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Abstract

Online bidding is a classic optimization problem, with several applications in
online decision-making, the design of interruptible systems, and the analysis of
approximation algorithms. In this work, we study online bidding under learning-
augmented settings that incorporate stochasticity, in either the prediction oracle
or the algorithm itself. In the first part, we study bidding under distributional
predictions, and find Pareto-optimal algorithms that offer the best-possible tradeoff
between the consistency and the robustness of the algorithm. In the second part, we
study the power and limitations of randomized bidding algorithms, by presenting
upper and lower bounds on the consistency/robustness tradeoffs. Previous works
focused predominantly on oracles that do not leverage stochastic information on
the quality of the prediction, and deterministic algorithms.

1 Introduction

Recent advancements in machine learning have led to the development of powerful tools for efficiently
learning patterns in various types of data. These advances spearheaded a novel computational
framework, in which the algorithm designer has the ability to integrate a prediction oracle into the
algorithm’s design, theoretical analysis, and empirical evaluation. This paradigm shift has led to the
emergence of the field of learning-augmented algorithms, which aims to leverage ML approaches
towards the development of more efficient algorithms with data-driven capabilities.

Learning-augmented algorithms have witnessed significant growth in recent years, starting with the
seminal works [45]] and [46]. They have been particularly impactful in the context of sequential and
online decision making, in which the algorithm must act on incoming pieces of the input, or adapt its
strategy judiciously at appropriately chosen time steps. The defining characteristic of such settings
is that the algorithm operates in a state of incomplete information about the input, thus making the
application of ML techniques particularly appealing. Specifically, they allow for a more nuanced,
and beyond the worst-case performance evaluation than the standard, and often overly pessimistic
approaches such as competitive analysis [23]].

In this work, we focus on a simple, yet important problem of incomplete information, known as
online bidding. In this problem, faced with some unknown target (or “threshold”) u, a player submits
a sequence of bids until one is greater than or equal to u, paying the sum of its bids up to that
point. Formally, the objective is to find an increasing sequence X = (z;);>o of positive numbers of
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minimum competitive ratio, defined as
?
r(X) = sup cost(X, u) u)7 where cost(X,u) = Za:j trio <u < @y (1)
u>1 u =0
Despite its seeming simplicity, online bidding has many applications in optimization problems such
as incremental clustering and online k-median [25], load balancing [13], searching for a hidden target
in the infinite line [18]], and the design of algorithms with interruptible capabilities [47]]; we refer to
the survey [28]] for a detailed discussion of several applications. As a concrete application, consider
the setting in which a user must submit a job for processing in a cloud service: here, the bidding
strategy defines the increasing walltimes with which the user submits the job [12]]. More broadly, the
problem abstracts the process of finding increasingly better estimates of optimal solutions to both
online and NP-hard optimization problems, a process that is informally known as “guess and double”.
It is thus not surprising that online bidding and related competitive sequencing problems were among
the earliest studied with a learning-augmented lens. We discuss several related results in Section|[I.2]

Previous studies of online bidding focused on deterministic settings, i.e., the bidding sequence is
output by a deterministic process and, likewise, on deterministic prediction oracles, i.e., oracles that
do not provide any probabilistic information on the quality of the prediction. In contrast, very little is
known about bidding under stochastic settings. There are two main motivating reasons:

e In many realistic applications, the prediction has an inherently distributional nature [30]. For
instance, in the related problem of contract scheduling [1]], the system designer may rely on available
historical data about the estimated interruption time (i.e., the target, in the bidding terminology).
Hence the question: Can we find strategies that efficiently leverage a stochastic prediction oracle,
while remaining robust against adversarial predictions?

e It is known that randomization can help improve the competitive ratio of standard online bid-
ding [27]. Randomized algorithms also have additional benefits: they remain much more robust to
small prediction errors, and tend to be much less brittle than deterministic algorithms, as demon-
strated in [33} 21]. Hence the question: What is the power and the limitations of randomized,
learning-augmented bidding algorithms?

1.1 Contribution

Motivated by the discussion above, in this work we study online bidding under two distinct stochastic
settings. First, in Section [2| we consider stochastic prediction oracles that provide distributional
information on the target. We show how to compute a strategy that attains the best-possible tradeoff
between the consistency (informally, the expected performance assuming that the target is generated
according to the predicted distribution) and the robustness (i.e., the performance assuming an
adversarial prediction). Using the terminology of learning-augmented computation, we obtain a
provably Pareto-optimal strategy. Previous work only addressed the case in which the robustness is
equal to the best-possible competitive ratio, namely r» = 4 [[7]], a case for which optimal strategies
have a very simple structure. In our work, instead, we compute the entire Pareto frontier between the
consistency and the robustness, which is a much more challenging task since optimal strategies have a
complex structure and no clear characterization. Indeed, unlike the deterministic setting where simple
geometric strategies suffice, in the stochastic setting such strategies can be extremely inefficient even
on trivial distributions. Hence one needs to search a much larger space of candidate strategies which
have no obvious structure. To get around this difficulty, we find a suitable “partial” strategy, i.e., one
whose bids are within the support of the prediction, minimizes the expected cost, and can be extended
to a fully robust, infinite strategy. This can be formulated as a family of linear programs (LPs), whose
solution yields the optimal strategy. We also provide a computationally efficient approximation of the
Pareto front, with provable performance and run-time guarantees.

Our second main contribution, discussed in Section [3] is the study of randomized bidding strategies.
Here, in order to allow a comparison with the known results, all of which have focused on deterministic
learning-augmented strategies, we assume a single-valued oracle that predicts the target’s value. We
first present and analyze a randomized strategy whose consistency/robustness tradeoff provably
improves upon the best deterministic one. However, this improvement rapidly dissipates as a function
of the robustness requirement . We complement this result with a lower bound that applies to all



randomized algorithms, and which establishes that as 7 increases, the gap between the deterministic
and the randomized consistency rapidly diminishes. Randomization poses new challenges, particularly
in the context of negative results: it is not obvious how to show lower bounds on randomized tradeoffs,
unlike traditional competitive analysis where Yao’s principle [S0] is readily applicable, and unlike the
deterministic setting in which r-robust algorithms have a very clear characterization. Our approach
relies on the use of scalarization, in that we prove a lower bound on a weighted combination of the
two objectives. This is turn allows us to obtain a negative result on their tradeoff, via the minimax
theorem (or Yao’s principle) [S0].

In Section[d] we extend our approaches to other settings and problems. First, we show how our LP-
based approach can be applied to a dynamic setting in which the oracle provides updated predictions in
an on-line fashion, and the (robust) learning-augmented algorithm must maintain optimal consistency
relative to each incoming prediction. To our knowledge, this is the first study of competitive
sequencing problems under dynamic predictions. Moreover, we show that our results can be extended
to the problem of searching for hidden target in the infinite line, which is a well-known problem from
search theory and operations research (see, e.g., Chapter 8 in [3]), and extend previous works that
did not address robustness issues. We conclude, in Section E} with an experimental evaluation of our
Pareto-optimal algorithm which demonstrates the performance improvements in practice.

1.2 Related work

Learning-augmented algorithms. Algorithms with predictions have been studied in a large variety
of online problems, such as rent-and-buy problems [36]], scheduling [41]], caching [45]], matching [L1]],
packing [37], covering [[16] and optimal stopping [32]. This paradigm has also applications outside
online computation, e.g., in improving the time complexity of sorting [[15]], graph problems [14],
and data structures [43]]. The above are only some representative works and we refer to the online
repository [[1] for a comprehensive listing. We note that the vast majority of these works do not
assume stochastic oracles. The distributional prediction framework was introduced in [30], and has
been further applied in the context of search trees [31]], online matching [24], and 1-max search [20].

