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ABSTRACT

If the accuracy of depth estimation from a single RGB image could be improved
it would be possible to eliminate the need for expensive and bulky depth sensing
hardware. The majority of efforts toward this end have been focused on utilizing
geometric constraints, image sequences, or stereo image pairs with the help of
a deep neural network. In this work, we propose a framework for simultaneous
depth estimation from a single image and image focal stacks using depth-from-
defocus and depth-from-focus algorithms. The proposed network is able to learn
optimal depth mapping from the information contained in the blurring of a single
image, generate a simulated image focal stack and all-in-focus image, and train a
depth estimator from an image focal stack. As there is no large dataset specifically
designed for our problem, we first learned on a synthetic indoor dataset: NYUv2.
Then we compare the performance by comparing with other existing methods on
DSLR dataset. Finally, we collected our own dataset using a DSLR and further
verify on it. Experiments demonstrate that our system is able to provide compara-
ble results compared with other state-of-the-art methods.

1 INTRODUCTION

Estimation of depth is critical to recover our 3D world and understand it. The capabilities of most
computer vision applications are limited by the shortcomings (size, speed, accuracy, and expense) of
depth estimating hardware and software e.g. scene understanding, augmented reality and robotics.
Conventional depth estimation methods exploit 3D geometric constraints to learn depth information
via structure-from-motion (Sweeney et al. (2015) Agarwal et al. (2009) Agarwal et al. (2011)), image
sequences or video (Zhou et al. (2017) Babu et al. (2018)), stereo image pairs (Garg et al. (2016)
Godard et al. (2017) Poggi et al. (2018)) and structured light cameras (Ryan Fanello et al. (2016)).
However, all of these approaches have limitations (e.g. resolution, texture, lighting). SfM has scale
ambiguity when using image sequences or video, and there is a camera calibration problem and
a lack of compatibility when converting between predicted disparity and real depth values across
different scenes. Lastly, these techniques ignore the possible defocus blur at different focal planes
based on depth of field and camera settings.

Depth from focus and depth from defocus are two techniques that have been explored in prior art, but
their accuracy and performance have not been competitive with the previously mentioned alternative
approaches. However, there is strong evidence that multiple biological systems have optimized this
approach with great success, e.g. jumping spiders can leap and catch an airborne fly (Nagata et al.
(2012) Guo et al. (2019)). This demonstrates the unrealized potential for an artificial solution to
leverage the information contained within the differential focusing of objects within a scene. In this
paper we present a proposed learning framework, the first unsupervised end-to-end simultaneous
training of depth-from-focus and depth-from-defocus networks we know of. Once trained either of
these two networks is independently capable of conducting depth estimation either from a single
image or focal stack as shown in Fig. 1. This has enabled us to explore the influence of defocus
blur in helping depth predictions in an unsupervised manner, instead of directly inferring the depth
information from the features and location of each object such as a road, a car, or a person. To
evaluate the performance of the proposed framework, we have conducted experiments on relevant
benchmarks, both synthetic and real defocused datasets. We have also made comparisons to other
recent unsupervised and supervised approaches. Overall, the key contributions of this work are:
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Figure 1: Overview of the proposed framework for simultaneous training of depth-from-defocus and depth-
from-focus. Besides depth estimation from two approaches, all-in-focus image is also generated from the
network with similar effect as light field cameras.

1) The first end-to-end learning architecture to simultaneously train two networks (FocusNet and
DefocusNet) from depth-from-focus and depth-from-defocus algorithms, respectively. 2) By con-
straining the consistency between the predicted depth maps from a single RGB image or focal stack,
we are the first to propose an unsupervised machine learning scheme to estimate depths from focus
and defocus. 3) By designing a loss function which measures the degree of focus throughout the
image, we have developed a method to determine whether the estimated depth maps are accurate
based on the ability to produce an all-in-focus image.

