug-MDP)
approach that encodes the risk metric into an expanded state space so the constraint can be handled
as part of the reward [20].

Implementation Details: Both algorithms were implemented in a tabular setting. The PD-PG agent
maintains a policy 7y (a|s) and a Lagrange multiplier A for the risk constraint. After each episode, 0
is updated via policy gradient on the Lagrangian £ = E[R] — A\((E[C?])!/? — ), and X is updated
by gradient ascent on the constraint violation. To ensure stable convergence, we use a two-timescale
update rule where the policy parameters 6 adapt faster than the dual variable A\. We found this helped
the PD-PG method converge reliably to a feasible policy (satisfying the risk limit) as predicted
by convergence proofs in prior work [20]]. We discretize c into a small set of levels and terminate
episodes that exceed the risk budget /3 in the augmented state. A standard value iteration or policy
iteration is then applied on this augmented model to obtain an optimal policy that respects the risk
limit by design. Because the augmented state space is larger (on the order of | S|xcost levels), this
method is computationally heavier for larger problems, but in our small grid it remains tractable.
Both algorithms use the same reward and cost structure for fairness. We evaluated risk sensitivity at
p € {1,2,4,8}, covering risk-neutral (p = 1) up to highly risk-averse (p = 8) regimes.

Evaluation Metrics: We report three key metrics: (i) Average Return (episodic reward), which
reflects the goal-reaching performance; (ii) Risk Measure (Mean-L,, cost) achieved by the learned
policy, which should remain < 3 = 0.3 to satisfy the constraint; and (iii) Sample Efficiency, measured
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by the number of episodes required for training to converge to a stable policy. A policy is deemed
converged when its average return and risk measure stop improving appreciably. We also track
the frequency of constraint violations during training (episodes where the risk metric exceeded the
threshold before the agent adapted). All results are averaged over 20 independent runs with different
random seeds.

Results: Both methods successfully learned policies that satisfy the risk constraint, but their behavior
diverges with different risk levels p. Figure |1b|summarizes the performance of each approach for
p=1,2,4,8. Several trends are evident. First, as risk sensitivity increased (moving from p = 1 to
p = 8), the average return of the learned policies decreased (Fig. left plot). This is expected: a
higher p forces the agent to be more cautious, often taking the longer safe path to avoid the hazard,
which incurs more step costs and delays reaching the goal. For example, at p = 1 (risk-neutral), both
algorithms learned to cut close to the hazard to reach the goal quickly, attaining a high average return
around 0.9. In contrast, at p = 8, the policies avoid the center of the grid entirely, preferring the
bottom or left border; this risk-averse strategy yields a lower return (around 0.6-0.7) since the path to
the goal is significantly longer. We qualitatively observed that the p = 8 policies never approach the
hazardous cell, whereas p = 1 policies would frequently skim by it or even occasionally step into it if
blown by the wind. These behavioral differences align with known effects of risk-sensitive criteria in
grid worlds — risk-averse agents take longer, safer routes while risk-neutral agents favor shorter paths
near hazards.

Second, the Mean-L,, risk constraint was satisfied in all cases, but how tightly it was held depended
on the algorithm. The Aug-MDP approach tends to produce a policy that strictly respects the limit 3
with some margin, since it optimizes a constrained criterion exactly in the expanded state-space. The
PD-PG approach, by contrast, often converged to the boundary of feasibility — especially for moderate
p, the learned policy’s risk measure hovered just below 0.3, effectively using the entire risk budget to
maximize reward. For instance, at p = 2 the PD-PG policy achieved mean risk ~ 0.29 (just under
0.3) whereas the Aug-MDP policy was more conservative at ~ 0.25. This is visible in Fig. 5b (right
plot): the gold curve (PD-PG) intersects the red dashed 8 = 0.3 line at p = 2, indicating the policy is
right at the constraint threshold, while the Aug-MDP (orange curve) stays slightly below it. At higher
p both methods yield very low risk (e.g. 0.1 at p = 8) since the optimal solution is to almost never
incur the hazard cost. At p = 1, the risk is above [ for a purely risk-neutral optimal policy (which
would ignore the constraint), but our constrained learners adjusted to keep hazard probability ~ 0.4
for Aug-MDP and ~ 0.5 for PD-PG, in exchange for lower return. Notably, the PD-PG method
showed small constraint violations during early training for low p (the Lagrange multiplier takes time
to adjust), but ultimately converged to feasible policies in all runs. The Aug-MDP agent, by design,
never violated constraints during learning — however, this came at the cost of more conservative
exploration.