Pareto-optimal algorithms. Several studies have focused on the consistency-robustness trade-offs
of deterministic learning-augmented algorithms e.g [48l 42, |5 16,26} 2]]. The study of randomized
Pareto-optimality has been limited to problems such as ski rental [49] and search games [10].
For some problems, including online bidding, deterministic Pareto-optimal solutions suffer from
brittleness, in that their performance shows marked degradation for very small prediction error [33]].
A randomized smoothening can help mitigate brittleness, as shown in [21], but their results still
compare to deterministic algorithms. In contrast, in our randomized setting, we compare against
randomized algorithms instead of deterministic ones.

Online bidding and competitive sequencing problems. For deterministic strategies, a folklore
result that goes back to studies of linear search [18]] shows that the optimal competitive ratio is
equal to 4, and is achieved by a simple strategy of the form X = (2)%°,. Randomization can help
improve the competitive ratio to e, whose tightness was proven in [27] using a complex application
of dual-fitting to the LP formulation. In regards to learning-augmented algorithms, and single-
valued deterministic oracles, [8] gave Pareto-optimal algorithms, whereas [4,|38] gave performance
guarantees as a function of the prediction error. Concerning distributional oracles, the only related
previous work is [[7]], which obtained the best consistency of 4-robust strategies. Note that in these
studies, Pareto-optimality is attained by simple, geometric strategies of the form X = (Ab%);>o,
where b is chosen appropriately as a function of the required robustness r. Related competitive
sequencing problems such as searching on an infinite line were studied in [5]]. No results are known
about randomization in learning-augmented bidding, even for single-valued oracles.

2 Pareto-optimal bidding with distributional predictions

In this section, we present and analyze deterministic Pareto-optimal algorithms in the distributional
prediction model. We begin with the setting in which the prediction p is a discrete distribution
supported on k points, where point ¢ is defined as (p;, 1), with p; € R>1, such that Zle p; = 1.
We assume, without loss of generality, that p; < pu;, for all 4 < j. At the end of the section, we will
show how to extend the result to general distributions; we will also discuss time-complexity issues.



The main challenge we face is that, unlike the deterministic setting where simple geometric strategies
are optimal, in the stochastic setting such strategies can be extremely inefficient even on trivial
distributions, as we show in Proposition[T8] Appendix [D} Hence one needs to search a much larger
space of candidate strategies which have no obvious structure. Our approach consists in restricting
the search space to tight r-extendable partial strategies (Lemma 3], which are specific finite strategies
restricted to the domain of p that can be extended to full strategies. We will rely on a linear
programming (LP) to find the best partial strategy, by defining the concept of a configurations (see
Definition[I)). By showing that the configuration space is sufficiently restricted, we can find the best
strategy by solving the series of LPs that correspond to each possible configuration.

Given a distributional prediction p and a strategy X, we define the consistency of X as
E.~.[cost(X, 2)]
E.np [2] ’

following [30] and [7]. The robustness of X is the same as its worst-case competitive ratio, and
is thus given by (I). By observing that the competitive ratio is maximized for targets which are
infinitesimally larger than any of the bids, a strategy X is r-robust if and only if it satisfies

Ti+1 ST"IZ'—ZIJ‘, forallzZO (3)

J<t

cons(X, ) = (2)

Hence our problem is formulated as follows: Given a robustness requirement » € N, and prediction
i, we seek an r-robust strategy X that minimizes cons(X, ). We will assume that r is constant,
independent of other parameters.

The following definition introduces the concept of a configuration, which is central in the design and
analysis of our strategy, in that it allows us to express the requirements of the problem using linear
constraints.

Definition 1. Given a strategy X and a prediction p, we define the configuration of X according to
w as the vector (j1,. .., ji) € N¥ such that

xj, < pi < 441, forallie [1,k]. 4)

Furthermore, we say that the vector j € NX is a valid configuration, relative to a robustness
requirement T and prediction p, if there exists an r-robust strategy X with configuration j.

The number of valid configurations is bounded from above according to the following proposition.

Proposition 2. The number of valid configurations of an r-robust strategy is O(logk k)

Our algorithm will compute a partial, i.e., finite strategy, which must then be extended appropriately
to a fully r-robust, infinite strategy. The following definition formalizes this requirement.

Definition 3. Given an increasing sequence Y = (yi)ézo that defines a partial strategy of | + 1 bids,
and an increasing sequence Z = (z;)2,, we call the strategy with sequence (Yo, - . . Y1, 20, %1, 22 - - -)
the extension of Y based on Z. We say that Y is r-extendable if there exists a sequence Z such that
the extension of Y based on Z is a valid, r-robust bidding strategy. Last, we say that Y is tightly
r-extendable if it is r-extendable by a sequence Z for which

i—1 l
=5 - 5= > Ui &)
=0 =0

where z_1 is defined to be equal to y;.

We also formalize what it means for a partial strategy to be r-robust:

Definition 4. A partial strategy is (partially) r-robust if it is r-robust assuming the target is smaller
than its last bid.

The following lemma allows us to use tightness as a criterion for extendability.
Lemma 5. A partial strategy Y = (yi)ﬁzo is r-extendable if and only if it is tightly r-extendable.
The next lemma provides a necessary and sufficient condition under which a partial strategy is

r-extendable. Its proof relies on finding the conditions for which a linear recurrence solution that
formulates the tight r-extension yields an increasing, unbounded infinite sequence.



Algorithm 1 Algorithm for computing the Pareto-optimal strategy.

Input: Robustness requirement r, distributional prediction 1 = {(p;, pi) }r_;.
Output: An r-robust strategy of optimal consistency.

1: For each configuration j, find the solution x; to the LP P, if it exists.
2: Letx* = (xf,..., m;; +1) be the solution of optimal objective value, for configuration j*, among
all solutions found in Step 1.
3: Return the strategy
(1’3,...71’;;720,21,...)

where Z = (Z;);>0 is the tight r-extension of (zf, . .. ,x}?; ).

Lemma 6. A partial strategy Y = (yi)ézo is r-extendable if and only if Y is partially r-robust and it
satisfies the condition

Zi:oyi < r 4 /r(r—4)
o 2

Algorithm [T| computes the Pareto-optimal strategy. It consists of three steps. In steps 1 and 2, it
computes a partial strategy of minimum expected cost, which is partially r-robust and is guaranteed to
be r-extendable. In step 3, it applies the tight r-extension, which yields an r-robust bidding strategy

that is Pareto-optimal. Given a configuration j = (j1, ..., jx), we define by P; the following family
of LPs.

k Jitl In this family of LPs, the objective func-

P; := min Z D - Z g (6) tion (6) is by definition the expected cost of

im1 7=0 the partial strategy (zo,...,Zj,+1) assum-

ing a target drawn according to u, which

i—1
. . . timizes the consistency. Constraint [7) guar-
subj. to  z; < rwi_g — zj,1 € (1 1 op X eney :
J t= il z_;) 521 € [k +1] antees that this partial strategy is r-robust,
7= @ whereas (8) guarantees that the strategy is
_ r-extendable, as stipulated in Lemma @
Il r+/r(r — 4) Constraint (9) describes the configuration
Z r; < ffﬂjk+l Jj» whereas (L) is an initialization condition
i=0 that is necessary for monotonicity. The fol-
® lowing theorem formalizes the intuition be-
xj, < i <y, €[LE] (9) hind ttie LP f?nnulaltion.,tﬁnd establishes the
) . correctness of our algorithm.
z; < @i, € [0, ji] (10) g
x9 < 7. (11

Theorem 7. Algorithm|l|computes a Pareto-optimal r-robust strategy.

