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Abstract

Estimating the probabilities of connections between vertices in a random network
using an observed adjacency matrix is an important task for network data analy-
sis. Many existing estimation methods are based on certain assumptions on net-
work structure, which limit their applicability in practice. Without making strong
assumptions, we develop an iterative connecting probability estimation method
based on neighborhood averaging. Starting at a random initial point or an exist-
ing estimate, our method iteratively updates the pairwise vertex distances, the sets
of similar vertices, and connecting probabilities to improve the precision of the
estimate. We propose a two-stage neighborhood selection procedure to achieve
the trade-off between smoothness of the estimate and the ability to discover local
structure. The tuning parameters can be selected by cross-validation. We estab-
lish desirable theoretical properties for our method, and further justify its superior
performance by comparing with existing methods in simulation and real data anal-
ysis.

1 Introduction

Network analysis has been a promising research area in data science and widely applied in many
fields, including medicine, social sciences. Objects such as genes, proteins, or people are presented
as vertices in the network, and relationships between objects (e.g., protein interactions or friendships)
are presented as connections between pairs of vertices. In this paper, we focus on estimating the
connecting probability between each pair of vertices based on the observed network.

In the literature, the most fundamental assumption is the Aldous-Hoover theorem (Aldous, 1981).
Assume that the network is vertex-exchangeable, then each vertex i is associated with a latent vari-
able ξi, and the connecting probability between any two vertices depends on a graphon function f(·)
of the corresponding latent variables.

To estimate the connecting probabilities, some researchers focus on estimating f(·) under strong
assumptions. Chan and Airoldi (2014) propose the sorting-and-smoothing (SAS) algorithm. It
first sorts the adjacency matrix using the empirical degrees and smoothes the sorted matrix via total
variation minimization. It requires strict monotonicity of the degrees, which is difficult to be satisfied
in practice. Since the purpose of estimating f(·) is to estimate the connecting probabilities, another
direction is to estimate the latter directly, such as stochastic block models approximation (SBA)
(Airoldi et al., 2013; Holland et al., 1983; Wang and Wong, 1987). Under the SBM, vertices can
be divided into several blocks, and the connecting probability between two vertices depends only
on the blocks they belong to. Once the vertices are clustered correctly, the connecting probabilities
can be estimated by a moment estimator. In recent years, methods based on SBM approximation
and its variation, network histograms, have been widely studied (Choi and Wolfe, 2014; Olhede
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and Wolfe, 2014). Gao and Ma (2021) establish the framework of minimax error rate analysis
for these methods. Since the adjacency matrix can be viewed as a noisy version of the connecting
probability matrix, general matrix denoising methods can be applied too. Chatterjee (2015) provides
a universal singular value thresholding method (USVT), and Xu (2018) analyzes its error rate. Zhang
et al. (2017) propose an efficient neighborhood smoothing method (NS). They select those with
similar connecting patterns as the neighbors for each vertex, then the connecting probabilities can be
estimated by neighborhood averaging. However, the estimate is not reused to improve neighborhood
selection, which may lead to information loss.

Since the main purpose of estimating the graphon function is to obtain the connecting probabilities,
we focus on estimating the connecting probability matrix and develop an iterative connecting prob-
ability estimation method (ICE) in this paper. We define a new vertex distance calculated directly
on the probability matrix. In contrast to one-step neighborhood smoothing method, our method is
iterative. In each iteration, with an estimate, it can update the pairwise vertex distances and the sets
of similar vertices. Then, with better selected similar vertices, it can improve the performance on
estimation, making it easier to discover complicated structure. The initial input of the iterations can
be an estimate obtained by the existing methods as we introduce above. Even if it begins with a
random neighborhood averaging estimate, it can converge quickly and perform well in many cases.
We also propose a two-stage strategy for neighborhood selection, which uses different sizes of the
similar vertex sets during and at the end of the iterations, aiming to cope with the trade-off between
the smoothness of the estimate and the ability to discover local structure. The tuning parameters can
be selected by network cross-validation. According to the results on simulated and real networks,
our method is comparable to state-of-the-art methods in simple cases and outperforms them in the
presence of complicated structure.

