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Abstract

Convex risk measures allow decision-makers to account for uncertainty beyond1

standard expectations, and have become essential in safety-critical domains. One2

widely used example is the Conditional Value-at-Risk (CVaR), a coherent risk3

metric that targets tail outcomes. In this paper, we consider a more general family4

of risk measures, the mean-Lp risk for p ≥ 1, defined as the Lp-norm of a cost5

distribution; this family includes CVaR as an extreme case (as p → ∞). We6

formulate a reinforcement learning problem in which an agent seeks to maximize7

reward subject to a mean-Lp risk constraint on its cumulative cost. This problem8

is challenging due to the nested, non-Lipschitz structure of the Lp risk measure,9

which hinders the use of standard policy optimization or dynamic programming10

techniques. To address this, we propose two complementary solution approaches:11

(1) a primal-dual policy gradient algorithm that relaxes the risk constraint via12

a Lagrange multiplier, and (2) a model-based dynamic programming method13

that enforces the constraint by augmenting the state space with a cost budget.14

We prove that the policy-gradient approach converges to an ϵ-optimal safe policy15

with Õ(1/ϵ2) samples, matching the best-known rate for simpler (risk-neutral or16

linear-constraint) cases. Meanwhile, the augmented MDP method computes a17

policy that never violates the cost limit and is nearly optimal for large p. Our18

results provide the first general-purpose algorithms for Lp-risk-constrained RL,19

generalizing prior approaches that were limited to CVaR or variance-based risk.20

We validate our theoretical results through experiments in a gridworld environ-21

ment, demonstrating that both algorithms successfully learn policies that respect22

the risk constraint and adjust conservativeness as the risk sensitivity parameter23

p varies. The code is available at https://anonymous.4open.science/r/24

Lp-Risk-Constrained-Reinforcement-Learning-11FD/README.md25

1 Introduction26

In many stochastic decision problems, it is not sufficient to optimize only the expected outcome; one27

must also account for risk or variability in the outcomes. Risk-averse optimization (also known as28

mean-risk optimization) addresses this need by incorporating a risk measure into the objective func-29

tion [1]. Convex risk measures, in particular, satisfy desirable axioms for rational risk assessment [2]30

and have become standard tools in fields like finance, energy, and supply chain management. One31

well-known example is the Conditional Value-at-Risk (CVaR) [3], which quantifies the expected loss32

in the worst α-fraction of scenarios and is celebrated for its coherence and tractable optimization33

properties. Another important class is the mean-upper- semideviation risk measure of order p ≥ 1 [4],34

which captures higher-moment risk by penalizing the higher-end deviations of losses. This Lp-type35

risk measure generalizes simpler cases: for instance, p = 1 recovers the mean-absolute deviation,36
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p = 2 yields a mean-semivariance metric, and as p → ∞ the measure increasingly emphasizes37

worst-case outcomes (bridging toward a max-loss criterion). By adjusting the order p, one can flexibly38

model different degrees of risk sensitivity beyond what CVaR (focused on a fixed tail percentile)39

offers.40

Despite their appeal, general convex risk measures are often much harder to optimize than traditional41

risk-neutral expectations. The CVaR at a given confidence level α can be optimized relatively42

efficiently by introducing an auxiliary variable and linearizing the tail loss function [3], or via43

distributionally robust formulations that turn CVaR into a linear program [1]. In contrast, the mean-44

Lp risk objective does not admit such a straightforward transformation when p > 1. In fact, the45

mean-Lp risk of a decision x ∈ X can be written in nested form as46

ρp[x] = E[Zx] + c
(
E[ (Zx − E[Zx])

p
+ ]

)1/p

,

where Zx = F (x, ξ) is a random cost outcome, (·)+ = max{·, 0} denotes the positive part, and47

c > 0 is a given risk-aversion weight. This formulation involves a composition of expectation and48

a power function. Crucially, for p > 1 the outer mapping u 7→ u1/p is concave and not globally49

Lipschitz continuous on (0,∞), which means standard stochastic gradient methods cannot be directly50

applied or would suffer poor convergence. Indeed, if one naively treats the above as a two-level51

nested expectation problem, existing single-timescale stochastic approximation techniques [5] yield a52

convergence rate on the order of O(1/ϵ4) in the accuracy ϵ (even under smoothness assumptions), far53

worse than the O(1/ϵ2) optimal rate for simpler convex objectives. The difficulty stems from the54

non-convex (though quasi- convex) nesting and the “blow-up” of subgradients caused by the u1/p55

term near u = 0 – informally, the problem is neither smooth nor Lipschitz in the usual sense, despite56

the overall risk measure ρp[·] being convex in x.57

To overcome these challenges, we seek principled algorithmic solutions for general Lp risk minimiza-58

tion. It is closely related to a distributionally robust optimization (DRO) formulation: as shown by59

Shapiro et al. [1, Section 6], the objective ρp[x] can be interpreted as the worst-case expected cost60

under all probability distributions that lie within an Lq-neighborhood of the nominal distribution61

(with 1/p+ 1/q = 1). This DRO perspective underscores the importance of this risk criterion, but62

also highlights its computational complexity: unlike the α-CVaR case (which corresponds to an ℓ163

ambiguity set and is linear), the Lp-ball ambiguity set for p > 1 yields a hard nonlinear optimization64

problem.65

Several recent works have studied special cases of related nested optimization problems. For66

p = 1, the risk measure ρ1[x] = E[Zx] + cE[|Zx − EZx|] is essentially a two-level expectation67

(a convex composite), which can be solved by advanced stochastic approximation methods at the68

optimal O(1/ϵ2) sample complexity [6]. For general multi-level stochastic programs, Ghadimi et69

al. [5] proposed a single-timescale stochastic mirror descent approach; however, as noted above,70

its performance deteriorates on problems like ρp due to the non-Lipschitz, concave outer layer.71

Ruszczyński [7] studied a related class of nonconvex risk nested problems and developed a specialized72

subgradient method, though without complexity guarantees. Overall, there remains a gap in the73

literature for efficiently solving the mean-Lp risk minimization problem for p > 1 with provable74

guarantees. This challenge is also evident in safe reinforcement learning, where risk constraints75

beyond the expectation (or simple proxies like CVaR) have remained difficult to optimize reliably.76

In this work, we bridge this gap by presenting the first efficient solution methods for reinforcement77

learning with a general Lp risk constraint (p > 1). Our contributions can be summarized as follows:78

1. Primal-Dual Policy Gradient Algorithm: We develop a Lagrangian-based policy optimiza-79

tion method (Algorithm 1) that provably converges to an optimal policy under convexity80

assumptions. By performing simultaneous gradient updates on the policy parameters and a81

dual variable, our approach achieves an Õ(1/ϵ2) sample complexity to reach an ϵ-optimal,82