In regards to the time complexity, from Proposition 2]it follows that Step 1 of Algorithm [T|requires
solving O(logk k) LPs, each of which takes time polynomial in the size of the input. For constant k,
the algorithm is polynomial-time, though a realisneuripstic implementation can be time-consuming
as k becomes large. To mitigate the effect on the complexity, but also in order to handle any general
distribution p, we can apply a quantization rule to ¢ with exponentially spaced levels. This allows to
reduce the runtime complexity, at the expense of a small degradation on the approximation of the
consistency. The following theorem shows that we can approximate the Pareto frontier to an arbitrary
degree of precision in time polynomial in the range of the distributional.

Theorem 8. Let p be a distributional prediction with support in [m, M. There exists a quanti-
zation of u for which Algorithm |1\ runs in time polynomial in max{M /m,logm}, and yields a
ec -approximation of the optimal consistency, for any constant ¢ > 1 independent of r.

This result is useful especially if the prediction has locality, i.e., M is not vastly larger than m. This
occurs, for instance, in the related application of contract scheduling, as discussed in [9]]. In particular,
if M /m is bounded by a constant, the algorithm of Theoremis polynomial-time, hence a PTAS.



3 Randomized learning-augmented bidding

In this section, we consider a different stochastic setting. Namely, we do not assume any known
stochastic properties of the prediction oracle, but we allow the bidding algorithm access to random
bits. That it, the elements of the bidding sequence X are random variables, and so is the cost at
which X finds the target. Given a prediction 4 on the target, the consistency and the robustness of the
randomized strategy X are defined as

Elcost(X, @)]

- and rob(X) = sup

E[cost(X, u)] .

cons(X) = (12)

In the standard setting of no predictions, there is a simple randomized strategy of the form R =
(ei*%);, with s ~ U0, 1), of competitive ratio equal to e. This is optimal as shown in [27] using a
complex proof based on linear programming and dual fitting techniques. The following proposition
shows that the algorithm is essentially tight across all targets, a result which will be useful in
interpreting the performance of our learning augmented algorithm.

Proposition 9. The randomized algorithm R = (e'**);, with s € U[0,1) satisfies
Elcost(X,u)]/u] = e — O(1/u), for all u.

In the remainder of the section, we provide both upper and lower bounds on the performance of
randomized learning-augmented strategies.

3.1 Upper bound

We propose a parameterized algorithm with parameters 6 € [0,1) and a > 1 which, informally,
regulate the amount of the desired randomness and the geometric step of the strategy, respectively.
Let A € [1,a), and j € N be such that & = Aa?*°, namely j = |log, @ — 6], and A = 5. We
define by R;, the randomized strategy with bids z; = Aa’**, where s € U[4, 1). The following
theorem quantifies the consistency and the robustness of this strategy.

_ .9
Theorem 10. Strategy Rsq has consistency at most s a(a—a’) and robustness at most

s a’(a—1)(1—¢6)Ina’
ala—a®)
(a—1)(1=4)Ina"

R;,, interpolates between two extreme strategies. Specifically, for § = 0, it has consistency and
robustness that are both equal to a/ In a, which is minimized for a = e. In this case, the strategy
is equivalent to the competitively optimal one, and from Proposition [J] it does not exhibit any
consistency/robustness tradeoff (it optimizes, however, the robustness). In the other extreme, for
§ — 1, simple limit evaluations show that rob(R; ,) = a*/(a—1), whereas cons(R1,.) = a/(a—1).
From the study of deterministic bidding strategies [8], this is the best possible consistency/robustness
tradeoff that can be attained by a deterministic strategy (and note that a®/(a — 1) > 4, for all a). This
is again expected, since as 6 — 1, the strategy does not use any randomness.

Define now the strategy R* = Rs- - in which the parameters 6*, a* are chosen in optimal manner.
Namely, they are the solutions to the optimization problem
s

ala — a°) <,
(a—1)(1-=6)Ina — "’
then from Theorem it follows that R* achieves the best-possible consistency among all r-robust
strategies in the class U; . R5,,. Hence, R* has at least as good consistency as the deterministic
Pareto-optimal strategy. For instance, for » = 4, R* has consistency approximately equal to 1.724,
which is attained at 6* ~ 0.9. However, as r increases, numerical solutions of @]) show that 6*
quickly approaches 1. For example, for r = 4.5, 6* = 0.95, and for r = 5, §* ~ 0.99. This implies
that any benefit that R* attains quickly dissipates as r increases, and randomization is not helpful. In
the next section we show that this is not a just a deficiency of R*, but that any randomized strategy
has consistency that approaches the best deterministic one, as a function of the robustness r.

max a® subject to (13)

3.2 Lower bound

In this section, we prove a lower bound on the consistency of any randomized r-robust strategy, with
r > e. We first begin with an alternative proof that e is the best randomized competitive ratio in



the no-prediction setting. A generalization of this proof will be likewise useful in the prediction
setting, namely in the proof of Lemma[I12] We adapt an approach due to Gal [35], who studied the
randomized linear search problem. For any fixed, bur arbitrarily small € > 0, define R = exp ( e )
Let D, be the distribution on the target with density €/¢, for all 1 < ¢ < R, and has a probablhty
atom of mass € at t = R. Let X = (z;);>0 denote a deterministic bidding strategy, against the target
distribution D,. Since the domain of D, is bounded, X is of the form (x;)}_,, for some finite n. We
show that for targets drawn from D., the expected performance ratio of X is at least (1 — )e. From
the minimax theorem, we then obtain that the optimal competitive ratio is arbitrarily close to e.

Theorem 11. For any e > 0 and D, defined as above, it holds that E,~.p_ [W] > (1—e¢)e.

We now move to the learning-augmented setting. Consider again the distribution of targets D,, and
suppose that the prediction of the oracle is & = R. Let X = (x;)!"_, denote a deterministic strategy,
for some n that depends on ¢, then the consistency of X is

t(X
cons(X) = % =3 Zl‘“ (14)

which does not depend on distributional assumptions, whereas for the robustness, we have the
following useful series of inequalities following the proof of Theorem [IT](see Appendix [B):

n n . n+1 1/(n+1)
T; R

i=0
The following is the main technical result that places a lower bound on the scalarized objective.

Lemma 12.

rob(X)+ A-cons(X) > (1 —e)T + A1+

where F(T) = In(T(InT + InlnT)), and lim._,o d(¢) = 0.

3.04
—— randomized lower bound
randomized upper bound
25 —— deterministic tight bound

consistency
N
(=]

=
e
\

1.0
3 4 3 6

robustness

Figure 1: Comparison between the deterministic tight upper bound on the consistency, and the
randomized upper and lower bound of Theorems @] and E}

We can now prove our lower bound with the help of Lemma [T2} specifically, by considering both
sufficiently small and sufficiently large values of the parameter \.

Theorem 13. Any randomized learning-augmented algorithm of robustness at most r has consistency
at least 1 + m7 for any arbitrarily small, but constant & > 0.

Figure[T|compares the consistency of the best deterministic strategy and the lower bound of Theo-
rem |13} as a function of the robustness r.



