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ABSTRACT

Incremental Objection Detection (IOD) facilitates the expansion of the usage scope
of object detectors without forgetting previously acquired knowledge. Current
approaches mostly adopt response-level knowledge distillation to overcome for-
getting issues, by conducting implicit memory replay from the teacher model on
new training data. However, this indirect learning paradigm does not fully leverage
the knowledge generated by the teacher model. In this paper, we dive deeper into
the mechanism of pseudo-labeling in incremental object detection by investigating
three critical problems: (a) the upper bound quality of the pseudo labels is greatly
limited by the previous model, (b) fixed score thresholds for label filtering, without
considering the distribution across categories, and (c) the confidence score gener-
ated by the model does not well reflect the quality of the localization. Based on
these observations, we propose a simple yet effective pseudo-labeling continual
object detection framework, namely PseDet. Specifically, we introduce the spatio-
temporal enhancement module to alleviate the negative effects when learning noisy
data from the previous model. Considering the score distribution divergence across
different classes, we propose the Categorical Adaptive Label Selector with a simple
mathematical prior and fast K-Means pre-computation to dynamically determine
the class-wise filtering threshold. In order to align the label score with the localiza-
tion quality of the pseudo labels, we project the score through non-linear mapping
to calibrate the distribution and integrate it into the new-step supervision. Extensive
experiments on the competitive COCO benchmarks demonstrate the effectiveness
and generalization of PseDet. Notably, it achieves 43.5+/41.2+ mAP under the
1/4-step incremental settings, achieving new state-of-the-art performance. Code is
available at https://github.com/wang-qiuchen/PseDet.

1 INTRODUCTION

Object detection is a fundamental and important task with various applications (Li et al., 2020; Tian
et al., 2019; Zhang et al., 2020b; Chen et al., 2021). However, static detectors cannot well fit the
needs of real-world scenarios since the changing environments and extra demands require the model
to seamlessly adapt to new class detection with updated training data (Joseph et al., 2021; Caccia
et al., 2021). Such a problem, which refers to incremental object detection (IOD), denotes the ability
of object detectors to acquire new knowledge without forgetting (Liu et al., 2023b;a). Concretely,
training samples for different categories are observed at varied training steps, and the detectors are
restricted from accessing the ground truth labels in the past steps.

Previous approaches mainly adopt knowledge distillation (KD) (Chen et al., 2017; Hinton et al.,
2015) to overcome the catastrophic forgetting problem. By distilling from the intermediate products
generated by the teacher model, it provides direct supervision to enforce the new model to be close to
its former one. This imposes an implicit regularization to the update of the training model. Such a
distillation framework can also be viewed as a special case of pseudo-labeling, where the distillation
targets are actually treated as pseudo-labels during new-step training.
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Despite being effective, it does not fully anticipate the potential benefits of pseudo-labels. Specifically,
we observe three critical issues in current paradigms: (1) the upper bound quality of distillation
supervision is greatly limited by the previous (teacher) model. Due to the learning ability of different
detectors, the localization quality generated by the previous model is far from the ground truth.
Directly enforcing the target model to mimic the knowledge from these noisy (mixed-quality) data
can confuse the learning process of the model and even deteriorate the performance. (2) object
detectors tend to exhibit score biases across different categories (Figure 3) due to the data distribution
and learning difficulty of the training labels. However, current works mostly set hard thresholds for
all classes for label filtering, e.g., 0.3, which overlooks the score divergence at the category level, and
(3) in order to fully leverage the information generated from the pseudo labels, we carefully examine
the relationship between confidence score and localization quality. Though the confidence score is
viewed as the metric to reflect the quality of detected bounding boxes, we empirically find these two
variables do not demonstrate linear correlations. Therefore, simply taking the confidence score as the
label quality for new-step training may introduce extra noise for the model.

Based on the above observations, we propose a simple yet effective pseudo-labeling continual object
detection framework, namely PseDet, which fully leverages the intermediate labels for effective
model regularization. To eliminate the noisy information from the immature previous model, we
introduce the Spatio-Temporal Enhancement Module, which enhances the label quality along the
spatial and temporal dimensions. By augmenting inputs at different input scales and different steps,
we seamlessly improve the quality of the generated labels with the multi-group ensemble. In terms of
the score distribution divergence across different classes, we propose the Categorical Adaptive Label
Selector to dynamically determine the threshold on different categories with a simple mathematical
prior and fast K-Means pre-computation. It removes the massive human efforts to manually select
the filtering threshold for each class and greatly ameliorates the final label quality. Besides, to align
the confidence score and localization quality of the generated labels, we project the score through a
non-linear mapping function to calibrate the distribution and seamlessly integrate it into the new-step
training. Thanks to these enhancements on the pseudo-labeling, PseDet achieves 43.5+/41.2+ mAP on
the challenging COCO dataset under 1/4 steps training settings, surpassing previous state-of-the-art
by a large margin.

Our contributions are summarized in three-fold:

• We revisit the strategy of pseudo-labeling on incremental object detection and identify three
critical problems that hinder it from achieving competitive performance.

• Based on the above findings, we propose PseDet, a simple yet effective pseudo-labeling
framework for incremental object detection, which consists of three key components: spa-
tiotemporal enhancement module, categorical adaptive label selector, and confidence score
calibration supervision.

• Extensive experiments conducted on the MS COCO dataset with various incremental settings
validate the effectiveness and generalization of our approach. Notably, PseDet outperforms
previous methods by 4∼17 mAP on different learning settings, achieving new state-of-the-art
in incremental object detection.