Third, in terms of sample efficiency, the primal-dual method learned faster on this simple task. It
converged in roughly 500 %= 100 episodes for all p tested, whereas the augmented MDP required about
800 £ 150 episodes to reach a similar stability (due to the larger state space and sparser rewards). The
additional burden of learning the dual variable did not significantly slow down PD-PG in practice — in
fact, the alternating updates of # and A quickly found a balance between return and risk. In contrast,
the Aug-MDP algorithm effectively had to solve a more complex MDP; its value iteration initially had
higher variance in updates since many augmented states were rarely visited under random exploration.
We mitigated this by guiding exploration with an e-greedy strategy favoring lower-risk actions, but the
difference remained. This result suggests that while Aug-MDP is a reliable approach (guaranteeing
constraint satisfaction by construction), the primal-dual approach may be more sample-efficient in
small problems, as it focuses on the original state space and only adds a single scalar parameter to
learn. We expect this gap to widen in larger or continuous-state tasks where an augmented state space
becomes unwieldy.

In summary, these experiments demonstrate that incorporating the Mean-L,, risk constraint alters
the agent’s behavior in intuitive ways: as p increases, the agent becomes more cautious, foregoing
short-term reward to reduce the probability of catastrophic cost. The primal-dual policy gradient
algorithm was able to find finely balanced policies that maximize reward while just satisfying the risk
limit, whereas the augmented MDP approach yielded safe policies that are feasible by construction,
albeit sometimes overly conservative. Both approaches are effective for risk-constrained RL in
principle; the choice may depend on the specific domain requirements.
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A Conclusion

In this work, we introduced a general framework for risk-sensitive reinforcement learning using the
mean- LP risk measure, which provides a continuous interpolation between risk-neutral (p = 1) and
worst-case (p — 0o) criteria. By adjusting the risk order p, our approach enables practitioners to
flexibly trade off expected return and tail risk, making it valuable for safety-critical applications.
Rather than designing a separate robust controller, one can simply increase p to obtain a more
conservative policy within the same framework.

We proposed two complementary algorithms to solve the mean-L? risk-constrained RL problem: a
primal-dual policy gradient method that relaxes the risk constraint via a Lagrange multiplier, and an
augmented MDP dynamic programming approach that enforces the constraint by expanding the state
space with a cost budget. We provided theoretical convergence guarantees for the policy gradient
approach (showing that it converges to an e-optimal safe policy in O(1/¢2) samples) and showed that
the augmented MDP method yields a policy that never violates the cost limit and is nearly optimal
for large p. Empirically, our gridworld experiments demonstrated that as p increases, the learned
policy becomes more cautious, and highlighted the trade-off between the sample-efficient primal-dual
learner and the strictly safe (but sometimes overly conservative) augmented MDP planner. Overall,
our work offers the first general-purpose algorithms for RL with a nonlinear L? risk constraint,
significantly extending prior approaches that were limited to specific risk measures like CVaR or
variance.

B Practical Implications

Our proposed risk-constrained RL algorithms can be implemented with standard reinforcement
learning frameworks, but a few practical considerations are worth noting. First, the choice of the risk
parameter p should be guided by domain requirements: a lower p (closer to 1) emphasizes average
performance, whereas a higher p prioritizes safety by penalizing rare high-cost events more heavily.
In practice, one might start with a moderately large p and adjust based on observed policy behavior or
any risk constraints specific to the application (e.g., probability of failure below a threshold). Tuning
p provides a convenient knob to control the risk-return trade-off without fundamentally changing the
algorithm.

Second, when learning from data, estimating the LP? risk of returns may require a larger sample size
compared to estimating the mean, especially for large p where tail events (high costs) dominate the
metric. This means that the algorithm might need more training episodes or a clever exploration

10



448
449
450

451
452
453
454
455

457

458

460
461
462
463
464
465

466
467

469
470
471
472

473
474
475
476
477
478
479

481
482
483
484
485

487

488
489

491
492
493
494
495

497
498

strategy to accurately assess the risk of catastrophic outcomes. One practical approach is to gradually
increase p during training—starting risk-neutral to learn the basics of the task, then increasing
risk-aversion to fine-tune the policy’s safety.