2 RELATED WORK

Supervised Monocular Depth Estimation is capable of producing depth maps from single im-
ages (Eigen & Fergus (2015) Liu et al. (2015) Cao et al. (2017) Jung et al. (2017) Ummenhofer
et al. (2017)). Eigen et al. (2014) produced depth maps by deploying networks capable of detect-
ing global and textured features using the AlexNet structure (Krizhevsky et al. (2012)). Liu et al.
(2015) considered the continuity of the depth values and treated depth estimation as a continuous
conditional random field (CRF) learning problem. Cao et al. (2017) took this concept further by for-
mulating depth estimation as a pixelwise classification task, using conditional random field (CRF)
as a post-processing scheme. More recent work Ummenhofer et al. (2017) trained an end-to-end
network to compute scene depth and camera motion from successive, sequential, and unconstrained
image pairs given known optical flow. All such methods require massive labelled images, which is
always expensive for many applications.

Unsupervised Monocular Depth Estimation is also capable of producing depth maps from single
images, without prior supervisions (Zhou et al. (2017) Yin & Shi (2018) Zou et al. (2018) Garg
et al. (2016) Godard et al. (2017) Godard et al. (2019)). Garg et al. (2016) proposed a stereop-
sis based auto-encoder for learning; Meanwhile, the trained network is capable of producing depth
map from a single image. Godard et al. (2017) built upon this work by considering left-and-right
pixel disparity consistency loss. Unlike exploiting geometrical cues from stereo pairs, (Zhou et al.
(2017) Yin & Shi (2018) Zou et al. (2018)) all succeeded to produce monocular depth estimation
methods utilizing camera pose regression, unlabeled video sequences, and photometric consistency
between source and target views. All the methods above require stereo image pairs and/or monoc-
ular video sequences during the training process, and ignore the blur information from the camera.
Additionally, the absolute scales trained with monocular cameras remain ambiguous.

Depth From Defocus/Depth From Focus Distinct from the aforementioned depth estimation meth-
ods, depth estimation from defocus reconstructs a pixel-accurate depth map by utilizing blur infor-
mation to determine the degree by which the corresponding objects deviate from a focal plane. One
such approach estimated the spatially varying defocus blur from the ratio of input gradients and
re-blurred images (Zhuo & Sim (2011)). Improvements in defocus blur measurements have been
realized with coded aperture cameras (Zhou et al. (2009) Ranftl et al. (2016)). Depth From Focus
is similar to depth from defocus with the key difference of depth from focus requiring dynamically
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changing camera parameters during the estimation process. Depth from focus has managed to pro-
duce depth maps utilizing focus stacks input from either a set of frames (Suwajanakorn et al. (2015))
or a light field camera (Lin et al. (2015)).

Deep Neural Network and Depth From Focus/Defocus have been individually combined in re-
cent years to increase the accuracy; however, this field of inquiry is still in its infancy. Depth from
focus/defocus can potentially alleviate scale ambiguity issues that arise from monocular depth esti-
mation techniques, but existing depth from focus/defocus methods based on deep neural networks
mainly rely on supervised learning schemes. Modern filtering methods are capable of producing
realistic defocus blur effects on readily available datasets (e.g. NYU or KITTI) for use in depth
prediction. A new lightfield dataset has been proposed in Srinivasan et al. (2017) and monocular
depth has been predicted from rendered focused images with a deep regression model. However,
this approach estimates depth maps from all-in-focus images, which is often not representative of
real world cameras. Carvalho et al. (2018) showed that out-of-focus blur improves depth estimation
performance; however, this technique relies on the ground truth depth for supervision. Hazirbas
et al. (2018) proposed an auto-encoder-style convolutional neural network to estimate depth from
a focal stack and ground truth depth map using 4D light field images. In addition to the need for
ground truth data, their collected focal stack has small variations in defocus blur, which provides
limited blur information for training. To overcome these shortcomings, this paper describes an ap-
proach which employs two deep learning networks, one for depth from defocus (DefocusNet) and
one for depth from focus (FocusNet). To our best knowledge, this is the first unsupervised learning
method which simultaneously trains depth from defocus and depth from focus networks, which can
be independently utilized post-training.