4 Further applications

4.1 Dynamic predictions

The methodology of Section [2]allows us to obtain Pareto-optimal algorithms for online bidding and
related problems, in a dynamic setting in which the oracle can provide multiple predictions in on-line
manner. We will use, as illustration, the abstraction of contract scheduling [47]], a problem that is
closely related to online bidding, and which offers a more intuitive interpretation of the dynamic
setting. In the standard version of the problem (without predictions), we seek a schedule X that is
defined as an increasing sequence X = (z;):2,. Here, z; is the length of the i-th contract that is
executed in this schedule, and the objective is to minimize the expression

T

r(X) = sup X1 where ¢(X, T) is the length of largest contract completed in X by time 7.
T )

Contract scheduling has several applications in real-time systems and interruptible computation [S1,

44| 122]]. The learning-augmented version in which a (single) prediction on the interruption 7" is given

ahead of time is identical to bidding, in that both problems have the same Pareto front [9].

Consider now a dynamic version of contract scheduling, where the oracle provides progressively
updated, i.e., improved predictions. Let r denote the desired robustness requirement, then our
setting can be formulated inductively as follows. Initially, the oracle provides its first prediction
on the interruption time, say i, and we seek an r-robust deterministic schedule that minimizes
the consistency relative to this prediction. Let X; be this schedule. Inductively, let X,,, denote the
updated schedule that the algorithm decides to follow after the oracle outputs the m-th prediction i,,.
Suppose that a new prediction @y, 41, with U, +1 > 4,,, becomes available at the completion of a
contract in X,,, say at time 7,,,. The objective is then to define an updated schedule X,,,+; which
starts its execution at time 7,,,, remains r-robust, and minimizes the consistency relative to 1.

We can compute each updated schedule X,,, by applying an LP-based approach along the lines of
Algorithm Moreover, each schedule X, can be computed efficiently in time O(log ., ). We refer
to Appendix [C| for details and the proof of the following theorem:

Theorem 14. In the dynamic setting, there exists an algorithm for computing an incremental Pareto-
optimal schedule of contracts, that runs in time polynomial in the size of each prediction.

4.2 Linear search

The results of Sections [2|and [3|can be extended to another well-known problem, namely searching
for a hidden target in the infinite line. This is a fundamental problem from the theory of search games
that goes back to works of Beck [[17]] and Bellman [19], and has been studied extensively in TCS and
OR; see [40] for a recent survey. In this problem, a mobile searcher initially placed at some point
O of the infinite line, must locate an immobile hider that hides at some unknown position on the
line. The objective is to devise a search strategy .S that minimizes the competitive ratio, defined by
supy, cost(S, h)/|h|, where cost(S, k) is the traveled distance of a searcher that follows S the first
time it finds h, and |h| is the distance of i from O. The best deterministic competitive ratio is equal to
9 [18]], whereas the best randomized competitive ratio is 1 +mings1 Lta ~ 4.6 [33]. Pareto-optimal,

Ina
deterministic strategies for a single positional prediction on the hider were given in [3]].

We obtain Pareto-optimal strategies for a distributional prediction on the position of the hider, thus
generalizing the result of Alpern and Gal (Section 8.7 in [3]) who gave a strategy of minimum
expected search time, but without any robustness guarantees. Furthermore, we can extend the
approach of Section [3|to randomized search strategies with a positional prediction. In comparison to
online bidding, which is “I-dimensional”, the inherent difficulty in linear search is that the searcher
operates in a “2-dimensional” space defined by the two halflines. We refer to Appendix [C]for details.

5 Experimental evaluation

We evaluate experimentally our main, Pareto-optimal algorithm, namely Algorithm [T]of Section 2}

Datasets The distributional predictions p are composed of pairs (i1, p1) - .. (ux, pr). We fix k = 4,
and the support of 1 is in the interval [1,10%]. The p; values are either uniform, i.e., all equal to
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Figure 2: Empirical consistency as a function of the robustness requirement 7.
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Figure 3: Empirical consistency when p is comprised of two equiprobable points, with 1 = 5000
and po generated as specified in the caption. (a) is adversarial for p = r/2 and (b) for p = (s.

1/k, or drawn uniformly in [0, 1] then scaled so that they sum to 1. The values of y; are either
drawn uniformly in [1; 10%]; or from a Gaussian distribution centered at the middle of this range,
and truncated to the range. This Gaussian distribution is either “narrow”, with a standard deviation
o = 2000, or “spread”, with ¢ = 4000. In total, we consider two settings for the values of p; and
three setting for the values of p;, leading to six different datasets. Furthermore, each dataset is
composed of 10 iid samples. We report results on datasets in which the p; are drawn uniformly and p;
follows a Gaussian distribution, and refer to the Appendix [D|for further experiments and discussion.

Algorithms We compare Algorithmto three heuristics of the form (A - p%);>0. Such heuristics are 7-
competitive if and only if p € [(1, (2] where ¢ = (r—/r(r —4)) and (o = 3 (r+/r(r — 4)) [8].
The three chosen heuristics correspond to p € {(1, %T, (2}, that is, to the extrema and the middle of
the feasibility range for p, and A is chosen, for each heuristic, so as to minimize the expected cost over
w. The choice of the base p controls how fast the heuristic increases its geometric bids. In particular,
the heuristic with p = (, optimizes the consistency assuming a singled-valued prediction [8].

Results For each of the 6 datasets, we consider integer values of r within [4, 12] and report, for each
algorithm, the average consistency as well as the standard deviation over the 10 samples (error bars).
The computation was run on an AMD EPYC 7302 processor using 8 threads. The average runtime
for each of the 540 instances was 11.8s. Figure 2] depicts the obtained results.

Analysis The experiments show that the heuristic with p = (3 is very inefficient, and its consistency
increases near-linearly with r (Appendix[3). This is because its bids increase very slowly as a function
of r. We thus focus on the remaining algorithms. For all r, Algorithm [I] has better consistency than
all heuristics, thus confirming Theoremm It also has better variance, as observed in the error bars,
since it outputs optimal solutions to each instance. In contrast, increasing the heuristic base increases
their variance, since the bids grow more rapidly, thus rendering the heuristic less flexible. This also
explains why the performance gap increases with the standard deviation of 4 in the dataset.



Furthermore, as shown in Figure[3] for each heuristic there exist very simple predictions comprised of
only two equiprobable points for which the heuristic has performance that is much inferior to that of
our algorithm. This can be explained by the fact that, in the known heuristics, the bids follow a fixed
geometric rule and cannot adapt to the specificity of the prediction, even when the latter is extremely
simple. In particular, for large r, the computations showed that the consistency of Algorithm I]
monotonically approaches 1, whereas the consistency of the heuristics tends to 2. This gap is large,
because it implies that the geometric heuristics pay a cost equal to that of for finding the largest point,
thus getting no benefit whatsoever from the distributional prediction. In Appendix [D| we demonstrate
that this gap is unbounded for large 7, even for simple predictions over two points.