2 RELATED WORKS

2.1 INCREMENTAL LEARNING

Incremental learning has been studied by the machine learning community for a long time (Schlim-
mer & Granger, 1986; Masana et al., 2022; Joshi & Kulkarni, 2012), with the main goal of alle-
viating the catastrophic forgetting problem (Kemker et al., 2018; Goodfellow et al., 2013; Hayes
et al., 2020). Generally speaking, there are four classes of approaches. Firstly, memory-based
approaches (Chaudhry et al., 2018; Zhang et al., 2020a; Lopez-Paz & Ranzato, 2017; Caccia et al.,
2021) use a small-sized cache to store information from previous tasks, which are replayed when
training the model on new tasks. Secondly, during the current task training, regularization-based
methods (Kirkpatrick et al., 2017; Zenke et al., 2017; Li & Hoiem, 2017) regularize the updating
of those model parameters that are important to previous tasks. For example, EWC (Kirkpatrick
et al., 2017) measures the parameter importance using Fisher information matrices, whose compu-
tation efficiency is improved in the subsequent work SI (Zenke et al., 2017). Thirdly, parameter

2



Published as a conference paper at ICLR 2025

isolation-based methods (Rusu et al., 2016; Yoon et al., 2019; Fernando et al., 2017; Kang et al.,
2022), e.g., PathNet (Fernando et al., 2017) aims to separate the model parameters of each task by
learning task-dependent sub-networks, so that they will not be able to affect each other. Finally, the
knowledge distillation-based approaches (Li & Hoiem, 2017; Rebuffi et al., 2017; Wu et al., 2019),
e.g., LwF (Li & Hoiem, 2017), explicitly inject task-dependent information of previous tasks through
knowledge distillation. For example, in iCaRL (Rebuffi et al., 2017), knowledge distillation is used
to alleviate the excessive deterioration problem.

2.2 INCREMENTAL OBJECT DETECTION

While there is a significant amount of research focusing on incremental learning for image classi-
fication, solving the incremental learning for object detection (Peng et al., 2021; Perez-Rua et al.,
2020; Li et al., 2019; Joseph et al., 2021; Feng et al., 2022) is a non-trivial task. (Liu et al., 2020)
first proposes a weight consolidation approach by applying EWC to two-stage detectors like Faster
R-CNN. MVCD (Yang et al., 2022) introduces feature and response distillation by splitting channels
and spatial features for model regularization. Elastic Response Distillation is proposed in (Feng
et al., 2022) to conduct knowledge distillation on detector classification and regression branches.
CL-DETR (Liu et al., 2023a) explores the incremental detection setting in the scope of detection
transformer. SDDGR (Kim et al., 2024) leverages a generative model based on stable diffusion to
mitigate catastrophic forgetting. Besides, (Joseph et al., 2021) leverages open-world approaches to
integrate incremental learning and open-set object detection.

3 PSEDET

In this section, we first provide the problem formulation on incremental object detection (§ 3.1). Then
we briefly introduce the overall framework of PseDet (§ 3.2), which consists of three key components,
Spatio-Temporal Enhancement Module (§ 3.3), Categorical Adaptive Label Selector (§ 3.4), and
Confidence Score Calibration Supervision (§ 3.5).

3.1 PROBLEM FORMULATION

Incremental object detection (IOD) aims to detect interested objects across class domains in multiple
steps, where we assume that there are N steps. Let D denotes a complete dataset comprising images
x and their corresponding annotations y, which can be represented as {x, y|(x, y) ∈ D}. Meanwhile,
let C represent the category of the annotated objects in D, and we partition the dataset into N subsets
within the class domain C = C1 ∪ · · · ∪ CN . In step i, the model can only access the labels belonging
to category Ci, but it cannot access previously learned categories C1:i−1, even if objects of those
categories exist in the images. The model needs to maintain the ability to detect class C1:i−1 while
learning to detect new ones Ci, as each class is only learned once.

3.2 OVERALL FRAMEWORK

The overall framework of our approach is shown in Figure 1. During each step of training, PseDet first
prompts the previous model to generate improved pseudo labels with the proposed Spatio-Temporal
Enhancement module, by attenuating noise at its source through label fusion in both the spatial and
temporal domains. Then, the Categorical Adaptive Label Selector dynamically adjusts thresholds
for each class within every mini-batch, automating the whole filtering process to assure the quality of
pseudo labels across different categories. Finally, when computing the loss Lcls on the target model,
we introduce the Confidence Score Calibration Supervision to align the confidence score with
the localization quality through non-linear mapping and seamlessly integrate it into the supervision
process.

3.3 SPATIO-TEMPORAL ENHANCEMENT MODULE

In most incremental object detection frameworks, the detection performance of learned categories
gradually declines as the learning progresses step by step. This is possibly due to the reorganization
of the parameter space, which is caused by the limited model capacity as new knowledge is learned.
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Figure 1: The overall framework of PseDet for incremental object detection. We introduce three
critical components to maximize the power of pseudo-labels in IOD: Spatio-Temporal Enhancement
module, Categorical Adaptive Label Selector, and Confidence Score Calibration Supervision.

However, we assume that such a decline can also be attributed to noise interference during the knowl-
edge transfer process. Maximizing the signal-to-noise ratio of the information source and minimizing
noise in the transmission process is crucial for improving the accuracy of information transmission.
Inspired by this, we enhance pseudo-labels at the spatial domain to reduce the discrepancy when
inferring pseudo-labels from the old model. Moreover, in multi-step scenarios, we conduct fusion in
the temporal domain to prevent the accumulation and magnification of noise across steps.