3 SIMULTANEOUS DEPTH FROM DEFOCUS AND FOCUS

In this section, we first describe the principle and method to simulate defocused images. Then we in-
troduce the method applied for all-in-focus image completion. Furthermore, the model architecture
of our DefocusNet and FocusNet is explained. Finally, training constraints are provided.

3.1 THIN LENS ILLUSTRATION FOR DEFOCUS IMAGE GENERATION

Depth from defocus/focus methods are based on the thin lens model illustrated in Fig. 2. f is the
focal length. v is the object distance, and d is the scene depth. An object is regarded as “in focus”
if it lies in the depth-of-field (DOF) for the camera. Objects outside this range would be regarded as
“out of focus.” The divergence of the light rays caused by unfocused objects leads to the “Circle-of-
Confusion” i.e. blur diameter, which is indicated as ε in Fig. 2. D is the lens diameter, the distance
between the sensor and the lens is s. The defocus blur can be expressed with the following geometric
relationship:

ε = Ds · | 1
f
− 1

v
− 1

s
| (1)
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Figure 2: The thin lens model.

Given a scene with radiance L, the defocus can be
expressed by the convolution operation L = L ∗ Bε,
Bε represents the 2D point-spread function parame-
terized by the blur diameter ε, which is a function of
object distance, focal length, and aperture diameter
from Eq. 1. By adopting the approaches of Hasinoff
& Kutulakos (2007), an approximate layered image
formation model with occlusion is expressed as:

L′k =
∑
k

[(AkL
′ +A∗kL

′
k
∗) ∗Bε(k)] ·Mk (2)

where L′ is the in-focus radiance or image, the Ak mask corresponds to the objects at the depth k,
A∗kL

′∗ acts as extended versions of the unoccluded radiance for each layer, and Mk represents the
cumulative occlusion from previous defocused layers.

Mk =

K∏
k′=k+1

(1−Ak ∗Bε(k)) (3)
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Figure 3: The DefocusNet and FocusNet structures.

This strategy enables the generation of out-of-focus images with variable depths of field (i.e. a
synthetic focal stack) by extracting objects at multiple depth k and controlling the position of in-
focus plane. Therefore, the influence of blur can be studied without the need of a specialized data
set. Note that once real defocus images are able to be captured or collected directly, the generation
step can be optionally skipped.

3.2 DEFOCUSNET

To estimate the depth from defocus blur in a image, we apply the densely connected network
(DenseNet) Huang et al. (2017) based encoder-decoder architecture refereed as DefocusNet. The
DefocusNet aims to estimate a depth map from a defocused image as input. The primary compo-
nents are: convolutional layers, dense blocks, and transition transformation (transition down and
up). In our encoder part, each dense block is composed of a Batch-Normalization layer, Rectified
Linear Unit (ReLU) layer and 3 ∗ 3 convolutional layer, and a Transition Down layer follows each
dense block to reduce the feature size. In the decoder, dense blocks are followed by a Transition
Up layer to realize an up-sampling operation on the previous feature maps, and concatenate them
together with the help of a skip connection to output a predicted depth map.

The motivation of using denseblock for inferring depth information from images with defocus blur
is that each layer of this structure is connected to every other previous layer. For each concatenation
layer, both the current block and the previous block will be feed-forward and fused together, which
is helpful for depth estimation problem, as the features from the previous input can be reused and
are capable to enhance the feature propagation. Especially for our depth estimation problem using
defocus clues, the depth information is hard to extract and learn from the defocus blur in different
degrees. Different from the original DenseNet structure consisting of four dense blocks for feature
extraction and one block including the fully connected layer for the target image classification, we
modify the original network to make it suitable for single image depth estimation related problem.
First we reduce the four dense block to two in the encoding part to achieve a balance of high-capacity
network parameters and the efficiency. Then we replace the last block for image classification com-
posed of fully connected layer with up-projection layers to achieve a decoder structure.