6 Conclusion

We gave the first systematic study of online bidding in stochastic settings where either the prediction
is distributional, or the algorithm is randomized. Our results quantify the power and limitations of
randomness, an issue that remains underexplored in the literature, and is bound to become more
prevalent in the broader study of learning-augmented algorithms. Our techniques may be applicable
to several further extensions, e.g, in searching of a hidden target in a star environment [39] or in
layered graphs [34]. They can also apply to settings outside learning-augmented computation, as
we demonstrated in Section[d. 1] Here, an interesting direction for future work is to apply LP-based
approaches towards the study of barely random algorithms for online bidding or linear search. For
instance, what is the best competitive ratio that can be achieved with only one random bit? This is
motivated by recent studies of limited randomness is other well-known problems, e.g., k-server [29].
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We provide theoretical results with all proofs given in the main paper and the
supplementary material, as well as an experimental evaluation of the main algorithm.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We make the standard assumption that r is a constant that does not depend on
other parameters of the problem. We also mention explicitly that Algorithm 1 requires that
k is not significantly large. Both assumptions are discussed in Section 2]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The proofs of all theorems and statements are provided in the technical
appendix. All assumptions are stated in the statements.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

¢ Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The full experimental setup is described in the main paper. The code and data
are provided in the supplemental material. We also provided a README file that explains
how to execute and reproduce the code.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is given in the supplementary material. The algorithm is evaluated
on synthetic data, which are described in the main paper and are also provided with the code.
We do not use any public data.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We do not rely on any training data. We discuss in Section[5lhow the prediction
is generated.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have included error bars in the figures that report the experimental results
in Section

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: This information is given explicitly in Section[3]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We abide by the code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work studies foundational issues in the analysis of learning-augmented
algorithms. There are no negative societal impacts.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no perceived risk of misuse in our work.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not rely on existing assets.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The code is provided along with its documentation, in the README file.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowdsourcing used.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No study participants involved.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We did not use LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Proofs from Section 2]

Proof of Proposition2] Let X = (z;)$2, denote an r-robust schedule, which thus satisfies (3). From
previous studies of this linear recurrence inequality [6]], we know that for any u > 1, there exists an
index [ such that 2; > u, where [ = O(logg1 u), and

r— 1?2 —4r
5 .

Note that (; is constant, since 7 is assumed to be constant. From Definition |1} it follows that the i-th
component of a valid configuration has value O(log 1;), which concludes the proof.

G =

We note that this bound is tight, in that from [6] it holds that I € Q(log, (u)), where ¢y = Y= VQL‘”.
O

Proof of Lemmal3] Suppose that Y is r-extendable, then there exists a strategy Z that r-extends
Y. Let j € N be the smallest integer such that z; < rz;_1 — Zj<i zj, and let § = (rz;—1 —

qu zj)/z > 1. Define the strategy

!
Z' = (Yo, Y1, 205 - - - 2i—1,025,02i41,0%i 42, . . .)

then we remark that Z’ is also r-robust. Indeed, for ¢ > 7, we have, as Z r-extends Y :

024 < 8(rzg—1 =Y _yi = Y %)

J<i Ji<q
i—1 a—1
<r(dzg—1) — Zyj - sz — Zézj.
i<t i=0 =i

Hence, Z' is r-robust and satisfies (3 for ¢ = 1. By repeating this process iteratively, we obtain a
sequence that converges, at the limit, to the the tight r-extension of Y.

For the opposite direction, it suffices to note that a tightly r-extendable strategy is r-extendable by
definition. O]

Proof of Lemmal6] Consider a partially r-robust partial strategy ¥ = (yi)}_,. Note that if Y is not
partially r-robust, it cannot be r-extendable. By scaling all values y;, we can assume, without loss of
generality, that Zé:o y; = r, as this simplifies the formulas. From Lemma Y is r-extendable if
and only if it has a tight r-extension, say Z. We will describe explicitly the constraints that must be
imposed on Z, in order for the sequence Y U Z to be a valid tight r-extension of Y.

The first bid of Z, namely z(, must satisfy the condition r - y; = Zé:o yi + 20 = r + 2o, hence we

have zo = r(y; — 1). The second bid, z1, must satisfy r - zg = Zé:o yi + 20 + 21 = r-y; + 21 hence
z1 = r(zo — y;). For each subsequent bid z;, with ¢ > 1, it must hold that z; = r(z;_1 — 2 _2),
which can be extended to all 7 € N with the initial conditions z_1 = ¥; and z_s = 1. We have thus
defined a linear recurrence relation, whose solution is given by the expression

a0 ) ) — ) () ), e

where r' = /1 — 4y/r <.

The series z describes a valid strategy if and only if it is increasing and unbounded. We consider two
cases.
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Suppose first that 7’ < r — 2y;. For n large enough, the terms of the expression of z,, 5 in (r + /)™
dominate the ones in (r — r')™, s0 z,_o becomes negative and z is not a valid strategy.

Next, suppose that v’ > r — 2y;, and we consider two further cases. Suppose first that r < 2.
In this case, both terms of (I6) are positive, so z is increasing and a valid strategy. For the next
subcase, suppose that » > 2y, then it follows that the second term of is negative. Since

r’ >r — 2y, wealso have (r +7")" + (r— )" > (r+r)" — (r —r')" s0 zp_2 > 21;:1 (r'—r+

2y) ((r + 7)™ + (r — ')™), which is increasing in n and unbounded, so z is a valid strategy.

Consequently, z is a valid strategy if and only if ' > r — 2y;, which is equivalent to:

2y >r—1'=r—\/r(r—4)
Zi‘:oyi< 2r C2r(r/r(r—4))  r4y/r(r—4)

= =

(7 r—/r(r—4) r2 —r2 4 4r 2

Therefore, we have shown that a partially 7-robust strategy Y = (y;)._, admits an r-extension Z if

P S r+/r(r—4)
and only if o= < 5

, which completes the proof.

In this proof we assumed the general case » > 4. For » = 4 the recurrence relation is slightly
different, since the characteristic polynomial has a double root; we do not show details, since this
case is studied in [7]]. O

Proof of Theorem[]] LetY = (y;);>0 denote a Pareto-optimal strategy, i.e., a strategy that is r-robust
and has minimum consistency. Let 1 = (I3, ...[,,) be the configuration of Y according to . Since Y’
is r-robust, the sequence Y’ = (yi)i’go is partially r-robust, as well as r-extendable. From Lemma
this implies that Y satisfies all the LP constraints (7), (8) and(TI). Hence, in Step 2, Algorithm
computes a partial strategy z* for some configuration j* for which C' := Zle Di f;:ol xy is at
most the consistency of Y. Furthermore, since z* satisfies (8], from Lemmas[5|and|6]it is aggressively
r-extendable. Therefore, we conclude that the strategy returned by the algorithm is 7-robust, and has

consistency at most that of Y, hence it is Pareto-optimal. O

Proof of Theorem[§] Let F), denote the cumulative distribution function of the prediction p. Since
has support in the interval [m, M| C Ry, we have F),(m) = 0 and F,,(M) = 1. We can assume,
for simplicity, that M > e - m hence M /m = Q(1), as we focus on the asymptotic complexity of the
algorithm.

We define the distribution i as a quantization of x4 into k& = [clog(M/m)] points (or “levels”)
fi1 ... i, of value fi; = m - /€. Note that fi, > m - °¢(M/™) > M The probability p; associated
with [i; is defined to be equal to F'(fi;) — F'(ji;—1) (assuming o = m). Intuitively, i is obtained
from p by shifting probability mass to the right, by a maximum multiplicative factor of ¢!/¢, and
results in O(log(M /m)) points.

Consider running Algorithm [l on ji. The space of all configurations is now more restricted, in
comparison to the setting of Section[2] Specifically, as discussed in the proof of Proposition 2} we
know that for any r-robust strategy X = (z;)32,, the first index ¢ such that x; > iy = m - el/e
must satisfy ¢ = O(log m). Hence, we can restrict the execution of Algorithm on configurations
Jj = (J1,...,Jx) for which j; = O(logm). Similarly, we can also restrict j for which j, — j1 =
O(log(M/m)). This results in a total of configurations that is at most

k
0 <logm : H(]z - jil)) .