ϵ-feasible solution. Notably, this is the first algorithm with global convergence guarantees83

for RL under a nonlinear Lp risk constraint.84

2. Augmented State Dynamic Programming: We propose a model-based planning algorithm85

(Algorithm 2) that exactly enforces the risk constraint by augmenting the MDP state with86

the remaining cost budget. Solving this augmented MDP via value iteration yields a policy87

that never violates the cost limit (satisfying a strict ρ∞ criterion). We show that this policy is88
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nearly optimal for the Lp-constrained problem (especially for large p), making Algorithm 289

a reliable baseline for verifying the performance of the policy gradient method.90

3. Broader Implications: Our framework handles any risk order p ≥ 1, significantly gen-91

eralizing prior risk-averse RL methods that focused on variance or CVaR-based criteria.92

By interpolating between average-case and worst-case extremes, the Lp family enables93

flexible risk-sensitive policy design to suit different applications. We validate our theoretical94

results through experiments in a gridworld environment, demonstrating that both algorithms95

successfully learn policies that respect the risk constraint and adjust conservativeness as the96

risk sensitivity parameter p varies.97

2 Method98

2.1 Problem Formulation and Risk Measure99

We consider a risk-constrained Markov Decision Process (MDP) defined by (S,A, P, r, c, γ), where100

S and A are state and action spaces, P (s′|s, a) is the transition probability, r(s, a) is the reward,101

c(s, a) is the cost (encapsulating negative “safety” reward), and 0 < γ < 1 is a discount factor.102

Let πθ denote a policy with parameters θ. The agent’s performance is measured by the expected103

return JR(πθ) = Eπθ
[
∑∞

t=0 γ
tr(st, at)], while safety is quantified by a risk measure applied to the104

cumulative cost. Specifically, define the random cumulative cost JC(π) =
∑∞

t=0 γ
tc(st, at) under105

policy π. We impose a general Lp risk constraint on JC(π), as introduced by [8]. This Lp-risk106

measure ρp(JC(π)) is defined as the Lp-norm of the cost distribution:107

ρp(JC(π)) = (Eπ [JC(π)
p])

1/p (1)

for some p ≥ 1. This formulation recovers standard criteria as special cases: p = 1 gives the108

conventional expected cost constraint (risk-neutral CMDP), while p → ∞ yields an almost-sure109

(worst-case) cost constraint. The agent’s objective is to maximize reward subject to an Lp-risk safety110

constraint:111

max
π

JR(π) = Eπ

[
H−1∑
t=0

γtr(st, at)

]
s.t. ρp(JC(π)) = (Eπ [JC(π)

p])
1/p ≤ β

(2)

where β is a prescribed risk limit. This formulation generalizes prior risk-constrained RL settings112

(e.g. using CVaRα as the risk measure [8]) to a broad class of tail-sensitive criteria. The Lp constraint113

penalizes variability in the cost: higher p emphasize worst- case outcomes more strongly. We focus114

on the discounted infinite-horizon case with a finite episodic cutoff at horizon H for ease of analysis;115

in practice one often lets H →∞ (as our theoretical guarantees hold in the limit).116

In a conventional constrained MDP (CMDP) with an expected cost constraint (p = 1), standard117

Lagrange relaxation techniques can be used to solve for an optimal policy [9, 10, 11]. Our setting118

is more challenging because ρp(JC) is a nonlinear function of the policy. Nonetheless, we can still119

leverage a primal-dual approach to handle the constraint.120

2.2 Policy Gradient with Lagrangian Relaxation121

Our first approach directly optimizes the constrained objective by introducing a Lagrange multiplier122

for the risk constraint. We form the Lagrangian function for policy πθ with dual variable λ ≥ 0:123

L(θ, λ) = JR(πθ)− λ (ρp(JC(πθ))− β) (3)

which penalizes constraint violations when ρp(JC) > β. The constrained RL problem can then be124

solved via a saddle-point optimization: maximize L over policy parameters θ while minimizing over125

λ (dual ascent). Intuitively, the Lagrange multiplier λ adaptively adjusts the trade-off between reward126

and risk: if the policy violates the risk limit, λ increases to penalize cost more heavily; if the policy is127

too conservative (risk well below β), λ may decrease, allowing more reward-seeking behavior.128

We adopt an iterative primal-dual policy gradient algorithm (Algorithm 1) to solve129

minλ≥0 maxθ L(θ, λ). At each iteration, we evaluate the policy (by simulation or rollout) to estimate130
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both JR(πθ) and the risk measure ρp(JC(πθ)). Notably, ρp(JC) is a nonlinear function of the policy;131

in practice we approximate its gradient via sampling. For instance, one can use policy gradient132

for risk measures: Tamar et al. [12] developed gradient estimators for coherent risk objectives by133

sampling trajectories and solving a convex subproblem per update. We leverage such techniques to134

obtain an unbiased gradient∇θρp(JC(πθ)), which can be computed by reparameterization or score135

function methods combined with distributional cost estimates (for example, using a distributional136

critic to estimate higher moments of the cost [13]).137

The policy parameters θ are updated via gradient ascent on L (improving reward and penalized cost),138

while λ is updated via projected gradient ascent on the dual (which corresponds to gradient descent139

on L). We use step sizes αt for θ and νt for λ. To ensure λ stays non-negative, each update projects140

λ onto [0,∞). The pseudocode in Algorithm 1 summarizes this procedure. In implementation,141

ρp(JC(π)) can be estimated from a batch of trajectories; for large p it may be high-variance, so we142

employ techniques like mini-batch sampling or moving averages to stabilize the estimate.143

Algorithm 1 Lagrange Policy Gradient for Safe RL under Lp Risk Constraint

1: Input: initial policy parameters θ0, initial dual variable λ0 ← 0, risk limit β, step sizes
{αt}, {νt}.

2: for t = 0, 1, 2, . . . do
3: Sample trajectories using policy πθt ; estimate JR(πθt) and ρp(JC(πθt)).
4: Compute policy gradient gθ ≈ ∇θL(θt, λt), where∇θL = ∇θJR(πθ)− λt∇θρp(JC(πθ)).
5: Update policy: θt+1 ← θt + αt gθ.
6: Update multiplier (projected gradient ascent on dual): λt+1 ←

[
λt+νt

(
ρp(JC(πθt))−β

)]
+

.

7: end for
8: Output: optimized safe policy πθT .