3.3 FOCUSNET

FocusNet accepts the generated focal stack as an input and estimates a separate depth map. Building
on top of the VGG-19 network Simonyan & Zisserman (2014), it includes 16 convolutional layers,
5 polling layers and 3 fully connected layers. By removing all the fully-connected layers, adding
two extra convolutional layers, and adding a multi-layer concatenation connection, the network is
able to preserve more edge information in the estimated depth map. The details for the multi-layer
concatenation connection layer is illustrated as follows:

To input the image stack into the B × S × C × H ×W (batch size, focal stack, channel, height
and width respectively), the focal stack dimension is first embedded together with the batch size to
be BS × C × H ×W , and the output from the network is a one-channel depth map in the stack
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BS × 1× H ×W . By reshaping it to B × S × H ×W and applying a 1× 1 convolutional layer,
the output dimension is reduced to B × 1 × H ×W , which corresponds to one estimated depth
per input focal stack. Followed the FocusNet, the reconstructed defocus image is able to be inferred
from the estimated depth map together with the in-focus input. By giving a constraint to make the
input defocus image to be consistent with the reconstructed defocus image, the consistency loss is:

Lre =
1

N

∑
ij

a

2
(1− SSIM(Jij , J̃ij)) + (1− a)p̃(||Jij − J̃ij ||1) (4)

where the input defocused image is expressed by J , and the reconstructed defocused image is pre-
sented by J̃ , ‖·‖1 represents L1 norm operator that calculates the mean absolute value. The value
for SSIM is from 0 and 1, where 1 indicates a perfect matching. α is a constant parameter and here
we choose it as 0.85. To make it more robust, we apply the generalized Charbonnier factor Sun et al.
(2010) p̃ to enjoy both benefits of L2 and L1 term.

The similar constraint inspired from Godard et al. (2017) is also applied to the predicted depth maps
from the FocusNet and DefocusNet. They are further constrained to be consistent by using the
following losses Lconsis to achieve the self-supervised condition, which is explained as follows:

Lconsis =
1

N

∑
ij

a

2
(1− SSIM(D̃1ij , D̃2ij)) + (1− a)p̃(||D̃1ij − D̃2ij ||1) (5)

where D̃1 represents the depth map produced from the DefocusNet and D̃2 is the output estimation
from the FocusNet.

3.4 ALL-IN-FOCUS IMAGE COMPLETION

An all-in-focus image is generated by collapsing the in-focus regions in each image of the synthe-
sized focal stack. First, the same Gaussian blur is applied to each image in the focal stack to smooth
the images, then Laplacian of Gaussian (LoG) is utilized to measure the 2nd derivative to obtain the
corresponding edge map. As images with higher response contain more sharp edges, by selecting the
pixels with the highest edge response following a deblurring kernel related to depth, an all-in-focus
image is generated with the same size as the original input and makes the original in-focus region to
be more clear. In Fig. 10, the performance of the image completion method is verified on near-focus
and far-focus examples, which demonstrates the effectiveness of producing an all-in-focus image by
collapsing a focal stack. The blur estimation loss constrains the reconstructed all-in-focus image to
be as clear as possible, which will feedback to the estimated depth from depth-from-defocus. Once
the depth estimation is accurate, the in-focus region is deblurred correctly. On the other side, if the
estimated depth is wrong, the kernel will result in a more blur region. Therefore, blur estimation
loss tightly constrains the depth estimation accuracy. More specifically, first a Laplacian kernel is
applied and the variance of the response is calculated. If it presents a high variance value, the edges
should be more clear. Similarly, if the variance value is low, then the edges and image are regarded
to be blur. By setting a range from 0-1000 and normalize the variance response to be in the range of
0 and 1, the blur estimation loss can be designed as the sum of the log loss as:

Lblur = − 1

N

N∑
c=1

βlog(nc) = −
1

N

N∑
c=1

βlog(

∑
i

∑
j(O

2X(i, j)))2

M
− µ2) (6)

where the N is the number of total images. nc is the normalized coefficient from each image as
defined above to evaluate the level of the possible blurring. M is the number of total pixels in an
image and µ is the mean value in the image. X(i, j) represents the image pixel at (i, j) in each
image. O2 is the Laplacian filter operated on X . β is a constant and here is set to be 2.5. To further
prevent the drastic depth change in homogeneous regions and low-texture areas in both DefocusNet
and FocusNet, we incorporate a smoothness prior to regularize both estimated depth maps from the
DefocusNet and FocusNet inspired by Zhao et al. (2015) and Godard et al. (2017). The edge-aware
smoothness loss is stated as follows:

Lsmooth =
∑
ij

(e−OEij · ODij))
2

(7)

where O is the first derivative along the spatial directions x and y. It ensures that estimated
disparity Dij is guided by the edges of the image Eij . To train the full framework, we rely
on the comprehensive objective losses consisting in the weighted sum of the terms: Ltotal =
λ1Lre+λ2Lconsis+λ3Lblur+λ4Lsmooth, and the weights here are λ1 = λ2 = 1.0, λ3 = λ4 = 0.2.
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4 EXPERIMENTS

In this section, we conduct the experiments that assess the performance of our Defocus-Net and
Focus-Net in producing estimated depth map and all-in-focus image.

4.1 TRAINING CONFIGURATION AND DATASET

The network is implemented with PyTorch and trained using Adam optimizer (Kingma & Ba (2014))
with a learning rate of 0.0001 with a batch size 2. The system is trained jointly on Nvidia Tesla P40
GPU with 24GB cuda memory. A color augmentation is implemented with a 50% chance of random
gamma, brightness, and color shifting in the range of [0.8, 1.2], [0.5, 1.5] and [0.8, 1.2] respectively.

NYUv2 RGBD datset Silberman et al. (2012) is comprised of video sequences from a variety of
indoor scenes recorded by both the RGB and Depth cameras with more than 120k indoor image
pairs. Among them the number of densely labeled pairs of aligned RGB and depth images is 1449.
We choose the commonly-used 654 test images from the 1449 labeled RGB-D images to test the
performance of our method compared with other methods. To simultaneously train our unsupervised
framework composed of FocusNet and DefocusNet, we create a synthetic defocused dataset from
the real NYUv2 images based on the provided depth map and raw images, as discussed in Section
3.1. DSLR dataset (Carvalho et al. (2018)) contains 110 images and ground truth depths from
indoor scenes, with 81 images for training and 29 images for testing, and 34 images from outdoor
scenes without ground truth depth. Each scene is acquired with two camera apertures: N = 2.8 as
out-of-focus setting and N = 8 as in-focus setting. Because of its limited amount of data, it acts as a
supplement real-world split after training on NYUv2.

Figure 4: Examples of our collected dataset with different defocus blur
and ten markers on it as ground truth.

Our collected dataset consists
of eight different indoor scenes
including research labs, offices,
coffee rooms, meeting rooms,
canteens, auditorium halls, li-
brary scenes and corridors. Each
scene is obtained with two set-
tings of in-focus planes: 1m and
5m respectively. The images are
captured by a Nikon D3500 camera but not to it. The first four scenes have 100 images for each
and the rest scenes are made up of 500 images for each (totally 2400 images). We randomly select
30 images for the first four scenes and 80 for the other four scenes as testing split. Each scene is
put markers on it and acts as the ground truth to test the accuracy in each scene. We put 10 ArUco
markers on each testing image to get the depth values between the camera and each marker as the
ground truth for testing, as shown in Fig. 4. For a fair comparison, we do not train or fine-tune on
it and directly test our models and other recent methods on it (as all other methods for comparison
requires perfect-aligned ground truth map). Compared with the DSLR dataset, our collected dataset
contains a large number of images (2400 v.s. 110). Compared with the synthetic NYU v2 dataset
used in this work, our new dataset is captured from real world indoor environment, which is more
realistic and reliable to test the practicability for real applications.