We now bound Hf:z (ji — ji—1) using the fact that there exists a constant C' > ¢ for which Zf:2 (ji —
Ji—1) = jr — j1 < C[log(M/m)], and the AM-GM inequality:
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. k—1
Je —J1 > (AM-GM inequality)
M

Cﬂog M_I [clog K‘\fl
< (HW) (definition of k£ and upper bound on ji — j1)
clog =] —

y 2clog M4
ZClogM> &

m

(follows from log % >landC >c>1)

4C 2clog &£ M 2clog 42 M o(1)
<|— < = | — .
(%) =) -G)

The complexity to solve each LP in Algorithm [I]is polynomial in the number of variables and
constraints, so polynomial in k¥ = O(log(M/m)) and j, = O(logm + log(M/m)), hence the total
complexity is polynomial in O(% + logm).

Regarding the consistency of the strategy X returned by this procedure, we have:

E.~ t(X, . .
cons(X, u) = *IL:[COS [(z] 2l (definition of consistency)
zoop
Ezw’ t X7 .o . — o .
< ‘ILE[COS [( ] 2l (follows from the definition of zz and monotonicity of cost)
Z z
X, ) - Ezr\u .ps .
< cons(X, 71 il7] (definition of consistency)
E.np [2]
< cons(X, i) - e'/°. (follows from the definition of f)

The first inequality comes from the fact that probability masses have only be moved to the right from
 to i and the function z — cost(X, z) is non-decreasing. The second is the definition of cons(X, fi).
And the last one comes from fact that no probability mass has been shifted by a multiplicative factor
larger than e'/¢ from p to fi.

Therefore, as Algorithm [Tpffers the best consistency / robustness tradeoff, this procedure results in
consistency that is within a factor at most '/ from the best consistency achievable in the worst-case,
assuming robustness 7. O

B Proofs from Section 3|

Proof of Proposition[d] Let & € [0, 1) be such that for the unknown target u, it holds that u = 719,
where j € N. Then X will either locate u in iteration j with probability 1 — ¢, or in iteration j + 1
with probability §. Hence

E[cost(X L (B 2 s 5 prfs > o)+ BlS s < o) Prfs < 0
= > > — s < <
cost(X, )] = i (B s 2 0] Prfs > 0]+ B — s < o] ufs <))
e 1
= —_— S > — s < . —
=) (Ele®s > 6](1 — 0) + eE[e’|s < 6]0) O(u)
e e—ed e(e? —1) 1
_65(61)<15(1_6)+ ) 6)_O(u)
1
=e— 0(6)7
which completes the proof. O
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Proof of Theorem[I0} To evaluate the consistency, note that Rs , locates « at iteration j, regardless
of the random outcome of s. Therefore,
aitits _q a—a®

Elcost(Rs,,0)] = AE] (1—-6)Ina’

<\’ T1
a—1 J < Aa

which establishes the consistency of R 4, since 4 = Aalto.

To bound the robustness, let « denote an arbitrary target, and let p € [0, 1) be such that u = Aakth,
where k € N. We consider two cases:

Case 1: ;1 < 0: In this case, Rs , locates u at iteration k. Hence, similarly to the calculations above,
we obtain that
E[cost(Rs 4, u)] a**1l(a — a?) a(a — a’)

b(Rs.a) = Zleo W, Wl o - :
rob(Rs, ) pzl(l(}?é] Aaktn - ilg a*tk(a —1)(1 —=d)lna (a—1)(1—9¢)Ina

Case 2: p > 6. In this case, R; , locates the target either at iteration &, if s > p, or at iteration k + 1,
otherwise. Hence

1 ak+s+1 ak+s+2
= > >
rob(Rs,q) Y ( o] |s > p]Pr(s > p) + E[A p— |s < p]Pr(s < u))
1
= @ oyma @ el - a”))
a(a — a’)

S@-Di-d8)ma
0

Proof of Theorem[I1] Let G denote the cdf of D.. We also define x_; = 1, for initialization
purposes. Since any target drawn from D, is bounded by R, we can assume that X is of the form
X = (z;)I,, for some n such that x,, = R. We have that

(X UL A |
Ey~p. [w] = Z / Z x;—dG(y) (by definition)

izo/wi-1j=0 Y
= Z X4 / —dG(y) (rearranging terms)

i=0 @i
. Ly R R
- z (L Lac) =e (L B dy+4))
n T n+1
>e(n+1) [ [ (AM-GM inequality)
i=o Vi—1
Rt iy :
=(1-¢) T (from the definition of R and telscoping product)
In Rn+1

> (1—¢)e. (since z/ In x is minimized at z = e)
O

Proof of Lemma Let us denote by p; the ratio z; /x;_; and by m the ratio 1/n.
From (T3) it follows that

n n—1
A A
E[rob(X) + Acons(X)] =€ E pi+A+;=€ E pi+5pn+>\+p—. (17)
i=0 " i=0 "
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For further convenience of notation, let us denote a := p,,, then from the AM-GM inequality and a
reasoning along the lines of (T3)), Eq. gives

1

- A
Efrob(X) + Acons(X)] > (1 — ) "L 4 eq+ A+ 2
nM[An a

1 A

=1-eT—+ea+ A+ — (18)
an a
1
by recalling that T" denotes the quantity 1 R}; .

Define f(a) := (1 —&)T—+ + ca + 2. We will prove that as ¢ — 0, f has a minimum that s
arbitrarily close to f(a*), where
* m(l - 6)

at=—— T (19)
13

To see why this suffices to complete the proof, note first that
Rm S GWO (T)’

from the definition of the Lambert function, and more precisely its right branch. From the definition
of R, the above inequality implies that

€

< Wo(T 20
mS T o(T), (20)
and note that
lim m = 0. 20
e—0
From (T9) and (20) it will then follow that
a* < T -Wy(T).

Moreover, as e — 0, f(a) is arbitrarily close to the function
A
gla) :=(1—-e)T +ca+ =

hence f(a*) is arbitrarily close to g(a*), and from (I8) this completes the proof. Note that 6(¢) can
be defined as a function that is comprised by infinitesimally small terms, due to the approximations
that we will introduce in what follows.

Next, we find the extreme points of g(a). The derivative of ¢ with respect to a is equal to

A
gda)=—-1—eymTa ™ +e— ol

To find the local extreme points, we solve ¢’(a) = 0. Since ¢’ is continuous, as ¢ — 0, local extrema
are arbitrarily close to the solution of the equation

1 A
—(1 - I'—-+ec——=0.
(I—-e)m € 5

The solution a* of this quadratic equation, considering that a* > 0 is

(1 —e)mT + /(1 —e)mT)? + e

*

a* = ,
2e

and note that as ¢ — 0, a* approaches (1 — €)mT /e, hence establishing @]) Last, this value

corresponds to the unique maximum of g. This is because ¢”(a) = m(1 — €)T'% + % > 0. O

Proof of Theorem[I3] By way of contradiction, suppose that there exists a randomized r-robust
strategy X with consistency at most C' = 1 + 1/(rWy(r)), then for every A > 0

rob(X) + Acons(X) <7+ AC. (22)
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Define

Rt
S = —,
In R+t
then recalling the definition of 7', we have
T < R*GFD 8. (23)

Let £ > 0 be any fixed constant. We consider two cases:

Case 1: S > (1 + &)r. In this case, from (I3) we have that E[rob(X)) > (1 + &)r. This, however,
contradicts Yao’s principle from (22) and any sufficiently small value of .