Algorithm 1 essentially implements a constrained policy optimization in the spirit of prior safe RL144

methods but extended to a nonlinear Lp risk metric. Compared to methods that handle only expected-145

cost constraints (e.g. CPO [9], RCPO [14]), our approach modifies the policy update by incorporating146

the risk gradient ∇θρp(JC), which properly accounts for tail-risk sensitivity (for example, if ρp is147

CVaRα, our update reduces to weighting high-cost trajectories more strongly, akin to the approaches148

of [15]). This Lagrangian approach has low per-iteration complexity and is amenable to stochastic149

approximation, making it suitable for high-dimensional or model-free settings.150

Theoretical Properties: Under standard conditions (smooth policy parameterization, exact gradient151

estimates, and a sufficiently small step size schedule), Algorithm 1 converges to a Karush-Kuhn-152

Tucker (KKT) point of the constrained problem. In particular, if the problem is convex in the153

occupancy measure (which holds here since the expected reward is linear and ρp is convex in the154

cost distribution [13]), strong duality holds and the primal-dual gradient procedure will approach155

the global optimum. We can adapt recent convergence analyses of policy gradient methods [13] to156

establish explicit rates.157

Lemma 1 (Policy Gradient Improvement): Let ∆t = ρp(JC(πθt))− β denote the current constraint158

violation. Then for sufficiently small αt, the update in Algorithm 1 guarantees JR(πθt+1)−JR(πθt) ≥159

αt|∇θJR|2 − O(αtλ
t∆t), while the dual update yields λt+1∆t ≤ max(0, λt∆t − νt∆

2
t ). (See160

Appendix G.1 for full proof.)161

Proof Sketch: This follows from the update rules and first-order Taylor expansion of JR and ρp [13].162

Building on this, one can show that feasible descent is achieved.163

Theorem 1: Suppose there exists an optimal policy π∗ that satisfies the constraint with multiplier λ∗.164

If αt, νt are chosen as diminishing step sizes (e.g. αt = O(1/
√
t)), then (θt, λt) converges to a saddle165

point (θ∗, λ∗). Moreover, for any ϵ > 0, after T = O(1/ϵ2) iterations, the algorithm yields a policy166

πθT that is ϵ-optimal and ϵ-feasible with high probability. In other words, JR(πθT ) ≥ JR(π
∗)− ϵ167

and ρp(JC(πθT )) ≤ β + ϵ. This convergence rate matches known results for constrained convex168

optimization and policy gradient methods [13]. (Proof in Appendix G.2.)169

Notably, our method does not require the risk constraint to be linearized or approximated; thanks to170

the convexity of ρp, the dual update is well- behaved and the overall procedure converges reliably171
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even when p > 1. This stands in contrast to some earlier safe RL algorithms that guaranteed only172

local convergence for nonlinear constraints (e.g. CVaR-PG in [15], which lacked global guarantees).173

By leveraging the dual formulation, we attain global convergence in tabular settings, and we expect174

strong performance in practical function approximation settings as well. These theoretical guarantees175

assume exact policy evaluation and gradients; in practice, one must account for sampling error.176

Techniques from stochastic approximation theory (two-timescale updates, baseline subtraction,177

variance reduction) can be applied to ensure convergence in expectation. Overall, Algorithm 1178

provides a principled way to train safe policies with provable convergence to optimality while179

satisfying Lp-risk constraints.180

2.3 Model-Based Dynamic Programming in Augmented State Space181

Our second approach exploits model-based planning to exactly enforce the risk constraint by reformu-182

lating the problem as an equivalent MDP in an augmented state space. The key idea, inspired by state183

augmentation for safe exploration [16], is to incorporate the remaining “risk budget” into the state.184

We construct an augmented state s̃ = (s, κ) where s ∈ S is the original physical state and κ ∈ [0, β]185

represents the allowable remaining cumulative cost along the trajectory before violating the constraint.186

At the start of each episode, the augmented state is (s0, κ = β), meaning the agent has the full cost187

budget β. Every time the agent takes an action that incurs cost c(s, a), we update the remaining188

budget: κ′ = max(0, κ− c(s, a)). If κ′ would fall below 0, it indicates the action would violate the189

cost limit – such actions are disallowed in the augmented MDP (they lead to an invalid next state).190

By augmenting the state with κ, we embed the constraint directly into the dynamics. A transition191

that would exceed the budget does not exist (or transitions to a designated failure absorbing state,192

which for planning purposes can be assigned a large negative reward). As a result, any policy feasible193

in the augmented MDP is guaranteed to satisfy ρ∞(JC) ≤ β in the original problem. Although our194

focus is an Lp constraint with p <∞ (which allows rare budget violations with penalties rather than195

absolutely none), this augmented formulation serves as a conservative approximation that ensures196

strict constraint satisfaction. In practice, we expect the optimal Lp-constrained policy to nearly197

saturate the budget without exceeding it with significant probability; hence, solving the stricter ρ∞198

version yields a policy close to the true optimum (we quantify this gap below).199

Formally, we define an augmented MDP M̃ with state space S̃ = {(s, κ) : s ∈ S, 0 ≤200

κ ≤ β} ∪ {unsafe}, where unsafe is an absorbing failure state. The action space remains201

A. Transition dynamics P̃ are defined as: from (s, κ) taking action a, if c(s, a) ≤ κ, then202

P̃ ((s′, κ−c(s, a))|(s, κ), a) = P (s′|s, a) for all s′ ∈ S; if c(s, a) > κ, then P̃ (unsafe|(s, κ), a) =203

1. We assign a reward to augmented transitions equal to the original reward r(s, a) (and for the204

unsafe state, we can set r(unsafe) = 0 or a large negative terminal reward to discourage ever205

entering it). By construction, any viable policy in M̃ respects the cost limit at every step: the agent206

can never enter unsafe if it never chooses an action with cost exceeding remaining budget. Moreover,207

each trajectory under a policy π̃ in M̃ corresponds to a trajectory in the original MDP that satisfies208 ∑
t c(st, at) ≤ β. Thus, optimizing expected reward in M̃ yields the optimal policy for the strict209

risk constraint p =∞. We solve this via Bellman dynamic programming.210

Value Iteration in M̃: Since we assume the model (P, r, c) is known (or can be accurately learned),211

we can perform value iteration to compute the optimal policy on the augmented state space. Let212

Ṽ∗(s, κ) be the optimal value function (maximum expected return) starting from augmented state213

(s, κ). The Bellman optimality equation for (s, κ) ̸= unsafe is:214

Ṽ ∗(s, κ) = max
a:c(s,a)≤κ

{
r(s, a) + γ

∑
s′

P (s′ | s, a)Ṽ ∗(s′, κ− c(s, a))

}
(4)

and Ṽ ∗(unsafe) = 0. This defines a contraction mapping, and we can iterate to convergence.215

Algorithm 2 details the procedure. At each iteration, we sweep over all augmented states, update216

Ṽ (s, κ) by considering all feasible actions a (those that do not immediately violate the remaining217

budget) and taking the best a according to the Bellman update. After convergence, an optimal policy218

π̃∗ is recovered by choosing in each (s, κ) the maximizing action. By restricting actions when κ is219

low, the agent automatically plans more conservatively near the budget limit – a behavior analogous220

to non-stationary “budget-aware” policies advocated in recent work [16]. Note that the size of S̃221
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is |S| × B if we discretize the budget interval [0, β] into B steps. Thus, the complexity of value222

iteration scales linearly with B; for reasonable B (or if costs are integer and β not too large), this is223

tractable. In deterministic environments or those with small stochasticity, one can often take B = β224

if costs are unit increments. Otherwise, B controls the resolution of risk allocation. In our setting, we225

choose B such that the gap between ρp and the hard constraint is negligible (e.g. B equal to β in226

cost units yields a policy that never violates the budget, which is slightly conservative for p <∞ but227

nearly optimal when violations are suboptimal anyway).228

Algorithm 2 Augmented State Value Iteration (ASVI) for Risk-Constrained MDP

1: Input: MDP (S,A, P, r, c, γ), cost limit β, budget discretization B.
2: Construct augmented state set S̃ = {(s, κ) : s ∈ S, κ ∈ {0, β

B , 2β
B , . . . , β}} ∪ {unsafe}.