2 Framework

Suppose G = (V,E) is the observed undirected network where V = [n] denotes the vertex set and
E denotes the edge set and E ⊆ {(i, j) : i, j ∈ V, i ̸= j}. The network can be represented by
an adjacency matrix A = [Aij ]

n×n ∈ {0, 1}n×n, where Aij = 1 if vertices i and j are connected
and 0 otherwise. We only consider undirected networks without self-loops, so A is symmetric with
Aii = 0 for i ∈ V . Assume that the network is vertex-exchangeable, according to the Aldous-
Hoover theorem (Aldous, 1981), we have the following representation: for each vertex i, there
exists a latent random variable ξi

i.i.d.∼ Uniform(0, 1), then for each vertex pair (i, j), we have
Aij ∼ Bernoulli(Pij), where Pij = f(ξi, ξj) and f(·) is called the graphon function. Let P =
[Pij ]

n×n ∈ [0, 1]n×n denote the probability matrix. Let || · ||2 and || · ||F denote the ℓ2 and Frobenius
norms respectively.

Given the observed adjacency matrix A, our goal is to estimate the connecting probability matrix
P. Since for each pair (i, j), Aij is the only realization of Pij , it is hard to get a sample-based
estimation like maximum likelihood estimation. However, if there exists another vertex i′ satisfying
f(ξi′ , ·) ≈ f(ξi, ·), then Ai′j can be roughly viewed as another realization of Pij for the reason that
Pij = f(ξi, ξj) ≈ f(ξi′ , ξj) = Pi′j . Assume that there is such a group of vertices who share similar
connecting patterns with vertex i; we refer to them in the rest of this paper simply as its “similar
vertices”. Let S∗

i denote the set of similar vertices for vertex i, that is, S∗
i = {i′ : Pi· ≈ Pi′·}. Then

we could estimate Pij by simply averaging the entries Ai′j′ over i′ ∈ S∗
i and j′ ∈ S∗

j , that is,

P̃ij = P̃ji = (s∗)−2
∑
i′∈S∗

i

∑
j′∈S∗

j

Ai′j′ , (1)

where s∗ = |S∗
i | is the number of similar vertices. Ideally, with known P, it is easy to define the set

of similar vertices for vertex i as S∗
i = {i′ : 0 < d∗ii′ ≤ ds∗}, where d∗ii′ = ||Pi·−Pi′·||22/n denotes

the distance between vertex i and vertex i′ and ds∗ is the s∗-th smallest elements of {d∗ii′ : i′ ̸= i}.

3 Methodology

3.1 Iterative Connecting Probability Estimation

The neighborhood averaging method in Section 2 is only conceptually feasible. In practice, without
knowledge of P, it is difficult to obtain the pairwise vertex distances and the sets of similar ver-
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tices. We propose an iterative connecting probability estimation method (ICE) to solve the problem.
Assume that we have an initial estimate P̂, the estimated vertex distance dii′ can be formulated as
dii′ = ||P̂i· − P̂i′·||22/n. Then we can estimate S∗

i with Si = {i′ : 0 < dii′ ≤ ds}, where s = |Si|
is the estimated size of the similar vertex set and ds is the s-th smallest elements of {dii′ : i′ ̸= i}.
Then a new estimate can be obtained by neighborhood averaging with

P̂ij = P̂ji = s−2
∑
i′∈Si

∑
j′∈Sj

Ai′j′ . (2)

Figure 1: The relationship among D, S and P̂.

Using such an estimate, we can update the pair-
wise vertex distances and the sets of similar ver-
tices again, and obtain a new P̂. We repeat the pro-
cess above until P̂ converges. Let D = [dij ]

n×n

and S = {S1, . . . , Sn} denote the pairwise vertex
distances and the sets of similar vertices respec-
tively. The iterative procedure is inspired by the
interdependence among D, S and P̂, as is shown
in Figure 1. We outline the details of our method
in Algorithm 1.

Algorithm 1 Iterative connecting probability estimation method

Input: observed adjacency matrix A; initial connecting probability estimate P̂(0); neighborhood
size s; threshold δ0 > 0.

Output: connecting probability estimate P̂.
1: Let δP = +∞ and m = 0.
2: while δP > δ0 do
3: For each vertex pair i, i′ ∈ V , obtain their distance dii′ = ||P̂(m)

i· − P̂
(m)
i′· ||22/n.

4: For each vertex i ∈ V , obtain its set of similar vertices Si = {i′ : 0 < dii′ ≤ ds}.
5: For each vertex pair i, j ∈ V , update their connecting probability estimate P̂

(m+1)
ij =

s−2
∑

i′∈Si

∑
j′∈Sj

Ai′j′ .

6: Let δP = ||P̂(m+1) − P̂(m)||F /||P̂(m)||F .
7: Let m = m+ 1.
8: end while
9: return P̂ = P̂(m).

In Algorithm 1, an initial estimate P̂(0) is required. Any P̂ via existing methods can be used as
P̂(0). Alternatively, a random initial value would also work as discussed in Section 3.2, since our
method is not sensitive to the initialization. For each vertex i, we get Si by randomly sampling s

vertices from V \{i} without replacement, then we can obtain such a random P̂(0) by neighborhood
averaging with these random selected vertices.