Current approaches enhance supervision by leveraging zero-shot learning methods to generate labels
or by simply replaying labels. To avoid introducing more complex networks and operations, we
employ a straightforward strategy by applying a series of spatial transformations to the inputs. Inputs
processed through different augmentation techniques can aid the model in detecting objects of varying
types and sizes, thus improving the robustness of the model. Formally, we define an augmentation
transformation set A, which encompasses transformations applied to image tensors in the spatial
domain. For input image x ∈ D transformed via Ai, we use the old model Φold to predict objects
that belong to the old categories:

yi = Φold(Ai(x)), (1)
where yi is the prediction of the model Φold after transformationAi. Note that all these augmentation
operators are invertible. Once the predictions are obtained, we simply reverse them back to the
original space and perform unified fusion operations:

P = F(A−1
1 (y1), · · · , A−1

i (yi)), (2)

where P is the set of pseudo-labels passed to the next step, A−1
i denotes the reverse transformation

of Ai, for inputs that are horizontally flipped, A−1 re-flips the model’s output horizontally; for scaled
inputs, it scales them back to their original size. F represents spatial fusion, typically using NMS
with an IoU threshold of 0.4.

The quality of pseudo-labels generated by the teacher model decreases as the incremental learning
progresses. In the context of multi-step incremental learning, the knowledge acquired earlier is
contaminated by accumulated noise more severely as the training continues. This contamination can
potentially deteriorate the model’s ability to effectively learn new classes. Therefore, we introduce the
temporal domain enhancement to minimize the model’s susceptibility to noise interference. Suppose
the model can access ground truth labels of categories Ci and pseudo-labels of categories Ci−1 at
step i, we collect the optimal pseudo-labels P in the temporal domain:

P = P1 ∪ · · · ∪ Pi−1, (3)

where P1:i−1 represents the pseudo-labels generated by the model Φ1:i−1, containing the set of
categories C1:i−1. By combining the spatial and temporal enhancement, our PseDet greatly alleviates
the noise influence from the old label and greatly improves the label quality.
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3.4 CATEGORICAL ADAPTIVE LABEL SELECTOR

In IOD tasks, the key reason for catastrophic forgetting by the detector is the shift between the new
labels and the previously learned ones (Liu et al., 2023b). While images contain both old and new
classes, annotations only contain labels for objects of the current class, causing the model to consider
the old classes as background during the fitting process to the current dataset of this step.

Pseudo-labeling provides an effective solution to transfer such knowledge across different steps.
Simply applying different thresholds to filter labels based on confidence score leads to fluctuated
performance depending on the threshold selection. As shown in Figure 2, a common issue in pseudo-
labeling methods is that the performance of the detector is highly sensitive to the threshold. When the
threshold is too small, a large amount of noise can mislead the detector’s training. Conversely, when
the threshold is too large, many valid pseudo-labels may be discarded, leading to significant forgetting.
Not only that, as shown in Figure 3, we observe that the score distribution of pseudo-labels changes
with each step in continual learning. It is unrealistic to manually determine the threshold for each
class, especially under the incremental learning setting. Therefore, it is non-trivial to automatically
determine the score threshold for label quality filtering.

Interestingly, we observe a distinct clustering of confidence scores for noisy and high-quality boxes,
primarily in the low-confidence region, with evident class-specific characteristics. Based on the
varying distributions of true positives (TP) and false positives (FP), we employ K-Means to fit these
distributions for different classes, dynamically determining class-wise thresholds.

Algorithm 1 Pseudo label selection in stage i

Input: candidate pseudo label set Pinput; k-means input queue length N .
Output: selected pseudo label Poutput

Initialize the confidence score queue Qc ← {} for each category c ∈ C1:i−1

for (S, C) ∈ Pinput do
Add the confidence score to the queue Sc → Qc

end for
for c ∈ C1:i−1 do
K-means(Qc)→ Dc

T ,Dc
F

end for
Poutput = D1

T ∪ · · · ∪ D
i−1
T .

Algorithm 1 provides a detailed demonstration of dynamic class-wise pseudo-label filtering process.
As the distribution of confidence varies across classes, we initialize a queue Qc for each category
Ci. We first enqueue the samples Sc of this batch, while the sample at the front of the queue will
be dequeued. For each queue, we apply K-Means to fit the true and false distributions. The final
output is the union of positive samples across all categories. Our method effectively filters noise by
combining short-term memory with statistical methods, achieving high performance.
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3.5 CONFIDENCE SCORE CALIBRATION SUPERVISION

Different from the carefully human-annotated ground truth obtained at the current stage, pseudo-
labels are inferred from the previous detector, containing a significant amount of unexpected noise. It
not only leads to forgetting but also interferes with the learning of new classes at the current step.
Previous works tend to filter out low-confidence noise directly to retain accurate pseudo-labels, which
leads to significant knowledge forgetting. As shown in Figure 2, using a higher threshold directly to
filter noise P = {(sc, c)|sc > sthres} results in a significant performance drop.
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Figure 4: Distribution of IoU-Score for pseudo-labels before and after mapping, along with the
plot of the mapping function. In the top left corner of the distribution plot is the Pearson Correlation
Coefficient (higher is better), which measures the strength of the correlation between IOU and score.
From (a) and (b), it can be observed that after mapping, labels with high IoU are concentrated in
the high-score region compared to before mapping, benefiting the model’s attention to high-quality
pseudo-labels.