3: Initialize value function Ṽ0(s, κ) = 0 for all (s, κ) and Ṽ0(unsafe) = 0. Set n = 0.
4: repeat
5: n← n+ 1.
6: for each state (s, κ) ∈ S̃ \ {unsafe} do
7: Ṽn(s, κ)← max

a:c(s,a)≤κ

{
r(s, a) + γ

∑
s′

P (s′|s, a) Ṽn−1(s
′, κ− c(s, a))

}
.

8: If no action satisfies c(s, a) ≤ κ (no feasible action), set Ṽn(s, κ)← 0.
9: end for

10: until max(s,κ) |Ṽn(s, κ)− Ṽn−1(s, κ)| < δ for some tolerance δ > 0

11: Output: Optimal value Ṽ ∗ = Ṽn; optimal policy π̃∗(s, κ) = argmaxa:c(s,a)≤κ{r(s, a) +
γ
∑

s′ P (s′|s, a)Ṽn(s
′, κ− c(s, a))}.

Correctness and Optimality: Algorithm 2 is essentially a classical value iteration on a modified229

MDP; therefore it converges to the optimal value function Ṽ ∗ uniformly, with convergence rate230

O(log(1/δ)/(1 − γ)) for accuracy δ (stemming from the Bellman contraction by factor γ < 1).231

The output policy π̃ is optimal for the hard budget constraint. By construction, executing π̃∗ in the232

original MDP yields a policy that never violates the cost threshold β. This policy is feasible for the233

Lp-risk constraint for any p (since zero probability of violation trivially implies ρp ≤ β). It remains234

to argue about near-optimality: how far is π̃ from the true Lp-constrained optimum π(p)? In general,235

π(p) might occasionally allow slight budget exceedance if it yields significantly higher reward, but236

for large p this is highly penalized. In fact, one can show that as p→∞, π(p) → π∗
(∞) = π̃∗. For237

finite p, under mild regularity conditions on the cost distribution, the performance loss of enforcing238

a hard cutoff is of order O(ϵ) where ϵ = (Prπ(p){JC > β})1/p (the probability of violation under239

the p-optimal policy). Since π(p) is optimal, it will only violate the cost with small probability if p240

is large (otherwise it would incur a huge Lp penalty). Thus ϵ is negligible and π̃ is nearly optimal.241

In summary, the augmented state method produces a policy that is provably safe (no constraint242

violations) and approximately reward-maximizing for large p. Empirically, one can observe that for243

risk thresholds of interest, π̃∗ achieves virtually the same reward as the policy found by Algorithm 1244

for finite p, while strictly enforcing safety.245

Practical Considerations: The augmented state value iteration method requires a known model246

or a reliable simulator to plan with. Its computation scales with |S| × B, which can be large if S247

is huge or if high resolution in cost budget is needed. However, for tabular or low- dimensional248

MDPs, this approach is very effective and finds the globally optimal constrained policy (whereas249

Algorithm 1 might converge to a local optimum if the policy class is restricted). This method is250

related to approaches in safe exploration research such as the “Saute RL” framework by [17], which251

augments state with a continuously decaying budget to ensure almost-sure safety.252

3 Experiments253

We conducted experiments in a small 5×5 grid world environment to validate the two proposed254

algorithms (primal-dual policy gradient and augmented MDP). This toy domain provides a convenient255

testbed to illustrate how increasing risk sensitivity (larger p in the Mean-Lp constraint) influences256

learned policies. We design the grid world with a single start state (bottom-left), a goal state (top-257
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(a) (b)

Figure 1: Gridworld setup and experimental results. (a) 5×5 grid world. S = Start, G = Goal, H =
Hazard. The agent starts at S and must reach G. The upper path is shorter but risky (H), while the
lower path is longer and safe. (b) Performance across p values. Left: average return. Right: mean-Lp

risk. Higher p yields lower risk but also lower return.

right), and a hazardous cell in the middle (Figure 1a). The agent can move in four directions (up,258

down, left, right); stepping into the hazardous cell incurs a large cost and terminates the episode259

(representing a catastrophic outcome). A small probability of action slippage (10–20%) is added to260

mimic stochastic wind [10], so that an optimal path near the hazard carries risk of being blown into261

it. The goal yields a positive reward (+1) upon arrival, while each step has a small negative reward262

(–0.01) to encourage efficiency. There is no direct reward penalty for hitting the hazard beyond263

episode termination, meaning the agent receives no further reward after falling into the hazard. This264

induces an implicit risk vs. reward trade-off: the shortest path to the goal passes adjacent to the265

hazard, whereas a safer path around the hazard is longer. The cost function for risk measurement266

is defined such that C(s, a) = 1 when the agent enters the hazardous cell (and 0 otherwise), so the267

Mean-Lp risk in this domain corresponds to the Lp norm of the distribution of episode costs (e.g. for268

p = 1 it is just the probability of hitting the hazard, and for large p it heavily penalizes any trajectory269

that hits the hazard, approaching worst-case risk [18]).270

Risk-Sensitive Objective: The agent’s overall objective is to maximize the expected return (fre-271

quency of reaching the goal minus step costs) while keeping the Mean-Lp risk below a threshold β.272

For our experiments, we set β = 0.3 (i.e. the policy must keep the probability/impact of hazardous273

outcomes ≤ 30%). This formalizes a constrained MDP: maximize E[R] subject to (E[Cp])1/p ≤ β.274