Case 2: S < (14 &)r. From (23) and ZI) we obtain that 7" is arbitrarily close, but smaller than S,
as € — 0. For sufficiently large ), e.g. A\ = r2, Lemmayields

E[rob(X)) + Acons(X)] > (1 — &)T + 12 (1 N TWOl((T)>
1
> (1-e)(1+&r+72 (1 Y AT +5>r>> 7

where the second inequality follows from the monotonicity of the RHS, assuming that T < 7?2
(otherwise, the lower bound follows trivially). O

C Proofs and omitted details from Section 4]

C.1 Contract scheduling with dynamic predictions

We show how to compute, inductively, each updated schedule in the dynamic setting. Recall that
the fist schedule, X, can be computed as the Pareto-optimal schedule for prediction 43 [9]. Let X,
denote the schedule computed for prediction ., ; from the discussion of the setting in Section
X, begins the execution of its first contract at time 7, .

We describe how to compute schedule X,,,, for prediction #,,. From Proposition [2} any r-robust
schedule can complete at most O(log @, ) contracts by time 4,,,. Therefore, it suffices to solve the
following family of LPs P;, for j € O(log @i, ):

Pj:=max z; (24)
i—1
subj. to xz; <rwiq — (Tm—l + Zlk) v € [1,7] (25)
k=0
J
T+ Y i < iy, (26)
i=0
J
r4+/r(r—4
Tt + Y a; < %x]— 27)
i=0
x; < $i+1,i S [0,] — 1] (28)
xo <7r-last(Xpm—1) — Tm-1- (29)

The objective of the LP is to maximize x;: here, j is the index of the largest contract that completes
by time #,,. Maximizing «; minimizes the consistency of the schedule. Constraint (23) guarantees
the r-robustness of the schedule: this is because the worst-case interruptions occur right before the
completion of a contract [47]. Note that the time starts at 7,1, which is the time that 4., is available
and the first contract of X,,, will be scheduled. Constraint states that x; is indeed completed by
time u,,,. Constraint guarantees that the final schedule can be r-extendable, and constraint
captures the monotonicity of the contracts. Last, is an initialization constraint. Here, the notation
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last(X,,_1) denotes the last contract that was executed in X,,, _; before @, was issued, i.e., the
last contract executed before 7, _1.

To complete the computation of X,,,, after solving the above family of LPs and computing a partial
schedule of the form (z,...x}.) (for the optimal index j*), it suffices to augment this partial
schedule with its tight r-extension, as in step 3 of Algorithm ]

C.2 Linear search

We discuss how the approach of Sections[2]and [3]can be applied to the linear search problem.

C.2.1 Pareto-optimal search

Let us assume the convention that the left half-line (i.e., the half line to the left of O) is mapped to
the negative reals, whereas the right halfline is mapped to the positive reals. A search strategy X can
be described as a sequence of the form

X = ((=1)"*° . 2;);>0, wherex; >0andd € {0,1}.

Consider a target hiding at the point (—1)% u where &' € {0,1}. Then X discovers the target at cost

i1
cost(X,u) =u+ 2Z:rj ‘i <u<a; and (—1)°F = (1),
=0

where the factor 2 accounts for the searcher moving away from O, then returning to O, in each
iteration.

With the above definitions in place, we can define configurations in a manner similar to Definition
For a given prediction 4 = (1, p1), - - -, ik, Pr) With p; € R, we first list the orderings in which a
search strategy may find each ji;, which are at most 2*. Indeed, initially and after each s, is found by
the searcher, there are at most two possibilities for the next x;: the one directly to the right of y; or to
its left. Let o be such a valid ordering, so X first finds pi5(1), then gy () until i, (1). A configuration

of X according to y and o is defined as the vector (ji, ..., jx) € N¥ such that, for all i € [1, k]:

(—1)j'i_1+6$l < Mo (i) < (—l)ji+1+6fﬂji+1 if o (i) >0
(=15 0 > gy = (1) 05 40 if ey < 0.

Furthermore, we note that a strategy is r-robust if and only if for all 7 it holds that

r—1
ZTit1 < 5 'Ccz‘—zl’j-
j<i

r—1

Note that the definition is matching the one for bidding, by replacing r with p := . Hence, the
tight r-extension of a strategy has the same properties as in Lemma 5| Therefore, Lemma 6| holds as
well, by replacing 7 with p. It follows that a partial strategy Y = ((—1)*%y;)_ is r-robust if and

only if it is partially r-robust and 3°¢_, Y< 3o+ 5vnlp—4).

We can therefore design an algorithm analogous to Algorithm[I] which first lists all possibilities for
d € {0,1}, o, and the configurations. Then, it finds the best corresponding r-robust partial solution
which can be r-extended, if it exists. This computation is done through a family of LPs similar to that
for the bidding problem:
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k Ji
P; 5,5 == min Zpi . <,ua(i)| +2 qu>
=1 q=0

i—1
subj.to x; < p-xi_q — ij,i €1, 4k + 1]
j=0
Jre+1
p+/plp—4)
Z Ty < T ST
i=0

(1) a4 < poy < 34,4 € [1,K] and ppgy > 0
(=1t tg, ) > lo@) = —Tj41,0 € [1,k] and pip(;y < 0
r; < xiqo,i € [0, ji]

i >0, € [0, jos1]

To < T

C.2.2 Randomized search

We now show how to extend the approach of Section [3]to the problem of linear search.

First, for the standard competitive analysis without predictions, we note that there are two different
ways of defining and analyzing randomized strategies of optimal competitive ratio. The first concerns
the setting with the assumption that the target cannot hide at a distance less than unit from O
(otherwise no constant-competitive strategies exist). Here, efficient strategies are of the fomﬂ
X = ((=1)ba***)22,, where b is a random bit in {0, 1}, and s is chosen u.a.r in [0, 1]. The second
setting assumes that the search can start with infinitesimally small oscillations around O: this “bi-
infinite” setting does not require a random starting choice between the left and right halflines, and
an efficient strategy if of the form X = ((—1)%a’™*);£>° __ where s is chosen u.a.r. in [0, 2]. Both
settings lead to the same optimal competitive ratio of

. 1+4+a
q.—1+131>11£1 na ~ 4.6. (30)

For convenience, in what follows we will assume the bi-infinite model, under which the cost
expressions are easier to derive.

Upper bound We first obtain a randomized strategy, parameterized over § € [0,2] and @ > 1. Let
@i denote the predicted target, and let j € N, A € [1,a) be such that |i| = Xa’*°. Suppose also,
without loss of generality that ¢ is in the right halfline. We define R; , as the randomized strategy
((=1)™*")Xa'**);, where s is chosen u.a.r. in [§,2), and d has the same parity as j.

a’—a’

Theorem 15. Rs, has consistency at most 1 + QW and robustness at most 1 +
2 (12—0.5
(a—1)(2—=9)Ina"

Proof. By definition, the strategy discovers @ at iteration j, hence its consistency is bounded as
follows:

Ry =14+2-% L g
COHS( 5}01)— + ﬁm [e]
1 2 _ 4
142 a®—a
(a—1)a’ (2—-46)Ina
2 _ .9
— 142 a a

ad(2—8)(a—1)Ina’

'This setting is analyzed in [Kao, Ming-Yang, John H. Reif, and Stephen R. Tate. "Searching in an unknown
environment: An optimal randomized algorithm for the cow-path problem." Information and computation 131.1
(1996): 63-79]. The work is a rediscovery of an original result due to Gal [35].
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To bound the robustness, we can generalize the competitive analysis of the randomized ¢*-competitive
strategy. More precisely, following the lines of the proof of Lemma 8.5 in [3]] we obtain that

a® 2dx

a®  [?
rob(Rs,) =1+ /
5

a—1 2—90

a2 70,6

(a—1)2—-¥8)Ina’

=142
O

As in the case of bidding, Rs , interpolates between two extreme strategies. Specifically, for 6 = 0, it
has consistency and robustness that are both equal to 1 + (1 + a)/ In a, which has a unique minimizer
q*, as in (30). In this case, the strategy is equivalent to the competitively optimal one.