Recent work (Jiang et al., 2018) suggests that confidence scores can indicate label accuracy, implying
higher attention should be given to samples with higher scores during model training. However, our
findings show a non-linear relationship between label quality and confidence scores. Therefore, we
map the confidence score s to a quality coefficient q, which better represents label accuracy. As
shown in Figure 4a, the scatter plot of IoU versus s is not linear around the line y = x. In the interval
s = [0.5, 1], bounding box quality improves significantly, while in s = [0, 0.5], accuracy is generally
lower. The sigmoid function is suitable for mapping q and s, with translation and scaling to ensure it
operates within [0,1]:

q(s) = sigmoid(α · (s− δ)) =
1

1 + e−α·(sc−δ)
, (4)

where α is the scaling coefficient, δ is the translation distance. We set α = 10 and δ = 0.5 in the
implementation. Figure 4c illustrates the graph of the mapping function, and Figure 4b illustrates the
distribution after mapping.

Instead of directly assigning pseudo labels and ground truth labels to each prediction as 0 or 1, we
use the qpl and the IoU τ between predictions and their matched labels to soften the categorical labels.
Unlike GFL (Li et al., 2020), which assigns labels based on the IoU between network predictions and
labels, we consider the quality of labels as an important factor in our approach, where we transform
Quality Focal Loss into a form suitable for continuous label representations in IOD:

ŷpl = τ · qpl, (5)

where ŷpl is the joint quality, q is the quality of the pseudo label, and τ is the IoU between the label
and its assigned prediction. The class loss for the pseudo labels is:

Lpl
cls = − |y − ŷpl|β ((1− y) log(1− ŷpl) + y log(ŷpl)) , (6)

where y is the predictions of the current step model, β is set to 2. For the ground truth, which is
universally recognized as high quality qgt = 1, allowing us to uniformly represent ŷpl and ŷgt with ŷ:

ŷgt = τ · qgt = τ · 1, (7)
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Table 1: Incremental results on COCO benchmark under the one-step setting. Most experimental
results are borrowed from SDDGR (Kim et al., 2024). AP , AP50, and AP75 reflect the overall
performance (higher is better) of the model after one step of learning. AbsGap (lower is better) and
RelGap (lower is better) represents the absolute gap and the relative gap toward upper bound. The
best performance is highlighted in bold.

Scenarios Method Detector AP↑ AP50↑ AP75↑ AbsGap↓ RelGap↓

Upper Bound - GFL 40.2 58.3 43.6 - -
(Full data) Deformable DETR 47.0 66.1 50.9

40 + 40

LwF (Li & Hoiem, 2017) GFL 17.2 25.4 18.6 23.0 57.2%
RILOD (Li et al., 2019) GFL 29.9 45.0 32.0 10.3 25.6%
SID (Peng et al., 2021) GFL 34.0 51.4 36.3 6.2 15.4%
ERD (Feng et al., 2022) GFL 36.9 54.5 39.6 3.3 8.2%
PseDet (Ours) GFL 38.5 54.9 41.9 1.7 4.2%

CL-DETR (Liu et al., 2023a) Deformable DETR 42.0 60.1 45.9 5.0 10.6%
SDDGR (Kim et al., 2024) Deformable DETR 43.0 62.1 47.1 4.0 8.5%
PseDet (Ours) Deformable DETR 43.5 61.5 47.2 3.5 7.4%

70 + 10

LwF (Li & Hoiem, 2017) GFL 7.1 12.4 7.0 33.1 82.3
RILOD (Li et al., 2019) GFL 24.5 37.9 25.7 15.7 39.1
SID (Peng et al., 2021) GFL 32.8 49.0 35.0 7.4 18.4
ERD (Feng et al., 2022) GFL 34.9 51.9 37.4 5.3 13.2
PseDet (Ours) GFL 39.2 55.6 42.8 1.0 2.5%

CL-DETR (Liu et al., 2023a) Deformable DETR 40.4 58.0 43.9 6.6 14.0%
SDDGR (Kim et al., 2024) Deformable DETR 40.9 59.5 44.8 6.1 13.0%
PseDet (Ours) Deformable DETR 44.7 62.9 48.6 2.3 4.9%

For the ground truth, we use QFL as the class loss without any alterations. Integrating the above
formulas, we can unify the class loss for both pseudo labels and ground truth as Lcls:

Lcls = Lpl
cls + L

gt
cls = − |y − ŷ|β ((1− y) log(1− ŷ) + y log(ŷ)) . (8)

It’s worth noting that our method can be utilized with other variations of continual versions of
cross-entropy loss. Moreover, it can be easily extended to other domains that leverage pseudo-labels,
such as semi-supervised object detection (Wang et al., 2023).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation Metric. MS COCO 2017 (Lin et al., 2014) is an object detection dataset
with 80 categories. These categories will be divided into different mutually exclusive sets based on
the scenario of the experiment at different steps. The evaluation metrics include standard COCO
protocols: AP,AP50,AP75,APS ,APM and APL; absolute gap (AbsGap) and relative gap (RelGap)
between final mAP of incremental learning and mAP of upper-bound; forgetting percentage points
(FPP), which is used to evaluate the degree of forgetting for trained categories.