As to the size of the similar vertex set s, Zhang et al. (2017) set s = C(n log n)1/2 for each vertex i,
where C is recommended set as 1. In Section 3.3, we develop a two-stage procedure using different
levels of C in different stages, which improves the performance of our method significantly.

It should be noted that although we discuss our estimate as defined in (2) for convenience, in practice,
in case that Si and Sj may overlap, we modify it as

P̂ij = P̂ji = (s2 − |Si ∩ Sj |)−1
∑

i′∈Si,j′∈Sj ,i′ ̸=j′

Ai′j′ .

3.2 Iterative Estimation versus One-step Estimation

A main contribution of our work is to estimate P iteratively rather than output a one-step estimate.
As for those one-step methods (Zhang et al., 2017), they obtain the set of similar vertices based on
the distances calculated from A, then obtain P̂ by neighborhood averaging. However, if we update
the set of similar vertices based on P̂, the previous set of similar vertices may be changed. The
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contradiction may cause inefficiency on making full use of the observed network. Indeed, if P̂ is
reliable, we should update the set of similar vertices to get a better estimate until the sets remain
unchanged.

We compare the performances of our iterative estimation and one-step estimation with a simulated
network which consists of 1000 vertices as an example. As shown in Figure 2(a), the 1000 × 1000
connecting probability matrix is full rank with complicated structure. We use root mean squared
errors (RMSE) to evaluate the performance. We present the results of the 1st and the 10th iterations
with two kinds of initial inputs and varying value of tuning parameter C in Figure 2(b). It is clear
that the iterations improve the precision of the estimates with both initializations.

The results also illustrate that our method is not sensitive to the initialization. Without iterations, the
one-step estimate obtained by the NS method proposed by Zhang et al. (2017) outperforms random
initialization significantly. However, after sufficient number of iterations, the performance of our
method with different initial values becomes comparable. In practice, as the true network structure
is unknown, we recommend using the random initial input.

(a) Probability matrix.
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Final

Initialization

NS
Random

(b) The RMSE (multiplied by 100) of dif-
ferent initial values with and without itera-
tions.

Figure 2: The probability matrix and the RMSE of ICE with and without iterations.

3.3 Two-stage Neighborhood Selection

Setting an appropriate C is an important task. A small C is unable to make full use of the similar
vertices while a large C may lead to over-smoothing. To deal with the dilemma, we propose a two-
stage strategy. In stage one, we use a small C = Cit during iterations to avoid over-smoothing and
to discover local structure. In stage two, after the estimate converges, a large C = Cest is used
to include more similar vertices to obtain a smooth estimate. The reason is that, as the iterations
progress, the precision on neighborhood selection will be improved, so we should enlarge the size
of the similar vertex set gradually. However, it is impracticable to select the upper bound, the lower
bound and the step-size of C simultaneously. So, we simplify the problem by setting two tuning
parameters. The first tuning parameter helps us better order the vertices according to their latent
positions, whereas the second tuning parameter helps us obtain better estimates using the correct
number of vertices.

We compare our two-stage strategy and the strategy using a fixed C (Cit = Cest) on the above
simulated network. We consider the estimate of Pi·, where the index i is set as i = 350 to present
the local structure. As is shown in Figure 3(a), using a small fixed C helps to obtain an estimate
with small bias but introduces large variance. In contrast, according to Figure 3(b), by using a large
fixed C, we obtain a smooth estimate but fail to capture the local structure. With the well-selected
tuning parameters, the two-stage strategy outputs a smooth estimate of Pi· while capturing the local
structure well.

We present the RMSE of the estimates with different combinations of (Cit, Cest) on the whole P
over 100 repetitions in Figure 3(c). The horizontal axis stands for the value of Cest used while
different curves present the results with different Cit. The curve of “Oracle” displays the RMSE
when estimating P with the true similar vertices, which provides a golden standard. For all the
curves, as Cest increases, RMSE decreases sharply first, reaches the bottom near Cest = 1 and
increases gradually, which illustrates that using an appropriate Cest is important. Comparing the
different curves, it is easily seen that with a fixed Cest, a smaller Cit will lead to smaller RMSE since
it helps to discover local structure. Another idea to achieve the trade-off is to use a fixed medium
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Figure 3: The performances on the estimation of P350· and the whole P by the strategy of using a
fixed C and our two-stage strategy with different combinations of (Cit, Cest).

size of the similar vertex set. However, according to the orange curve, if we force Cit = Cest, no
matter what the value is, this strategy is always defeated by our two-stage strategy. The performance
of the combination (Cit = 0.2, Cest = 1) is the most competitive and even comparable to that of
“Oracle.”