In the other extreme, for § — 2, simple limit evaluations show that rob(Rs,,) = 1 + 2a%/(a — 1),
whereas cons(R2,,) = 1 + 2/(a — 1). From the study of deterministic search strategies [3]], this is
the best possible consistency/robustness tradeoff that can be attained by a deterministic strategy.

Lower bound We show how to extend the approach of Section [3.2]to the linear search problem.

Recall that, without predictions, the optimal competitive ratio is expressed by (30). For the proof

that ¢* is optimal, we refer to Theorem 8.6 in [3]], which is based on a distribution on targets with a

hyperbolic pdf very similar to the online bidding case: the main difference is that targets may hide in

either half-line, so the pdf is divided by a factor of 2, to reflect this. Using the same distribution on

targets, and a prediction for a target at distance @ = R, we have the following expressions on the
robustness and the consistency of a deterministic strategy X = ((—1)%x;)",.

n—1

rob(X)=1+en+ Z

i=0

n—1

>1+4+en+en H

i=0

=1+en+enRY"

R! /n

:1 _—
—i—en—l—Elan/n

1+ RYn
In RY/n

X

Ti—1

Lq

Ti—1

=1+(1-¢) €2

and
cons(X)

1 _
= (R4 21, 5) = 142722 (32)

R Tn—-1 '
The above expressions are the counterpart of and (T4), respectively, for the linear search. Eq
follows directly from the proof of [3], whereas (32) follows by assuming, without loss of generality,
that the searcher locates the target at distance R at the n — 1-th iteration. This is because the target
will be located either at the n-th or the (n — 1)-th iteration, and the latter minimizes the cost, hence
the consistency as well.

With this setup in place, we obtain the following lemma, whose proof follows the same lines as
Lemmal[I2

Lemma 16. Given ¢ > 0, let T denote the quantity 2"——. For any A > 0, it holds that
InRn-1

1
TWo(T) )

where Wy is the principal branch of the Lambert function, and lim._,o d(g) = 0.

rob(X) 4+ A-cons(X)>1+en+ (1 —e)T+ A1+ —d(¢e)

Last, Lemma@] allows us to show the following lower bound.
Theorem 17. Any randomized learning-augmented algorithm of robustness at most r has consistency

at least 1 + 2 where y = eWo (=), for any arbitrarily small, but constant £ > 0.

1
(1+8)yWo(y)’
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Figure 4: Empirical consistency as a function of the robustness requirement r, where y; and p; are
drawn i.i.d. following uniform distributions. Fig.(a) depicts the same values as (b), but has a wider
y-axis so as to illustrate the relative performance of the heuristic with base (.

Proof sketch. The proof is analogously to that of Theorem[T2] with the difference that S and T are
defined slightly differently, namely

1 1

R» Rn»—1
S = - and T=—+
InR» InR»
Furthermore, from @, the cases are defined relative to whether
1+ Rw
I+ —— <,
InR»

i.e. based on whether § < (1 + &)e"o("=), O

D Further experimental results and discussion

In this section, we report additional experimental results.

Figure ] depicts the empirical consistency of the algorithms for the dataset where 1; and p; are drawn
from uniform distributions defined in Section[5] Figure(a) highlights the empirical consistency of
the heuristic (7. The plot shows that the consistency increases near-linearly with r, i.e., this heuristic
is very inefficient. Hence we focus on the comparison to other algorithms. The results depicted in
Figure f|b) are comparable to the ones in the main paper for a spread Gaussian distribution. The
standard deviation of the heuristic results is larger, as seen in the error bars, which is attributed to the
fact that the uniform distribution has larger variance than the gaussian.

Figure [5] depicts experimental results for the remaining three datasets, in which all points have the
same probability mass. Compared to datasets where p; are chosen i.i.d, the performance gap between
the heuristics and Algorithm [I]is slightly smaller. The standard deviation of the heuristics is likewise
smaller, since the i.i.d. predictions involve more randomness than the equiprobable predictions.

We conclude with a result that supports the experimental findings reported at the end of Section 4]
Namely, we will show that for a large class of geometric heuristics, which includes those with bases
(o and /2, the gap between their consistency and that of our algorithm becomes arbitrarily large, as
the robustness r increases.

Formally, we say that a geometric algorithm is r-increasing if it is of the form {\ - p'},;>o where p
depends only on r, tends to co as 7 — oo, and A may depend on 7, p and u. By definition, this class
contains the heuristics with bases such as r/2, and (5.

Proposition[T8]shows that r-increasing geometric algorithms may have an arbitrarily large consistency,
even on a very simple prediction 1 composed of two points. This is in contrast to Algorithm[I} whose
consistency tends to 1, as r — oo.
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Figure 5: Empirical consistency as a function of the robustness requirement r, when p; are equal, and
the p; are drawn from the stated distributions.

Proposition 18. For any r-increasing geometric algorithm, and any R > 1, there exists a robustness
requirement r and a prediction distribution |1 over two points such that the consistency of the
algorithm over | is at least R, whereas the consistency of Algorithm is atmost 1 + 1/R.

Proof. Consider an r-increasing geometric algorithm, with base p (which is a function of r). Let
A = 2R and r be such that p > A® and » > A?; these choices are possible, by the definition of
r-increasing strategies. Let p be defined by (11, u2) = (1, A) and (p1,p2) = (1—1/A,1/A). Since
p > A2, there are only two possibilities for the sequence of bids (z;);>¢ output by the algorithm:
either there is a bid z; in g1, p2) or not. In the first case, ;11 is at least py; > A2, and the expected
cost of the algorithm is at least p; - A? = A, by considering only the contribution of y in the
expected cost. In the second case, the first bid x; that is larger than p; is at least o, hence the
expected cost of the algorithm over p is at least s = A. In both cases, the expected cost of the
algorithm is at least A = 2R.

Consider now a partial strategy whose first two bids are equal to pu; and po, respectively. This partial
strategy is r-extendable, as r > AZ and the conditions of Lemma@are satisfied. Thus, there exists an
r-robust strategy of expected cost equal to (1 — % )p + x (1 4+ p2) =1 — % + x + 1 = 2. Since
E.oplz] =2 - %, the above strategy has consistency at most 1 4+ 1/R, and so does Algorithm

since it is Pareto-optimal. In contrast, the consistency of X is at least % > R. O

The above results shows that any geometric strategy will have inferior performance: Either it is
r-increasing, thus inefficient according to Proposition [I§]or it is not, in which case it is inefficient
even on single-point predictions. The latter follows from [8]], which showed that for single-point
predictions the consistency is equal to p/(p — 1).
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