As discussed in prior work, such risk-constrained RL problems can be cast in the CMDP frame-275

work [19]. We compare two solution approaches: (1) a primal-dual policy gradient (PD-PG) method276

that uses Lagrange multipliers to enforce the risk constraint, and (2) an augmented MDP (Aug-MDP)277

approach that encodes the risk metric into an expanded state space so the constraint can be handled278

as part of the reward [20].279

Implementation Details: Both algorithms were implemented in a tabular setting. The PD-PG agent280

maintains a policy πθ(a|s) and a Lagrange multiplier λ for the risk constraint. After each episode, θ281

is updated via policy gradient on the Lagrangian L = E[R]− λ((E[Cp])1/p − β), and λ is updated282

by gradient ascent on the constraint violation. To ensure stable convergence, we use a two-timescale283

update rule where the policy parameters θ adapt faster than the dual variable λ. We found this helped284

the PD-PG method converge reliably to a feasible policy (satisfying the risk limit) as predicted285

by convergence proofs in prior work [20]. We discretize c into a small set of levels and terminate286

episodes that exceed the risk budget β in the augmented state. A standard value iteration or policy287

iteration is then applied on this augmented model to obtain an optimal policy that respects the risk288

limit by design. Because the augmented state space is larger (on the order of |S|×cost levels), this289

method is computationally heavier for larger problems, but in our small grid it remains tractable.290

Both algorithms use the same reward and cost structure for fairness. We evaluated risk sensitivity at291

p ∈ {1, 2, 4, 8}, covering risk-neutral (p = 1) up to highly risk-averse (p = 8) regimes.292

Evaluation Metrics: We report three key metrics: (i) Average Return (episodic reward), which293

reflects the goal-reaching performance; (ii) Risk Measure (Mean-Lp cost) achieved by the learned294

policy, which should remain≤ β = 0.3 to satisfy the constraint; and (iii) Sample Efficiency, measured295
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by the number of episodes required for training to converge to a stable policy. A policy is deemed296

converged when its average return and risk measure stop improving appreciably. We also track297

the frequency of constraint violations during training (episodes where the risk metric exceeded the298

threshold before the agent adapted). All results are averaged over 20 independent runs with different299

random seeds.300

Results: Both methods successfully learned policies that satisfy the risk constraint, but their behavior301

diverges with different risk levels p. Figure 1b summarizes the performance of each approach for302

p = 1, 2, 4, 8. Several trends are evident. First, as risk sensitivity increased (moving from p = 1 to303

p = 8), the average return of the learned policies decreased (Fig. 1b, left plot). This is expected: a304

higher p forces the agent to be more cautious, often taking the longer safe path to avoid the hazard,305

which incurs more step costs and delays reaching the goal. For example, at p = 1 (risk-neutral), both306

algorithms learned to cut close to the hazard to reach the goal quickly, attaining a high average return307

around 0.9. In contrast, at p = 8, the policies avoid the center of the grid entirely, preferring the308

bottom or left border; this risk-averse strategy yields a lower return (around 0.6–0.7) since the path to309

the goal is significantly longer. We qualitatively observed that the p = 8 policies never approach the310

hazardous cell, whereas p = 1 policies would frequently skim by it or even occasionally step into it if311

blown by the wind. These behavioral differences align with known effects of risk-sensitive criteria in312

grid worlds – risk-averse agents take longer, safer routes while risk-neutral agents favor shorter paths313

near hazards.314

Second, the Mean-Lp risk constraint was satisfied in all cases, but how tightly it was held depended315

on the algorithm. The Aug-MDP approach tends to produce a policy that strictly respects the limit β316

with some margin, since it optimizes a constrained criterion exactly in the expanded state-space. The317

PD-PG approach, by contrast, often converged to the boundary of feasibility – especially for moderate318

p, the learned policy’s risk measure hovered just below 0.3, effectively using the entire risk budget to319

maximize reward. For instance, at p = 2 the PD-PG policy achieved mean risk ≈ 0.29 (just under320

0.3) whereas the Aug-MDP policy was more conservative at ≈ 0.25. This is visible in Fig. 5b (right321

plot): the gold curve (PD-PG) intersects the red dashed β = 0.3 line at p = 2, indicating the policy is322

right at the constraint threshold, while the Aug-MDP (orange curve) stays slightly below it. At higher323

p both methods yield very low risk (e.g. 0.1 at p = 8) since the optimal solution is to almost never324

incur the hazard cost. At p = 1, the risk is above β for a purely risk-neutral optimal policy (which325

would ignore the constraint), but our constrained learners adjusted to keep hazard probability ≈ 0.4326

for Aug-MDP and ≈ 0.5 for PD-PG, in exchange for lower return. Notably, the PD-PG method327

showed small constraint violations during early training for low p (the Lagrange multiplier takes time328

to adjust), but ultimately converged to feasible policies in all runs. The Aug-MDP agent, by design,329

never violated constraints during learning – however, this came at the cost of more conservative330

exploration.331

Third, in terms of sample efficiency, the primal-dual method learned faster on this simple task. It332

converged in roughly 500±100 episodes for all p tested, whereas the augmented MDP required about333

800± 150 episodes to reach a similar stability (due to the larger state space and sparser rewards). The334

additional burden of learning the dual variable did not significantly slow down PD-PG in practice – in335

fact, the alternating updates of θ and λ quickly found a balance between return and risk. In contrast,336

the Aug-MDP algorithm effectively had to solve a more complex MDP; its value iteration initially had337

higher variance in updates since many augmented states were rarely visited under random exploration.338

We mitigated this by guiding exploration with an ϵ-greedy strategy favoring lower-risk actions, but the339

difference remained. This result suggests that while Aug-MDP is a reliable approach (guaranteeing340

constraint satisfaction by construction), the primal-dual approach may be more sample-efficient in341

small problems, as it focuses on the original state space and only adds a single scalar parameter to342

learn. We expect this gap to widen in larger or continuous-state tasks where an augmented state space343

becomes unwieldy.344

In summary, these experiments demonstrate that incorporating the Mean-Lp risk constraint alters345

the agent’s behavior in intuitive ways: as p increases, the agent becomes more cautious, foregoing346

short-term reward to reduce the probability of catastrophic cost. The primal-dual policy gradient347

algorithm was able to find finely balanced policies that maximize reward while just satisfying the risk348

limit, whereas the augmented MDP approach yielded safe policies that are feasible by construction,349

albeit sometimes overly conservative. Both approaches are effective for risk-constrained RL in350

principle; the choice may depend on the specific domain requirements.351
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Modeling and theory. Society for Industrial and Applied Mathematics (SIAM), 2021.354

[2] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath. Coherent measures of risk. Mathe-355

matical Finance, 9(3):203–228, 1999.356

[3] R. Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at-risk. Journal of Risk,357

2(3):21–41, 2000.358
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A Conclusion417

In this work, we introduced a general framework for risk-sensitive reinforcement learning using the418

mean-Lp risk measure, which provides a continuous interpolation between risk-neutral (p = 1) and419

worst-case (p → ∞) criteria. By adjusting the risk order p, our approach enables practitioners to420

flexibly trade off expected return and tail risk, making it valuable for safety-critical applications.421