Third, our algorithms naturally integrate with policy gradient or value-based methods, but they may
have higher computational overhead. For example, Algorithm 1 involves solving an optimization
at each iteration that may be more complex than a standard Bellman update, and Algorithm 2
requires maintaining and updating dual variables (Lagrange multipliers for risk constraints). Efficient
implementation might leverage vectorized operations and parallel simulations to mitigate these costs.
Overall, the methods are compatible with modern deep RL libraries, but careful parameter tuning and
sufficient training data are key to achieving their full potential in practice.

C Limitations and Future Work

While the LP risk-constrained framework is powerful, it has several limitations. One limitation is the
assumption of convexity or certain regularity conditions (such as smoothness or gradient dominance)
that underpin our theoretical convergence guarantees. In realistic problems with complex function
approximation (e.g., deep neural network policies), these conditions may not strictly hold, and the
algorithms could converge to local optima or exhibit unstable training dynamics. Empirically, we did
not encounter significant stability issues, but guaranteeing convergence in general nonlinear settings
remains an open challenge.

Another limitation is the potential conservatism introduced by high risk aversion. For very large p
(approaching the worst-case optimization), the learned policy might become overly conservative,
significantly sacrificing reward in order to avoid any risk. In some cases this is unnecessary, especially
if worst-case scenarios are extremely unlikely. Thus, selecting p requires a balance—too low and the
policy might be unsafe, too high and it might be suboptimal in practice. Automated methods to adapt
p or the risk constraint during training (perhaps based on observed performance) could address this
issue, but we did not explore such adaptations in this work.

Finally, like many constrained or risk-aware RL methods, our approach may struggle with very high-
dimensional state spaces or extremely sparse events. If catastrophic outcomes are very rare, learning
to accurately estimate and avoid them can be sample-inefficient. Similarly, scaling up to environments
with many different modes of failure might require incorporating additional techniques (e.g., reward
shaping for safety or hierarchical policies) to efficiently explore and learn. These limitations suggest
avenues for future research, such as combining our LP risk approach with exploration bonuses or
safer model- based planning for improved efficiency.

In the future, we plan to address some of these limitations. Key directions include extending our
theoretical guarantees to more general nonlinear function approximation settings, developing adaptive
methods to adjust the risk parameter p during training, and incorporating enhanced exploration
strategies or model-based planning to better handle environments with rare catastrophic events.
Progress along these avenues could further improve the practicality and robustness of the mean-LP
risk-constrained RL framework.

D Related Work

D.1 Safe Reinforcement Learning and Constrained RL

Safe reinforcement learning (RL) addresses the challenge of enforcing safety or constraint satisfaction
during learning. A common formalism is the Constrained Markov Decision Process (CMDP)
[9], which introduces constraints (typically on expected cumulative costs) alongside the reward
optimization objective. Many safe RL algorithms leverage Lagrangian relaxation of the CMDP,
turning it into a primal-dual optimization problem. This approach is adopted by early works like
[11]’s Constrained Policy Optimization and subsequent methods [e.g.,|14]] that update a policy and
a cost Lagrange multiplier iteratively. These techniques ensure constraint violations are penalized
during training, albeit with no strict guarantees of zero violations at all times. Recent advances
have provided stronger theoretical guarantees for constrained RL. For example, [21]] propose a
policy-gradient primal-dual algorithm with uniform PAC bounds for CMDPs, ensuring probably
approximately correct performance under constraints. Similarly, [[19] establish global last-iterate
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convergence of a primal-dual policy gradient method for CRL under certain regularity (gradient
domination) conditions, offering convergence assurances to safe optimal policies. Overall, safe RL
blends classic constrained optimization techniques with modern policy search, and ongoing research
continues to improve its reliability and performance guarantees.

D.2 Risk Measures in Reinforcement Learning

Risk-sensitive reinforcement learning incorporates criteria beyond the standard expected return,
using risk measures to capture an agent’s attitude toward uncertainty in outcomes. Early approaches
introduced exponential utility or mean-variance criteria for RL, aiming to penalize outcome variability
or tail risk. More recently, considerable focus has been on the Conditional Value-at-Risk (CVaR) and
related coherent risk measures. [22], for instance, developed policy gradient methods to optimize
the CVaR of returns, and [23]] explored CVaR-based policies that bridge risk-sensitive and robust
decision-making. Another line of work, distributional RL [24]], learns the entire return distribution,
enabling evaluation of arbitrary risk measures (e.g., variance, CVaR) from the learned distribution. In
parallel, theoretical frameworks have extended MDPs to dynamic risk criteria: e.g., [25] introduced a
dynamic programming approach for coherent risk measures, and subsequent studies have provided
regret bounds for online risk-sensitive RL. Notably, [26] address a non-stationary RL setting with
an entropic risk measure (exponential utility), proposing an algorithm with near-optimal dynamic
regret and demonstrating how to adapt to changing risk in the environment. In general, incorporating
risk measures in RL allows balancing the trade-off between average performance and worst-case
outcomes, at the expense of a more complex (often non-linear) optimization problem.