Experimental Setup. In our experiments, we apply the method to different scenarios by partitioning
the sets of categories into different collections Ci. At each step, we start by training the detector
normally using the initial set of categories. In subsequent steps, the model can only access the ground
truth of the current step’s categories. We mainly focus on the following two scenarios: (a) One-step:
40 + 40, 50 + 30, 60 + 20, 70 + 10; (b) Multi-step: 40 + 20× 2, 40 + 10× 4.

Implementation Details. We implemented method on GFL (Li et al., 2020) and Deformable
DETR(Zhu et al., 2020) with ResNet-50 image backbone. All experiments are performed on 8
NVIDIA Tesla V100 GPUs, and the basic settings follow the official implementation(Chen et al.,
2019). For GFL (Deformable DETR), we set the batch size to 2 (4) per GPU, trained for 12 (50)
epochs, and used SGD (AdamW) as the optimizer.
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Table 2: Incremental results (AP , %) on COCO benchmark under the multi-step setting. In the
first step, normal training is conducted with 40 categories, followed by the addition of 20 and 10 new
categories in the 2-step and 4-step settings each time, respectively.

Method Detector 40+10+10+10+10 40+20+20

(40-50) (50-60) (60-70) (70-80) (40-60) (60-80)

RILOD (Li et al., 2019) GFL 25.4 11.2 10.5 8.4 27.8 15.8
SID (Peng et al., 2021) GFL 34.6 24.1 14.6 12.6 34.0 23.8
ERD (Feng et al., 2022) GFL 36.4 30.8 26.2 20.7 36.7 32.4
PseDet (Ours) GFL 39.3 37.9 37.5 37.1 38.4 38.1

CL-DETR (Liu et al., 2023a) Deformable DETR - - - 28.1 - 35.3
SDDGR (Kim et al., 2024) Deformable DETR 42.3 40.6 40.0 36.8 42.5 41.1
PseDet (Ours) Deformable DETR 42.7 41.1 41.5 41.2 42.3 42.8

Table 3: Ablation study using the COCO benchmark of 40 classes + 40 classes. All categories and
Old categories represent the performance (AP/AP50/AP75, higher is better) evaluated by the model
after completing one-step of learning on all 80 categories and the old 40 categories, respectively. The
Forgetting Percentage Point (FPP) reflects the performance gap on the initial 40 categories between
the start and completion of training, indicating the degree of forgetting with lower values preferred.

Method
All categories ↑ Old categories ↑ FPP ↓

AP AP50 AP75 AP AP50 AP75 AP AP50 AP75

Fine-tuning 17.9 26.9 19.3 0.0 0.0 0.0 40.6 59.0 44.1
+ Normal Pseudo Labeling 22.8 33.1 24.8 26.6 37.9 29.4 14.0 21.1 14.7
++ Spatial Enhancement 29.9 42.8 32.6 31.9 44.5 35.3 8.7 14.5 8.8
+++ Categorical Adaptive Label Selector 34.1 49.2 37.2 35.9 51.2 39.5 4.7 7.8 4.6
++++ Confidence Score Calibration 38.5 54.8 41.9 40.8 57.5 45.1 -0.2 1.5 -1.0

4.2 OVERALL PERFORMANCE

One-step. Table 1 shows the incremental performance of PseDet and other approaches on COCO in
the one-step scenarios of 40+40 and 70+10. In each scenario, our method demonstrates substantial
improvements over state-of-the-art. It is worth mentioning that in the 70+10 scenario, we achieve a
3.8% increase in mAP compared to the previous best method (SDDGR), with an AbsGap between
the upper bound narrowing to just 2.3%. Similarly, in 40 + 40 scenarios, PseDet also maintains
leading performance, with improvements of 0.5% in mAP , reducing the AbsGap with the upper
bound to 3.5%.

Multi-step. Table 2 shows the incremental performance of our method and others on COCO in the
more challenging multi-step scenarios of 40 + 20× 2 and 40 + 10× 4, which pays more attention
to the capability in long-term incremental learning. Unlike other methods that suffer from severe
memory decay, our approach exhibits relatively slow forgetting. In the challenging 4-step setting,
upon completion of all steps, we achieved a 16.4% improvement in mAP compared to SDDGR.
Similarly, in the 3-step setting, we observe an improvement of 1.7%, which validates the effectiveness
and the anti-forgetting of our approach.

4.3 ABLATION STUDIES

In this section, we conduct ablation experiments using the GFL detector in the 40+40 scenario, and
the experimental results are shown in Table 3. Fine-tuning refers to training on new categories without
additional operations, resulting in catastrophic forgetting. Normal Pseudo Labeling refers to the
utilization of pseudo labels generated by an old detector without any filtering or processing, and
mixing them directly with ground truth for training. For Spatial Enhancement, since it is a one-step
setting, the experiments improve the quality of pseudo labels solely through spatial enhancement.
After implementing the Categorical Adaptive Label Selector and confidence Score Calibration, the
model’s performance improved by 4.2% and 38.5% respectively in mAP, outperforming previous
state-of-the-art methods.
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Table 4: The performance of detectors with different queue length of Categorical Adaptive Label
Selector under the scenario of 40+40.

Queue Length All categories Old categories New categories

AP AP50 AP75 AP AP50 AP75 AP AP.5 AP.75

100 38.5 54.8 41.9 40.8 57.5 45.1 36.2 52.1 38.7
150 38.5 54.9 41.8 40.9 58.0 45.6 36.1 51.8 38.1
200 38.5 54.9 41.8 40.9 57.7 45.2 36.1 52.0 38.5

Table 5: The performance of detectors with varying α and δ of the mapping function sigmoid(α ·
(s− δ)) under the scenario of 40+40.