The two-stage strategy makes our proposed method more data-driven, thus estimating those connect-
ing probability matrices with complicated structure more powerfully. To demonstrate this advantage,
we display the estimates with different methods on the network above in Figure 4. The estimate of
USVT is not smooth overall as the low rank assumption is not satisfied. SAS also performs poorly, as
the degree is non-monotone. NS recovers the smooth areas successfully but tends to over-smooth the
local structure, as Zhang et al. (2017) have claimed. Our method combines the advantages of USVT
and NS. It discovers the local structure while maintaining the smoothness of the whole matrix.

(a) USVT & SAS (b) NS & ICE

Figure 4: Probability matrix estimated by different methods on simulated networks . Column 1:
USVT (lower) and SAS (upper). Column 2: NS (lower) and our method (upper).

For our two-stage neighborhood selection strategy, it is important to select appropriate tuning pa-
rameters. We apply the grid search method based on the network cross-validation proposed by
Li et al. (2020). As Algorithm 2 displays, the edges are split into the training set Etrain and
the validation set Eval. With estimate P̂ obtained from the training network G(V,Etrain), the
error on the validation set can be evaluated with negative log-likelihood loss, which is defined
as L = −

∑
(i,j)∈Eval

[
Aij log P̂ij + (1−Aij) log

(
1− P̂ij

)]
. The black horizontal line in Fig-

ure 3(c) presents the RMSE with selected parameters, which shows the reliability of the cross-
validation.

4 Theoretical Properties

We study the theoretical properties of our iterative method. All of the results below are based on the
following assumptions about the network structure.

Assumption 1 Let 0 = z0 < z1 < · · · < zK = 1, Ik = [zk−1, zk) for 1 ≤ k ≤ K − 1 and
IK = [zK−1, zK ]. Assume that the graphon function f : [0, 1]2 → [0, 1] is bi-Lipschitz on each

5



Algorithm 2 Tuning parameters selection of ICE via edge cross-validation
Input: observed adjacency matrix A; the training proportion p; the candidate set T of the tuning

parameters (Cit, Cest); the number of replications M .
Output: a combination of the tuning parameters (Ĉit, Ĉest).

1: for m = 1, . . . ,M do
2: Randomly sample a subset of edges from E with probability p to obtain the training set of

the edges Etrain. Let Eval = E − Etrain denote the validation set.
3: Apply matrix completion method to the adjacency matrix corresponding to the leftover train-

ing network G(V,Etrain) to obtain Atrain.
4: Apply ICE method on Atrain to estimate P with each (Cit, Cest), and calculate the negative

log-likelihood loss Lm(Cit, Cest) of the estimate on Eval.
5: end for
6: Let L(Cit, Cest) =

∑M
m=1 Lm(Cit, Cest)/M .

7: return (Ĉit, Ĉest) = argmin(Cit,Cest)∈T L(Cit, Cest).

Ik×Il for 1 ≤ k, l ≤ K. That is, both |f(x1, y)−f(x2, y)| ≤ L|x1−x2| and |f(x, y1)−f(x, y2)| ≤
L|y1 − y2| hold for all x, x1, x2 ∈ Ik and y, y1, y2 ∈ Il, where L is a global constant.

Assumption 2 The number of K grows with n as mink |Ik|/(n−1 log n)1/2 → ∞, where |Ik|
denotes the length of Ik.

For any ξi ∈ [0, 1], let I(ξi) denote the interval that includes ξi, let Ni(∆n) = [ξi −∆, ξi +∆n] ∩
I(ξi) denote the neighborhood of ξi in which f(x, y) is Lipschitz in x ∈ Ni(∆n) for any fixed
y. Then according to the Lemma 1 in Zhang et al. (2017), for arbitrary global constant C,C1 >

0, define ∆n =
[
C + (C1 + 4)

1/2
]
(n−1 log n)1/2, then with probability 1 − 2n−C1/4, we have

mini∈V |{i′ : ξi′ ∈ Ni(∆n)}| ≥ C(n log n)1/2. That is, if n is large enough, the size of the similar
vertex set of each vertex is larger than C(n log n)1/2 with high probability. For simplicity, we let
C = 1 as Zhang et al. (2017) recommend.

Based on the assumptions, our goal is to obtain P̂ which minimizes ||P − P̂||F by neighborhood
averaging. If we can get the true set of similar vertices S∗, then based on A, the corresponding esti-
mate is P̃ with P̃ij defined as (1), which serves as the “Oracle” estimate for neighborhood averaging
methods. We have the following results.