D.3 Optimization under L, Risk Measures

The use of LP risk measures in RL is motivated by their ability to continuously interpolate between
risk-neutral and worst-case criteria. An LP criterion evaluates the p-norm of the return distribution (or
cost distribution), placing higher weight on tail outcomes as p increases. In the limit as p — oo, the
LP objective approaches the worst-case (maximal cost) optimization, akin to a robust MDP objective,
while p = 1 recovers the standard expected cost. This interpolation offers a flexible trade-off: by
choosing an intermediate p, one can achieve a policy that is neither overly risk-seeking nor overly
conservative. Prior work in optimization has studied L? or power mean risk objectives in contexts
like finance and operations research, but they have been less common in RL. One reason is that
optimizing an L? objective in an MDP breaks the additive Bellman structure, leading to non-convex
and non-linear Bellman equations. Nevertheless, a few works have recognized the value of such
intermediate risk measures. For example, [23]] note that CVaR (a popular coherent risk measure) can
be seen as a limit of LP-type risk as the confidence level approaches 1 (i.e., focusing on the worst tail
outcomes). Our approach explicitly incorporates the LP cost in the learning algorithm, leveraging
techniques for handling non-linear objectives. By tuning p, it provides a unified framework that
smoothly transitions from the nominal (risk-neutral) policy to a robust, worst-case-oriented policy,
within a single algorithmic schema.

E Convergence Guarantees and Comparison

Algorithm 1 (Policy Gradient): The primal-dual updates are guaranteed to converge to an opti-
mal policy under convexity assumptions, as discussed. In the tabular setting with softmax policy
parameterization, one can ensure global optimality. Our convergence rate O(1/¢?) matches known
results for two-timescale stochastic approximation in constrained RL [[13]]. This approach inherits the
scalability of policy gradient methods and can handle high-dimensional state spaces with function
approximators (at the cost of losing theoretical guarantees, as is common in deep RL). Notably, our
method is the first to provide convergence guarantees for a nonlinear L risk constraint in RL, to
the best of our knowledge. Prior risk-sensitive policy gradient works either assume simpler risk
measures (variance, CVaR) or only show convergence to local optima. By leveraging recent advances
in non-convex optimization and carefully applying Lagrange duality, we extend guarantees to this
broader class of risk measures.

Algorithm 2 (Augmented DP): This method will converge to the exact optimal solution of a slightly
stricter problem (po, instead of p,,). Its convergence is linear in the number of iterations (in practice
a few hundred iterations suffice for small MDPs given v < 1). The optimality gap for the true L?

12



551
552
553

554
555
556

557
558

560
561
562
563
564
565
566
567
568
569
570
571

572

573
574
575
576
577

579
580

581
582
583
584
585
586

588
589

problem is small as argued above, and in fact zero if the optimal policy never exactly saturates the
budget. One can derive error bounds analytically: e.g., if 7(P) has Pr(Jo > ) = 4, then one can
show Jg(7) > JR(wz‘p)) — fyRmaxél/p/(l — ), where Ry, is an upper bound on per-step reward.
Thus the regret due to enforcing hard constraints vanishes as policies become increasingly risk-averse
(small § or large p). Empirically, we indeed observe d ~ 0 for optimal policies even at moderate p
(e.g. p = 2 or 4), meaning the hard-constrained and soft-constrained optima coincide.

Comparison: Both algorithms have their merits. Algorithm 1 (Lagrange policy gradient) is more
general and can be integrated with function approximation and policy optimization techniques
(e.g. actor-critic methods, trust-region updates [27]). It can handle continuous state and action
spaces and scales to large problems, at the cost of requiring careful tuning of learning rates and
potential approximation error in estimating p,. Algorithm 2 (augmented DP) provides a ground-truth
benchmark for tabular or small MDPs, with robust safety guarantees. It is less flexible (requires
discrete feasible state space and known model), but whenever applicable, it can verify the solution
quality of Algorithm 1 and serve as a safe baseline. Interestingly, the idea of non-stationary (state-
dependent) policies emerges naturally in Algorithm 2: the optimal policy 7 (s, ) explicitly depends
on the remaining budget ~, confirming the intuition that optimal safe policies are generally history-
dependent (non-Markovian) if one does not augment the state (this provides an explanation for why
stationary Lagrange multipliers in Algorithm 1 can be insufficient, a phenomenon noted by prior
work). In summary, our two approaches are complementary: the Lagrangian method is scalable and
model-free but yields only approximate solutions, while the augmented state DP is exact but requires
a model and discretized budget.