Params All categories Old categories New categories

α δ AP AP50 AP75 AP AP50 AP75 AP AP.5 AP.75

10 0.6 37.1 53.1 40.3 39.2 55.9 43.2 34.9 50.3 37.4
10 0.5 38.5 54.8 41.9 40.8 57.5 45.1 36.2 52.1 38.7
10 0.4 37.9 54.2 40.9 40.3 57.2 44.4 35.4 51.3 37.5
5 0.5 38.3 54.5 41.5 40.7 57.3 44.9 35.9 51.7 38.1

20 0.5 38.1 54.6 41.6 40.6 57.4 44.7 35.9 51.8 38.4

4.4 ANALYSIS

Queue length in Adaptive Label Selector. Table 4 summarizes model performance across queue
lengths. Despite minor fluctuations, overall performance remained steady at 38.5% in AP , with slight
deviations of only 0.1% in AP50 and AP75. With a queue length of 100, old category performance
decreased slightly while new categories showed a slight improvement, differing by just 0.1% in AP .
However, longer queues increase computational demands, impacting efficiency. Thus, opting for a
smaller value, N = 100, which is more practical.

Coefficients for Score Calibration. Table 5 presents the performance across various α and δ settings
for the mapping function, with the best performance achieved at α = 10 and δ = 0.5. As δ changes,
model performance is affected: increasing δ reduces attention to pseudo-labels and decreases AP by
1.4%, while decreasing δ increases q, enhancing pseudo-label supervision but introducing noise and
causing performance decline. α scales the mapping function, and increasing α widens the quality
gap between high and low scores. Compared to α, adjusting δ has a smaller impact on performance.

Anti-forgetting Performance in Multi-step. Figure 5 illustrates the model’s performance on specific
categories under multi-step scenarios. Each line depicts the model’s performance on the same subset
of categories Ci at different steps. Starting from accessing ground truth at step i, the model exhibits a
relatively low forgetting rate in each subset. More detailed analysis can be found in the appendix.
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Figure 5: The performance of our model in the multi-step scenario. Overall indicates an evaluation
of the entire set in the current step, while others refer to evaluations of subsets Ci.
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5 CONCLUSION

In this paper, we revisit the power of pseudo-labeling in continual object detection. Specifically, we
identify three critical issues that arise when applying pseudo-labeling. Based on these observations,
we propose a simple yet effective framework, namely PseDet. It introduces the spatio-temporal
enhancement module to effectively improve the quality of the labels. With the proposed categorical
adaptive label selector, PseDet can dynamically decide label filtering thresholds based on the score
distributions of different categories. To fully leverage the information from pseudo-labels, we align
the confidence scores with the localization quality and integrate them into the supervision. Through
extensive experiments conducted on the MS COCO dataset with various settings, we validate the
effectiveness of our method, achieving a new state-of-the-art in this era.
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A IMPLEMENTATION DETAILS

Dataset Preparation and Preprocessing. There are 80 actual valid categories in COCO 2017, and
the category numbers are not consecutive. We employ cocopytool to read annotations and randomly
assign category labels to label indices ranging from 0 to 79. In each consecutive experiment, we
maintain a fixed random seed and divide them into mutually exclusive sets based on scenarios.

Training and Evaluation. During model training, due to the defined category sets, a small portion of
images do not contain any annotations. We filter out images that contain neither ground truth nor
pseudo-labels. During evaluation, we assess all images in the eval-set but only calculate the metrics
for the currently learned categories.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 NOT FORGETFULNESS, BUT REINFORCEMENT: EMPOWERING MODELS TO MASTER
PRIOR KNOWLEDGE
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Figure A1: The performance under the
one-step scenario. With other methods,
the larger the initial set, the faster the for-
getting; our method performs better and is
suitable for continual learning.

Figure A1 depicts the performance of various methods
across different scenarios. Each line represents the per-
formance of the detector on the evaluation set under
the one-step scenario. The number of categories in C1
varies from 40 to 70, while the number of categories
in C2 changes from 40 to 10. The trend of the curves
indicates that the previous method exhibits significant
forgetting characteristics, whereas our method demon-
strates better performance as the amount of knowledge
to remember increases. Based on the experimental re-
sults above, we have effectively addressed the issue of
knowledge forgetting that occurs during the transfer of
new knowledge in continual learning, as well as bal-
anced the utilization of model capacity between new and
old knowledge.

It’s quite surprising that despite the expected increase in
the absolute value of knowledge forgetting as the number
of categories in the first step increases, the performance
of the final detector actually improves with our method. We believe this could be attributed to the
effect of attention, where we introduced q in the loss calculation, which played a significant role.

Table A1 shows the experimental results of our method based on GFL under the 50+30 and 60+20
scenarios as a supplement to the main paper. All experimental results, including those in Table 3,
demonstrate the scalability and robustness of our method, providing further support for our viewpoint:
our method not only alleviates forgetting but also reinforces previous knowledge.

Table A1: Additional results on COCO benchmark under the one-step setting based on GFL detector.
Most experimental results are borrowed from ERD (Feng et al., 2022) paper.