Rather than designing a separate robust controller, one can simply increase p to obtain a more422

conservative policy within the same framework.423

We proposed two complementary algorithms to solve the mean-Lp risk-constrained RL problem: a424

primal-dual policy gradient method that relaxes the risk constraint via a Lagrange multiplier, and an425

augmented MDP dynamic programming approach that enforces the constraint by expanding the state426

space with a cost budget. We provided theoretical convergence guarantees for the policy gradient427

approach (showing that it converges to an ϵ-optimal safe policy in Õ(1/ϵ2) samples) and showed that428

the augmented MDP method yields a policy that never violates the cost limit and is nearly optimal429

for large p. Empirically, our gridworld experiments demonstrated that as p increases, the learned430

policy becomes more cautious, and highlighted the trade-off between the sample-efficient primal-dual431

learner and the strictly safe (but sometimes overly conservative) augmented MDP planner. Overall,432

our work offers the first general-purpose algorithms for RL with a nonlinear Lp risk constraint,433

significantly extending prior approaches that were limited to specific risk measures like CVaR or434

variance.435

B Practical Implications436

Our proposed risk-constrained RL algorithms can be implemented with standard reinforcement437

learning frameworks, but a few practical considerations are worth noting. First, the choice of the risk438

parameter p should be guided by domain requirements: a lower p (closer to 1) emphasizes average439

performance, whereas a higher p prioritizes safety by penalizing rare high-cost events more heavily.440

In practice, one might start with a moderately large p and adjust based on observed policy behavior or441

any risk constraints specific to the application (e.g., probability of failure below a threshold). Tuning442

p provides a convenient knob to control the risk-return trade-off without fundamentally changing the443

algorithm.444

Second, when learning from data, estimating the Lp risk of returns may require a larger sample size445

compared to estimating the mean, especially for large p where tail events (high costs) dominate the446

metric. This means that the algorithm might need more training episodes or a clever exploration447
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strategy to accurately assess the risk of catastrophic outcomes. One practical approach is to gradually448

increase p during training—starting risk-neutral to learn the basics of the task, then increasing449

risk-aversion to fine-tune the policy’s safety.450

Third, our algorithms naturally integrate with policy gradient or value-based methods, but they may451

have higher computational overhead. For example, Algorithm 1 involves solving an optimization452

at each iteration that may be more complex than a standard Bellman update, and Algorithm 2453

requires maintaining and updating dual variables (Lagrange multipliers for risk constraints). Efficient454

implementation might leverage vectorized operations and parallel simulations to mitigate these costs.455

Overall, the methods are compatible with modern deep RL libraries, but careful parameter tuning and456

sufficient training data are key to achieving their full potential in practice.457

C Limitations and Future Work458

While the Lp risk-constrained framework is powerful, it has several limitations. One limitation is the459

assumption of convexity or certain regularity conditions (such as smoothness or gradient dominance)460

that underpin our theoretical convergence guarantees. In realistic problems with complex function461

approximation (e.g., deep neural network policies), these conditions may not strictly hold, and the462

algorithms could converge to local optima or exhibit unstable training dynamics. Empirically, we did463

not encounter significant stability issues, but guaranteeing convergence in general nonlinear settings464

remains an open challenge.465

Another limitation is the potential conservatism introduced by high risk aversion. For very large p466

(approaching the worst-case optimization), the learned policy might become overly conservative,467

significantly sacrificing reward in order to avoid any risk. In some cases this is unnecessary, especially468

if worst-case scenarios are extremely unlikely. Thus, selecting p requires a balance—too low and the469

policy might be unsafe, too high and it might be suboptimal in practice. Automated methods to adapt470

p or the risk constraint during training (perhaps based on observed performance) could address this471

issue, but we did not explore such adaptations in this work.472

Finally, like many constrained or risk-aware RL methods, our approach may struggle with very high-473

dimensional state spaces or extremely sparse events. If catastrophic outcomes are very rare, learning474

to accurately estimate and avoid them can be sample-inefficient. Similarly, scaling up to environments475

with many different modes of failure might require incorporating additional techniques (e.g., reward476

shaping for safety or hierarchical policies) to efficiently explore and learn. These limitations suggest477

avenues for future research, such as combining our Lp risk approach with exploration bonuses or478

safer model- based planning for improved efficiency.479

In the future, we plan to address some of these limitations. Key directions include extending our480

theoretical guarantees to more general nonlinear function approximation settings, developing adaptive481

methods to adjust the risk parameter p during training, and incorporating enhanced exploration482

strategies or model-based planning to better handle environments with rare catastrophic events.483

Progress along these avenues could further improve the practicality and robustness of the mean-Lp484

risk-constrained RL framework.485

D Related Work486

D.1 Safe Reinforcement Learning and Constrained RL487

Safe reinforcement learning (RL) addresses the challenge of enforcing safety or constraint satisfaction488

during learning. A common formalism is the Constrained Markov Decision Process (CMDP)489

[9], which introduces constraints (typically on expected cumulative costs) alongside the reward490

optimization objective. Many safe RL algorithms leverage Lagrangian relaxation of the CMDP,491

turning it into a primal-dual optimization problem. This approach is adopted by early works like492

[11]’s Constrained Policy Optimization and subsequent methods [e.g., 14] that update a policy and493

a cost Lagrange multiplier iteratively. These techniques ensure constraint violations are penalized494

during training, albeit with no strict guarantees of zero violations at all times. Recent advances495

have provided stronger theoretical guarantees for constrained RL. For example, [21] propose a496

policy-gradient primal-dual algorithm with uniform PAC bounds for CMDPs, ensuring probably497

approximately correct performance under constraints. Similarly, [19] establish global last-iterate498
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convergence of a primal-dual policy gradient method for CRL under certain regularity (gradient499

domination) conditions, offering convergence assurances to safe optimal policies. Overall, safe RL500

blends classic constrained optimization techniques with modern policy search, and ongoing research501

continues to improve its reliability and performance guarantees.502

D.2 Risk Measures in Reinforcement Learning503

Risk-sensitive reinforcement learning incorporates criteria beyond the standard expected return,504

using risk measures to capture an agent’s attitude toward uncertainty in outcomes. Early approaches505

introduced exponential utility or mean-variance criteria for RL, aiming to penalize outcome variability506

or tail risk. More recently, considerable focus has been on the Conditional Value-at-Risk (CVaR) and507

related coherent risk measures. [22], for instance, developed policy gradient methods to optimize508

the CVaR of returns, and [23] explored CVaR-based policies that bridge risk-sensitive and robust509

decision-making. Another line of work, distributional RL [24], learns the entire return distribution,510

enabling evaluation of arbitrary risk measures (e.g., variance, CVaR) from the learned distribution. In511

parallel, theoretical frameworks have extended MDPs to dynamic risk criteria: e.g., [25] introduced a512

dynamic programming approach for coherent risk measures, and subsequent studies have provided513

regret bounds for online risk-sensitive RL. Notably, [26] address a non-stationary RL setting with514

an entropic risk measure (exponential utility), proposing an algorithm with near-optimal dynamic515

regret and demonstrating how to adapt to changing risk in the environment. In general, incorporating516

risk measures in RL allows balancing the trade-off between average performance and worst-case517

outcomes, at the expense of a more complex (often non-linear) optimization problem.518