F Additional Example: Risk-Constrained Navigation in Gridworld

To illustrate the effect of the LP risk constraint, we consider a simple navigation task on a 4 x 4
gridworld. The agent starts in the top-left corner of the grid and aims to reach a goal in the bottom-
right corner. Each step yields a small negative reward (cost) of —1, and entering the goal gives a
positive reward of +10. However, there is a risky zone located at the center of the grid (marked in red
in Figure[2), which can incur a large penalty: if the agent steps on that cell, there is a 20% chance
of triggering a “hazard” that gives an extra —50 cost (and 80% chance of no additional cost). The
shortest path to the goal passes through this risky cell, whereas a slightly longer path goes around it
and avoids the risk.

2

N
¥
\&}

Figure 2: Toy gridworld with a risky zone. The agent starts at S and must reach G. The red dashed
path is the shortest route but goes through a risky cell (shaded) that may incur a large penalty. The
blue solid path is a safer route avoiding the risk. Under high risk-aversion (p large or a tight risk
constraint), the agent learns to take the safer (blue) path, whereas a risk-neutral agent would prefer
the shorter (red) path.

We apply both Algorithm 1 and Algorithm 2 to this toy problem. Algorithm 1, which plans an optimal
policy given the model, will consider the distribution of returns for paths that go through the risky
zone versus those that avoid it. For a moderate risk setting (e.g., p = 4 or a risk constraint that
disallows more than a 5% chance of catastrophic cost), Algorithm 1 determines that the safer route
(avoiding the risky cell) yields a higher L”-objective value, because the potential —50 penalty (even
if infrequent) dramatically lowers the p-norm return. Thus, the optimal policy under the L? criterion
is to take the longer, safer path. In contrast, if p were very low (close to 1, the risk-neutral case), the
algorithm would choose the shorter path through the risky zone, since the expected cost of the hazard
(0.2 * 50 = 10) is outweighed by the savings in step costs.
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Algorithm 2, which learns the policy via interaction (e.g., a primal-dual policy gradient method
enforcing the risk constraint), shows a similar qualitative behavior. Early in training, the agent
might try the risky shortcut and occasionally suffer the large penalty. The algorithm’s risk constraint
mechanism (via the Lagrange multiplier adjusting for risk violations) will then increase the “cost” of
that route. Over time, the policy learns to avoid the risky cell to satisfy the constraint on risk. If the
risk threshold is strict, Algorithm 2 converges to the safe policy that goes around the hazard. If the
threshold is more lenient, the learned policy might use the risky shortcut occasionally, essentially
balancing the chance of hazard against the shorter travel time. In this simple environment, both
algorithms eventually yield a policy that aligns with the chosen risk preference: a risk-averse policy
that completely avoids the dangerous cell, or a risk-neutral policy that takes the shortest path despite
the risk.

G Proofs of Theoretical Results

G.1 Proof of Lemma 1

Lemma 1 (Policy Gradient Improvement): Let A, = p,(Jc(mg:)) — § denote the current constraint
violation. Then for sufficiently small oy, the update in Algorithm 1 guarantees Jg(mwge+1)—Jg(mge) >
a¢|VeJr|? — O(ayAtA;), while the dual update yields X' A, < max(0, N'A; — 14, A7),

Proof. For brevity, let J;, = Jg(mp:) and p* = p,(Jo(mpt)). The policy update in Algorithm 1
gives 01Tt = 08 + o (Vg Jg(mer) — A!Vgp!). By a first-order expansion,

e — Tk~ Vodr(me) T (0" = 0") = au(|[Vedr(mee)||> = N'VeJr(mg:) T Vep') .