Detector Scenarios Method AP↑ AP50↑ AP75↑ AbsGap↓ RelGap↓

GFL

Full data (Upper Bound) - 40.2 58.3 43.6 - -

50 classes + 30 classes

LwF (Li & Hoiem, 2017) 5.0 9.5 4.6 35.2 87.6%
RILOD (Li et al., 2019) 28.5 43.2 30.2 11.7 29.1%
SID (Peng et al., 2021) 33.8 51.0 36.1 6.4 15.9%
ERD (Feng et al., 2022) 36.6 54.0 38.9 3.6 9.0%
PseDet (Ours) 39.0 55.6 42.1 1.2 3.0%

60 classes + 20 classes

LwF (Li & Hoiem, 2017) 5.8 10.8 5.3 34.4 85.6%
RILOD (Li et al., 2019) 25.4 38.8 26.8 14.8 36.8%
SID (Peng et al., 2021) 32.7 49.8 34.6 7.5 18.7%
ERD (Feng et al., 2022) 35.8 52.9 38.4 4.4 11.0%
PseDet (Ours) 39.1 55.7 42.5 1.1 2.7%
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B.2 ROBUST AND HIGH-PERFORMANCE: TACKLING MULTI-STEP CHALLENGES WITH
PSEDET

Evaluating the anti-forgetting performance of the model requires not only comparing the performance
of the detector on the entire dataset across different steps but, more importantly, tracking the perfor-
mance of the detector on the same subset. Each line in Figure 5 and Figure A2 tracks the performance
of the detector on subset Ci starting from when the detector learns the ground truth of Ci.
In addition to what we observed in Figure A1, we also noticed a similar phenomenon in multi-step
settings, where the more knowledge to be retained, the stronger the anti-forgetting ability. From the
Table A4, our method’s implementation on Deformable DETR achieved a final performance of 42.8%
in AP on the 2-step setting, which is 0.5% higher than the intermediate stage. Similarly, on the 4-step
setting, the final performance is 0.1% higher than the intermediate stage.

32

34

36

38

40

42

44

46

48

Initial (1-40) 1st-step (+20) 2nd-step (+20)

1-40
40-60
60-80
Overall

Incremental Learning Process

m
A

P

(a) Two-step performance

28

33

38

43

48

Initial (1-40) 1st-step (+10) 2nd-step (+10) 3rd-step (+10) 4th-step (+10)

1-40
40-50
50-60
60-70
70-80
Overall

Incremental Learning Process

m
A

P

(b) Four-step performance

Figure A2: The performance of the Deformable DETR, based on our method, in the multi-step
scenario serves as a supplement to Figure 5. Overall indicates an evaluation of the entire set in the
current step, while others refer to evaluations of subsets Ci. The stability of each line represents the
excellent anti-forgetting ability of our method.

B.3 LESS IS MORE: NOISE PRESENTS GREATER DISRUPTION TO LEARNING

In object detection, AP , as a critical evaluation metric, intuitively, is sometimes used to evaluate
the quality of pseudo-labels. As shown in Table A2, when we use filters to remove noise, there is a
significant decrease in the metrics. However, after the second stage of learning, the performance of
the group of detectors with lower AP noticeably improves.

Although noise contains some useful information, through experimental observation, we believe that
appropriately screening out uncertain annotations is helpful for learning and will not result in a loss
of knowledge.

Table A2: The evaluation results of the pseudo-labels. In the first step of the 40+40 scenario, the
validation set is inferred based on Deformable DETR with or without our pseudo-label selector.

Setting AP AP.5 AP.75 APS APM APL

w/o Pseudo-label filtering 46.0 66.6 49.4 22.9 44.7 61.6
w/ Pseudo-label filtering 33.5 48.1 36.2 17.8 33.2 43.7

C PROOF OF ALGORITHM 1

To start with, we infer pseudo-labels represented by (c, s, b) using old model θold, where c denotes
the class, s indicates the confidence score, and b represents the position coordinates of the bbox.

Based on careful observation, we have noted that, for each class i, the model’s prediction confidence
exhibits a distinct bimodal distribution, comprising both high-confidence regions (positive samples)
and low-confidence regions (noise). The data in these regions respectively display a "Gaussian bell"
shape centered around specific means µ:
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High-confidence peak: This peak indicates that the model is highly confident in its detection results,
representing high-quality pseudo-labels. These samples are characterized by clear features and high
accuracy, clustering around µT .

Low-confidence peak: Typically, this peak reflects the model’s uncertain predictions or samples that
are difficult to distinguish. In this region of distributions, the pseudo-labels are mostly inaccurate
noise, clustering around µF .

The confidence score follows a bimodal distribution, and its probability density can be expressed as:

p(s) = πTN (s | µT , σ
2
T ) + πFN (s | µF , σ

2
F ) (A1)

Let Si ∈ Rn represents the set of confidence scores for the i− th class. In E-step of the Expectation-
Maximization (EM) algorithm, we assign each data point to the cluster in which it has the highest
posterior. The posterior is:

p(cj = k | sj) =
πkN (sj | µT , σ

2
T )

πTN (sj | µT , σ2
T ) + πFN (sj | µF , σ2

F )
(A2)

For the convenience of analysis, we can obtain the reciprocal of the posterior:

p(cj = True | sj)−1 = 1 +
πFN (sj | µF , σ

2
F )

πTN (sj | µT , σ2
T )

= 1 +
πF

πT
exp(

1

2σ2
T

(si − µT )
2 − 1

2σ2
F

(si − µF )
2)

(A3)

Here, K-means aims to partition data into two clusters by minimizing the Within-Cluster Sum of
Squares:

J =
∑
i∈Ck

(∥si − µT ∥2 + ∥si − µF ∥2) (A4)

In this distribution, samples can be considered to have soft assignments. However, we can use
K-means which is a type of hard assignment to assign sample i to the cluster k (k ∈ {True, False}):

ck = argmin
k
∥sj − µk∥2 (A5)

By combining Equations A3 and A5, we obtain:

∥si − µk∥2 ∝ p−1 (A6)

Maximizing the posterior probability p(cj = k | sj) is equivalent to minimizing the ∥sj − µk∥2.