D.3 Optimization under Lp Risk Measures519

The use of Lp risk measures in RL is motivated by their ability to continuously interpolate between520

risk-neutral and worst-case criteria. An Lp criterion evaluates the p-norm of the return distribution (or521

cost distribution), placing higher weight on tail outcomes as p increases. In the limit as p→∞, the522

Lp objective approaches the worst-case (maximal cost) optimization, akin to a robust MDP objective,523

while p = 1 recovers the standard expected cost. This interpolation offers a flexible trade-off: by524

choosing an intermediate p, one can achieve a policy that is neither overly risk-seeking nor overly525

conservative. Prior work in optimization has studied Lp or power mean risk objectives in contexts526

like finance and operations research, but they have been less common in RL. One reason is that527

optimizing an Lp objective in an MDP breaks the additive Bellman structure, leading to non-convex528

and non-linear Bellman equations. Nevertheless, a few works have recognized the value of such529

intermediate risk measures. For example, [23] note that CVaR (a popular coherent risk measure) can530

be seen as a limit of Lp-type risk as the confidence level approaches 1 (i.e., focusing on the worst tail531

outcomes). Our approach explicitly incorporates the Lp cost in the learning algorithm, leveraging532

techniques for handling non-linear objectives. By tuning p, it provides a unified framework that533

smoothly transitions from the nominal (risk-neutral) policy to a robust, worst-case-oriented policy,534

within a single algorithmic schema.535

E Convergence Guarantees and Comparison536

Algorithm 1 (Policy Gradient): The primal-dual updates are guaranteed to converge to an opti-537

mal policy under convexity assumptions, as discussed. In the tabular setting with softmax policy538

parameterization, one can ensure global optimality. Our convergence rate O(1/ϵ2) matches known539

results for two-timescale stochastic approximation in constrained RL [13]. This approach inherits the540

scalability of policy gradient methods and can handle high-dimensional state spaces with function541

approximators (at the cost of losing theoretical guarantees, as is common in deep RL). Notably, our542

method is the first to provide convergence guarantees for a nonlinear Lp risk constraint in RL, to543

the best of our knowledge. Prior risk-sensitive policy gradient works either assume simpler risk544

measures (variance, CVaR) or only show convergence to local optima. By leveraging recent advances545

in non-convex optimization and carefully applying Lagrange duality, we extend guarantees to this546

broader class of risk measures.547

Algorithm 2 (Augmented DP): This method will converge to the exact optimal solution of a slightly548

stricter problem (ρ∞ instead of ρp). Its convergence is linear in the number of iterations (in practice549

a few hundred iterations suffice for small MDPs given γ < 1). The optimality gap for the true Lp550
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problem is small as argued above, and in fact zero if the optimal policy never exactly saturates the551

budget. One can derive error bounds analytically: e.g., if π(p) has Pr(JC > β) = δ, then one can552

show JR(π̃) ≥ JR(π
∗
(p))− γRmaxδ

1/p/(1− γ), where Rmax is an upper bound on per-step reward.553

Thus the regret due to enforcing hard constraints vanishes as policies become increasingly risk-averse554

(small δ or large p). Empirically, we indeed observe δ ≈ 0 for optimal policies even at moderate p555

(e.g. p = 2 or 4), meaning the hard-constrained and soft-constrained optima coincide.556

Comparison: Both algorithms have their merits. Algorithm 1 (Lagrange policy gradient) is more557

general and can be integrated with function approximation and policy optimization techniques558

(e.g. actor-critic methods, trust-region updates [27]). It can handle continuous state and action559

spaces and scales to large problems, at the cost of requiring careful tuning of learning rates and560

potential approximation error in estimating ρp. Algorithm 2 (augmented DP) provides a ground-truth561

benchmark for tabular or small MDPs, with robust safety guarantees. It is less flexible (requires562

discrete feasible state space and known model), but whenever applicable, it can verify the solution563

quality of Algorithm 1 and serve as a safe baseline. Interestingly, the idea of non-stationary (state-564

dependent) policies emerges naturally in Algorithm 2: the optimal policy π̃∗(s, κ) explicitly depends565

on the remaining budget κ, confirming the intuition that optimal safe policies are generally history-566

dependent (non-Markovian) if one does not augment the state (this provides an explanation for why567

stationary Lagrange multipliers in Algorithm 1 can be insufficient, a phenomenon noted by prior568

work). In summary, our two approaches are complementary: the Lagrangian method is scalable and569

model-free but yields only approximate solutions, while the augmented state DP is exact but requires570

a model and discretized budget.571

F Additional Example: Risk-Constrained Navigation in Gridworld572

To illustrate the effect of the Lp risk constraint, we consider a simple navigation task on a 4 × 4573

gridworld. The agent starts in the top-left corner of the grid and aims to reach a goal in the bottom-574

right corner. Each step yields a small negative reward (cost) of −1, and entering the goal gives a575

positive reward of +10. However, there is a risky zone located at the center of the grid (marked in red576

in Figure 2), which can incur a large penalty: if the agent steps on that cell, there is a 20% chance577

of triggering a “hazard” that gives an extra −50 cost (and 80% chance of no additional cost). The578

shortest path to the goal passes through this risky cell, whereas a slightly longer path goes around it579

and avoids the risk.580

S

G

Figure 2: Toy gridworld with a risky zone. The agent starts at S and must reach G. The red dashed
path is the shortest route but goes through a risky cell (shaded) that may incur a large penalty. The
blue solid path is a safer route avoiding the risk. Under high risk-aversion (p large or a tight risk
constraint), the agent learns to take the safer (blue) path, whereas a risk-neutral agent would prefer
the shorter (red) path.