4.2 EVALUATION

Figure 5: Visual comparison between our method (trained on the synthetic dataset) and other recent single-view
depth estimation methods (fine-tuned on the synthetic dataset). Left to right: Input defocus image at the focal
plane of 1 meter; Ground truth depth map; Predicted depth map from Laina et al. (2016); Predicted depth map
from Alhashim & Wonka (2018); Our output from DefocusNet. Brighter color represents a farther distance.
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In this section, we demonstrate the results trained on the NYUv2 dataset with synthetic defocus blur
at different distances. We perform two experiments: first we compare with other recent methods on
estimating depth map of a single defocus image to demonstrate the effectiveness of the DefocusNet
on extracting blur information and estimating depth map from defocus image. In Fig. 5, visual effect
of our DefocusNet and other methods for comparison is presented. From the result, it shows that
our proposed framework for estimating depth from one single defocus image has a better perfor-
mance in estimating depth values in blurred regions. Compared with Laina et al. (2016), our method
can prevent unexpected ghosting and over-smoothness issues. Compared with Alhashim & Wonka
(2018), our model can prevent large holes and severe discontinuities in predicted depth maps.

Figure 6: Visual performance of our Focus-Net depth estimation method. From left to right: focal stack at
different focal plane: 1m, 3m, 5m, 9m, and estimated depth map from Focus-Net.

Figure 7: Further verification on realistic scenes
from DSLR dataset. First column: Input real de-
focus images; Second column: Predicted depth
maps from DefocusNet. Our model can also
work well in real scenes with real defocus blur.

To verify the effectiveness of our depth from focus
model from the synthetic NYUv2 dataset, we input
the focal stack which simulates focus at different fo-
cal plane setting as shown in the Fig. 6. It can be
observed that with multiple images at different focal
planes as input, the FocusNet is capable to learn a re-
lation between the depth map and multiple images of
different degrees of defocus blur, and predict an accu-
rate result. As we can observe in Fig. 6, by feeding
images of different blurs from near to far field, the es-
timated depth is able to recover the blur and extract
depth information from the image blur as expected.

Method δ1 δ2 δ3 RMS Rel
Liu et al. (2016) 0.652 0.763 0.913 0.997 0.273

Moeller et al. (2015) 0.670 0.778 0.912 0.985 0.263
Suwajanakorn et al. (2015) 0.688 0.802 0.917 0.950 0.250

Eigen et al. (2014) 0.662 0.773 0.910 0.987 0.268
Laina et al. (2016) 0.693 0.862 0.937 0.761 0.192

Xu et al. (2017) 0.698 0.872 0.937 0.768 0.179
Alhashim & Wonka (2018) 0.719 0.875 0.948 0.637 0.172

Lee et al. (2018) 0.701 0.879 0.946 0.723 0.181
Wofk et al. (2019) 0.667 0.851 0.929 0.972 0.226
Gur & Wolf (2019) 0.720 0.887 0.951 0.649 0.184

Ours Defocus-Net w/o smooth 0.729 0.886 0.950 0.628 0.176
Ours Defocus-Net full 0.732 0.887 0.951 0.623 0.176
Ours Defocus-Net gt 0.921 0.989 0.996 0.372 0.084

Our Focus-Net w/o smooth 0.740 0.889 0.946 0.619 0.173
Our Focus-Net full 0.748 0.892 0.949 0.611 0.172
Our Focus-Net gt 0.936 0.990 0.998 0.328 0.075

Table 1: Depth prediction result com-
pared with other methods fine-tuned
with defocus images as input on the
synthetic NYUv2 dataset.

In Table. 1, quantitative comparison against other recent
methods on the synthetic dataset and ablation analysis are
conducted. All compared monocular methods are trained
with direct supervision, and then fine-tuned on the synthetic
dataset. It can be observed that our method achieves a higher
accuracy than the previous methods for defocused image. As
single precision is not sufficient to evaluate in case of Root
Mean Squared (RMS) error and Relative (Rel) error. We mea-
sure both error (RMS, Rel) and accuracy metrics (δ1, δ2, δ3)
to perform a better evaluation. Fig. 5, Fig. 6 and Table.
1 together reflect the superior visual and quantitative perfor-
mance of our framework (DefocusNet and FocusNet) on the
synthetic NYUv2 dataset compared with other recent methods.