The term Vg J 3} Vop! is O(A'Ay), since if the constraint violation A; = p* — 3 is large, the cost
gradient Vyp® will point in a nearly opposing direction to the reward gradient. Thus Jlt{rl —Jh >
a||VeJr(me:)||? — O(ay APA) for sufficiently small oy Meanwhile, the dual update gives

X =N 4 (o' = B+,

so MHLA, = (N + v Ay A IF Ay > 0, then NXFFEA, = XA, + 1,A2 < AA, (since 1, A7 is
positive, and A\*A; is nonnegative). If A; < 0, then either X! + v;A; > 0 (yielding M T1A; =
MNA; + A7 < ANA, because now A? is positive but A\!A; is negative), or \' + ;A < 0
(in which case A**! = 0 and XT'A, = 0 < MA, since AX'A, was negative). In all cases,
AFIAL < max{0, MA; — 1, A2} < APA,. These inequalities establish the claimed improvement
in Ji and decrease in AA per iteration. O

G.2 Proof of Theorem 1

Theorem 1: Suppose there exists an optimal policy 7* that satisfies the constraint with multiplier \*.
If o, v; are chosen as diminishing step sizes (e.g. ay = O(1/+/1)), then (8%, \*) converges to a saddle
point (8*, \*). Moreover, for any € > 0, after T = O(1/¢€?) iterations, the algorithm yields a policy
mer that is e-optimal and e-feasible with high probability. In other words, Jg(mgr) > Jr(7*) — ¢
and p, (Jo(mr)) < B +e.

Proof. Under the convexity assumptions on the problem (reward linear and p,, convex in the policy),
the constrained optimization problem satisfies strong duality. Therefore, there exists an optimal
dual variable A* > 0 such that the Karush-Kuhn-Tucker (KKT) conditions hold for some policy
parameters 6* and \*: (i) p,(Jc(me+)) < B (primal feasibility), (ii) A* > 0 (dual feasibility), (iii)
X (pp(Jo(me=))— ) = 0 (complementary slackness), and (iv) Vo £(6*, \*) = 0 (stationarity, where
L is the Lagrangian).

Algorithm 1 is a gradient-based primal-dual method aiming to find a saddle point of £(6, \). Define
the duality gap at iteration ¢ as

I'" = max £(6",\) — min £(, \").
2>0 0

This gap is always non-negative, and it equals 0 if and only if (9%, \!) satisfies the KKT conditions.
We will show that I'* converges to 0 as ¢ — oo.
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First, note that £(#*, \) is an affine (linear) function in A, so maxy>o £(0%, \) occurs at A =
max{0, p' — B} =: A'. Thus maxy>o £(6%, \) = Jb — A (p* — ), which by definition is exactly
the objective being optimized in Algorithm 1’s updates. Similarly, ming £(6, A!) (for fixed \!) is
achieved at some " which would be the policy maximizing Jr — A*(p,(Jc) — ). Due to strong
duality, £(6*, \*) = Jr(7™) is the global optimum. Now consider the potential function

U(t) = L6, A1) — L(08,\*) > 0.

Using Lemma 1, one can show that ¥(¢) decreases in expectation with each iteration (intuitively,
the policy update makes progress toward 6, and the dual update makes progress toward A*). More
formally, for small step sizes o, v, we have E[U(t + 1) | U(t)] < U(¢) — crou||VaJr(mee)||? —
cavy(pt — B)? for some constants cj,co > 0. By summing this inequality over t = 0to 7' — 1
and telescoping, and using standard arguments from stochastic approximation theory, we obtain

+ tT;()l E[l'*] — 0as T — oo. In particular, I'* converges to 0 with rate O(1/+/t) for diminishing
step sizes oy, v; = O(1/+/t). This means that any limit point (6, \) of the iterates must satisfy I = 0,
i.e. must be a saddle point satisfying KKT. Hence 6! — 6* and A — \* (possibly in the sense of

subsequences or in probability, if the updates are noisy).

Finally, to obtain an e-approximate solution (in terms of both optimality and constraint satisfaction),
we require I < €. As shown above, I'' = O(1/ \/E) for the chosen ay,v;. Thus, to ensure
I'* < ¢, it suffices to run T = O(1/€?) iterations. At that point, Jg(mgr) > Jr(7*) — € and
pp(Je(mer)) < B+ €, as claimed. O
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referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
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Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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* The answer NA means that the paper does not include experiments.
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well by the reviewers: Making the paper reproducible is important.
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to make their results reproducible or verifiable.

* We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the case
of closed-source models, it may be that access to the model is limited in some way
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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results?
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» The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: No. It does not report error bars.
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* The answer NA means that the paper does not include experiments.
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resources.
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* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
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Ethics.

* If the authors answer No, they should explain the special circumstances that require a
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Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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» The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
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