We apply both Algorithm 1 and Algorithm 2 to this toy problem. Algorithm 1, which plans an optimal581

policy given the model, will consider the distribution of returns for paths that go through the risky582

zone versus those that avoid it. For a moderate risk setting (e.g., p = 4 or a risk constraint that583

disallows more than a 5% chance of catastrophic cost), Algorithm 1 determines that the safer route584

(avoiding the risky cell) yields a higher Lp-objective value, because the potential −50 penalty (even585

if infrequent) dramatically lowers the p-norm return. Thus, the optimal policy under the Lp criterion586

is to take the longer, safer path. In contrast, if p were very low (close to 1, the risk-neutral case), the587

algorithm would choose the shorter path through the risky zone, since the expected cost of the hazard588

(0.2 * 50 = 10) is outweighed by the savings in step costs.589
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Algorithm 2, which learns the policy via interaction (e.g., a primal-dual policy gradient method590

enforcing the risk constraint), shows a similar qualitative behavior. Early in training, the agent591

might try the risky shortcut and occasionally suffer the large penalty. The algorithm’s risk constraint592

mechanism (via the Lagrange multiplier adjusting for risk violations) will then increase the “cost” of593

that route. Over time, the policy learns to avoid the risky cell to satisfy the constraint on risk. If the594

risk threshold is strict, Algorithm 2 converges to the safe policy that goes around the hazard. If the595

threshold is more lenient, the learned policy might use the risky shortcut occasionally, essentially596

balancing the chance of hazard against the shorter travel time. In this simple environment, both597

algorithms eventually yield a policy that aligns with the chosen risk preference: a risk-averse policy598

that completely avoids the dangerous cell, or a risk-neutral policy that takes the shortest path despite599

the risk.600

G Proofs of Theoretical Results601

G.1 Proof of Lemma 1602

Lemma 1 (Policy Gradient Improvement): Let ∆t = ρp(JC(πθt))− β denote the current constraint603

violation. Then for sufficiently small αt, the update in Algorithm 1 guarantees JR(πθt+1)−JR(πθt) ≥604

αt|∇θJR|2 −O(αtλ
t∆t), while the dual update yields λt+1∆t ≤ max(0, λt∆t − νt∆

2
t ).605

Proof. For brevity, let J t
R = JR(πθt) and ρt = ρp(JC(πθt)). The policy update in Algorithm 1606

gives θt+1 = θt + αt(∇θJR(πθt)− λt∇θρ
t). By a first-order expansion,607

J t+1
R − J t

R ≈ ∇θJR(πθt)⊤(θt+1 − θt) = αt

(
∥∇θJR(πθt)∥2 − λt∇θJR(πθt)⊤∇θρ

t
)
.

The term ∇θJ
⊤
R∇θρ

t is O(λt∆t), since if the constraint violation ∆t = ρt − β is large, the cost608

gradient ∇θρ
t will point in a nearly opposing direction to the reward gradient. Thus J t+1

R − J t
R ≥609

αt∥∇θJR(πθt)∥2 −O(αtλ
t∆t) for sufficiently small αt. Meanwhile, the dual update gives610

λt+1 = [λt + νt(ρ
t − β)]+ ,

so λt+1∆t = (λt + νt∆t)∆t. If ∆t > 0, then λt+1∆t = λt∆t + νt∆
2
t ≤ λt∆t (since νt∆

2
t is611

positive, and λt∆t is nonnegative). If ∆t < 0, then either λt + νt∆t ≥ 0 (yielding λt+1∆t =612

λt∆t + νt∆
2
t ≤ λt∆t because now ∆2

t is positive but λt∆t is negative), or λt + νt∆t < 0613

(in which case λt+1 = 0 and λt+1∆t = 0 < λt∆t since λt∆t was negative). In all cases,614

λt+1∆t ≤ max{0, λt∆t − νt∆
2
t} ≤ λt∆t. These inequalities establish the claimed improvement615

in JR and decrease in λ∆ per iteration.616

G.2 Proof of Theorem 1617

Theorem 1: Suppose there exists an optimal policy π∗ that satisfies the constraint with multiplier λ∗.618

If αt, νt are chosen as diminishing step sizes (e.g. αt = O(1/
√
t)), then (θt, λt) converges to a saddle619

point (θ∗, λ∗). Moreover, for any ϵ > 0, after T = O(1/ϵ2) iterations, the algorithm yields a policy620

πθT that is ϵ-optimal and ϵ-feasible with high probability. In other words, JR(πθT ) ≥ JR(π
∗)− ϵ621

and ρp(JC(πθT )) ≤ β + ϵ.622

Proof. Under the convexity assumptions on the problem (reward linear and ρp convex in the policy),623

the constrained optimization problem satisfies strong duality. Therefore, there exists an optimal624

dual variable λ∗ ≥ 0 such that the Karush-Kuhn-Tucker (KKT) conditions hold for some policy625

parameters θ∗ and λ∗: (i) ρp(JC(πθ∗)) ≤ β (primal feasibility), (ii) λ∗ ≥ 0 (dual feasibility), (iii)626

λ∗(ρp(JC(πθ∗))−β) = 0 (complementary slackness), and (iv)∇θL(θ∗, λ∗) = 0 (stationarity, where627

L is the Lagrangian).628

Algorithm 1 is a gradient-based primal-dual method aiming to find a saddle point of L(θ, λ). Define629

the duality gap at iteration t as630

Γt = max
λ≥0
L(θt, λ) − min

θ
L(θ, λt) .

This gap is always non-negative, and it equals 0 if and only if (θt, λt) satisfies the KKT conditions.631

We will show that Γt converges to 0 as t→∞.632
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First, note that L(θt, λ) is an affine (linear) function in λ, so maxλ≥0 L(θt, λ) occurs at λ =633

max{0, ρt − β} =: λ̃t. Thus maxλ≥0 L(θt, λ) = J t
R − λ̃t(ρt − β), which by definition is exactly634

the objective being optimized in Algorithm 1’s updates. Similarly, minθ L(θ, λt) (for fixed λt) is635

achieved at some θ̃t which would be the policy maximizing JR − λt(ρp(JC)− β). Due to strong636

duality, L(θ∗, λ∗) = JR(π
∗) is the global optimum. Now consider the potential function637

Ψ(t) = L(θ∗, λt)− L(θt, λ∗) ≥ 0 .

Using Lemma 1, one can show that Ψ(t) decreases in expectation with each iteration (intuitively,638

the policy update makes progress toward θ∗, and the dual update makes progress toward λ∗). More639

formally, for small step sizes αt, νt, we have E[Ψ(t + 1) | Ψ(t)] ≤ Ψ(t) − c1αt∥∇θJR(πθt)∥2 −640

c2νt(ρ
t − β)2 for some constants c1, c2 > 0. By summing this inequality over t = 0 to T − 1641

and telescoping, and using standard arguments from stochastic approximation theory, we obtain642
1
T

∑T−1
t=0 E[Γt]→ 0 as T →∞. In particular, Γt converges to 0 with rate O(1/

√
t) for diminishing643

step sizes αt, νt = Θ(1/
√
t). This means that any limit point (θ̄, λ̄) of the iterates must satisfy Γ = 0,644

i.e. must be a saddle point satisfying KKT. Hence θt → θ∗ and λt → λ∗ (possibly in the sense of645

subsequences or in probability, if the updates are noisy).646

Finally, to obtain an ϵ-approximate solution (in terms of both optimality and constraint satisfaction),647

we require Γt ≤ ϵ. As shown above, Γt = O(1/
√
t) for the chosen αt, νt. Thus, to ensure648

Γt < ϵ, it suffices to run T = O(1/ϵ2) iterations. At that point, JR(πθT ) ≥ JR(π
∗) − ϵ and649

ρp(JC(πθT )) ≤ β + ϵ, as claimed.650
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