K-Means can be considered a special case of the Expectation-Maximization (EM) algorithm with
hard assignments, aimed at modeling the bimodal distribution of scores for true and false clusters. In
addition, K-means clustering is often highly sensitive to the choice of initial centroids. Therefore, we
repeat the clustering process multiple times.

D ADDITIONAL ANALYSIS ON MEMORY AND TIME OVERHEAD.

(1) GPU Memory. No additional GPU Memory is needed. The current methods, such as ERD (Feng
et al., 2022), require loading two models during each training iteration: one is the original model used
to infer the logistic of a sample, and the other is the model from the current new stage. Our method
generates pseudo labels in an offline manner. This means that during training, our method is the same
as the regular training and does not require any additional GPU memory. For example, based on GFL,
our method occupies approximately 4.5 GB of GPU memory per GPU, whereas ERD requires more
than 10 GB per GPU, nearly double the GPU memory compared to our method. (2) Time Efficiency.
Additional time cost is negligible. Diffusion-based methods (Kim et al., 2024) require additional
time to train a diffusion model and generate new samples, while distillation-based methods (Feng
et al., 2022) necessitate an extra inference step in each training iteration. In contrast, our approach
infers pseudo labels once in an offline manner. This pseudo-label set can then be repeatedly used in
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subsequent training sessions. If training is conducted only once, the additional time overhead for this
offline inference is approximately limited to 5%. As the number of training steps increases, the time
efficiency advantage of our method becomes even more significant. (3) Disk Usage: The additional
disk usage required by our method is negligible. After inferring pseudo labels with the previous
weights, the labels can be stored. It takes only a few bytes per sample. For the COCO dataset, the
additional pseudo label .pkl files occupy approximately 10 MB of disk space.

Table A3: Comparison about Memory and Time.

Method Core GPU Memory Time Efficiency Disk Usage

ERD KD-Based Two Models
loaded

An additional inference
for one training iteration

Last step checkpoint.

SDDGR Diffusion-based Normal Train
(One Model)

Additional time to gen-
erate new samples with
diffusion model.

Additional samples
generated by diffusion
model.

PseDet (Ours) Pseudo-Label Normal Train
(One Model)

Additional time to infer-
ence Pseudo-Labels.

Every step checkpoint
but only a few hundred
megabytes are required
for each.

E IMPLEMENTATION IN SEGMENTATION TASK

We implemented our method based on SegFormer (Xie et al., 2021) and the basic settings follow the
official implementation. We selected the ADE20K (Zhou et al., 2017) as our experimental dataset.
This dataset presents a significant challenge due to its extensive category count of 150. It offers
significant reference value for the implementation of class incremental learning.

In our experiment, we design two scenarios: 100+50 as the one-step setting and 100+25+25 as the
multi-step setting. The evaluation metrics include mIoU (higher is better); absolute gap (AbsGap,
lower is better) and relative gap (RelGap, lower is better) between final mIoU of incremental learning
and mIoU of upper-bound; forgetting percentage points (FPP, lower is better), which is used to
evaluate the degree of forgetting for trained categories.

Table A4: Incremental results on ADE20K benchmark based on SegFormer.

Method 100+150 Scenario 100+25+25 Scenario

Overall 1-100 101-150 AbsGap↓ RelGap↓ FPP↓ Overall 1-100 101-125 126-150 AbsGap↓ RelGap↓ FPP↓
Upper Bound 37.41 41.23 29.77 - - - 37.41 41.23 32.94 26.60 - - -

Catastrophic Forgetting 0.88 0 2.63 36.53 97.64 43.11 0.23 0 0 1.36 37.18 99.38 43.11
PseSeg (Ours) 36.18 41.43 25.69 1.23 3.29 1.68 35.00 40.63 25.44 22.04 2.41 6.44 0.60

Considering that segmentation tasks involve dense predictions and that, for SegFormer, there are
no classification and regression branches as seen in detection tasks, it is unnecessary to consider
decoupling classification and regression tasks within the context of continual learning. Consequently,
pseudo-label-based methods may yield better performance when applied to segmentation tasks.
Consistent with the experimental results, the model trained through continual learning exhibits an
absolute gap of only 1.23 mIoU in the one-step scenario and 2.41 mIoU in the multi-step scenario
between our method and the upper bound. FPP gets 1.68 mIoU and 0.60 mIoU in the one-step and
multi-step settings respectively, reflecting the excellent resistance to forgetting of our method.

F ADDITIONAL VISUALIZATION RESULTS

Figure A3 displays the visualization of pseudo-labels at the final stage in the 70+10 scenario. It
can be observed that the detector still maintains a good detection performance for objections with
challenging difficulty levels. The advantage of the pseudo-label strategy also lies in the detector’s
ability to discover and annotate objects that were not manually labeled. As can be seen from the last
two images in Figure A3, flowers that are occluded or smaller horses that were not annotated were
still detected by the detector. This, to some extent, mitigates the loss in memory.
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Figure A3: The visualization results of pseudo-labels. The ground truth is depicted with green
bounding boxes, while pseudo labels are indicated by blue bounding boxes.
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