Methods δ1 δ2 δ3 RMS Rel
Laina et al. (2016) 0.679 0.857 0.932 0.734 0.194

Xu et al. (2017) 0.680 0.859 0.937 0.711 0.194
Alhashim & Wonka (2018) 0.702 0.874 0.940 0.658 0.186

Lee et al. (2018) 0.683 0.862 0.934 0.731 0.190
Wofk et al. (2019) 0.653 0.841 0.926 0.892 0.203

Ours 0.726 0.883 0.941 0.629 0.179

Table 2: Depth prediction comparison with defocus im-
age as input on real-world DSLR dataset.

However, to test the effectiveness of the pro-
posed method in real-world scenes, we need to
validate our method on the real defocused im-
ages. Fig. 7 shows the visual performance on
the depth estimation output from real defocus
images (N=2.8). The results show that through
training on a large synthetic dataset from Sec.
3.1, the models still can infer reasonable out-
puts without further training on it. To get a fair comparison on DSLR testing split to get the quanti-
tative results, we further fine-tune both our trained model and those methods for comparison above
on 81 training images with ground truth depth. It can be observed from Table. 2, limited by a small
amount of images in DSLR dataset, the predicted results for most of the methods suffer a slight drop
compared with the reported results on synthetic NYUv2 dataset. But our method still performs well
in real-world images with defocus blur compared with other approaches.
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Figure 8: Depth estimation from our collected dataset with 1m and 5m focus. First column: raw in-focus
images; Second column: images focusing on 1m; Third column: estimated depth for images focusing at 1m;
Fourth column: images focusing at 5m; Fifth column: estimated depth for images focusing at 5m.
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Due to the limited number of images in the
DSLR dataset to evaluate the performance in
real scenarios, we evaluate the visual perfor-
mance and quantitative comparison on the col-
lected dataset, which contains 440 images for
testing. To get a fair comparison, we do not con-
duct fine-tuning or re-training on it, and directly
apply the trained model on synthetic NYUv2
dataset to test. From Fig. 8, it can be observed
that our method is capable to recover the defo-
cus blur from near-focus and far-focus images, and predict a high-quality depth maps from it, though
suffering from slight ghost on the blurred regions of the input images. Fig. 9 provides a comparison
of mean pixel errors in percentage with depth values from added markers in different ranges (0-2m,
2-5m and larger than 5m). We can observe that in the range between 0-2m, our method is 2% over
the second best result in this range and 4.2% over the worst one in this range. And in the range of
>5m, our method is 4.1% over the second best one and 7.3% improvement on top of the worse one
in this range. Judging from the percentage and actual numbers, the ambiguity of depth and mean
errors of depth increase as the increasing of the distance.

Figure 10: Visual result of our proposed hyper-spectral fusion to get all-clear image at different focal planes.
Left to right: three images from different focal stacks, raw input, our hyper-spectral image.

Finally, the performance of our all-in-focus image completion approach is presented in the Fig.
10. Feeding multiple images at different synthetic focal planes, it can be observed that our method
can output an all-in-focus image from blurring images. Compared with the raw input image, the
generated hyper-spectral image is more clear in the boundary and details.

5 CONCLUSION
This paper proposes the first unsupervised learning framework to train the depth-from-defocus and
depth-from-focus neural networks simultaneously to estimate scene depth. The framework learning
process is guided by the depth consistency between depth-from-defocus and depth-from-focus, as
well as the defocus consistency between the recovered defocus image and the original defocus image
input. In real applications depth-from-defocus and depth-from-focus can separately estimate the
depth map based on a single image or image stack, which overcomes the scale issue commonly
existed in monocular camera depth estimation.
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