Theorem 1 Let C2, C3, C4, C5, C6 > 0 be arbitrary global constants and assume n is large
enough so that n−2 + (C4 + 8)1/2n−1 ≤

[
C5 − (C2 + 3)1/2 − (C3 + 3)1/2

] (
n−3 log n

)1/4
and 8L2

[
1 + (C1 + 4)

1/2
]
(n−1 log n) ≤ (C6 − 2C5)(n

−3 log n)1/4, let C∗ =

max{C1/4, 2C2/3, 2C3/3, C4/2}, then with probability 1− 8n−C∗ , we have

||P̃−P||2Fn−2 ≤ C6(n
−3 log n)1/4.

Theorem 1 shows the best error rate we can achieve once we succeed to find all the true similar
vertices, which seems unrealistic in practice. Luckily, we can reach the same error rate even if the
set of similar vertices includes a small number of non-similar vertices. We formulate this property
in Theorem 2.

Theorem 2 With arbitrary global constants C7, C8 satisfying C8 > 2C5 + 4C7 > 0 for the C5

from Theorem 1, assume that Pij ∈ [a, b] for all (i, j) ∈ V × V where 0 < a < b < 1, for any
solution (S, P̂) where S satisfies

max
(i,j)

∑
i′∈Si

∑
j′∈Sj

I((i′, j′) /∈ S∗
i × S∗

j ) ≤
√
C7n

5/8(log n)9/8

b− a
= e(n), (3)

if n is large enough so that 16L2
[
1 + (C1 + 4)

1/2
]
(n−1 log n) ≤ (C8−4C7−2C5)(n

−3 log n)1/4,

then with probability 1− 8n−C∗ , we have

||P̂−P||2Fn−2 ≤ C8(n
−3 log n)1/4.
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According to Theorem 2, for each pair (i, j), since |Si × Sj | = s2, the maximum error rate allowed
for neighborhood selection is e(n)/s2 ≈ e(n)/n log n =

√
C7(n

−3 log n)1/8/(b − a), which is
greater then C8(n

−3 log n)1/4. That is, we can obtain an estimate with low error rate even with
relatively high error rate on neighborhood selection. The smaller b− a is, the larger the error rate is
allowed.

If we use the estimates with existing methods as the initial values, we can achieve a small error rate
on neighborhood selection with a high probability, thus improving the estimation performance. For

any estimate P̂(0) which satisfies that maxi∈V

∑n
j=1

(
P̂

(0)
ij − Pij

)2

n−1 ≤ C9E(n) with probabil-

ity 1−n−C10 , where the error rate E(n) satisfies limn→∞ E(n)/(n−3 log n)1/4 → ∞, we have the
following theorem for the estimate in the next iteration.

Theorem 3 Define the lower bound of the distance between each vertex i and any vertex i′′ /∈ S∗
i

as
C(n) = min

i∈V,i′′ /∈S∗
i

|Pij − Pi′′j |,

assume that C2(n) ≥ 8L2
[
1 + (C1 + 4)1/2

]2
(n−1 log n) + 20C9E(n), then with the global con-

stants C2, C3, C4, C6 from Theorem 1, when we use P̂(0) as the initial value to obtain a new estimate
P̂new, with probability 1− 8n−C∗ − n−C10 , we have

||P̂new −P||2Fn−2 ≤ C6(n
−3 log n)1/4.

The results above show that if our proposed method start from a reasonably good estimate obtained
by an existing method, then it will improve upon the initial estimate iteratively, making the final
estimate comparable to that with all the true similar vertices. The next question is whether we can
stop the iterations when the current estimate is near P. Assume that the current estimate P̂(m) is
smooth enough to satisfy Assumptions 1 and 2, we have the following theorem.

Theorem 4 With arbitrary global constant C11 and C12 satisfying C12 > 4C5 + 2C11 > 0 for

C5 from Theorem 1, and let n be large enough so that 32L2
[
1 + (C1 + 4)

1/2
]2

(n−1 log n) ≤

(C12 − 4C5 − 2C11)
(
n−3 log n

)1/4
, if P̂(m) satisfies ||P̂(m) − P||2F /n2 ≤ C11(n

−3 log n)1/4,
then with probability 1− 8n−C∗ , we have

||P̂(m) − P̂(m+1)||2Fn−2 ≤ C12(n
−3 log n)1/4.

For our learning task, the adjacency matrix A is observed while the pairwise vertex distances and
the sets of similar vertices can be viewed as unobserved data, and our goal is to estimate P with
incomplete data, which is a typical task for an EM type algorithm and motivates our iterative proce-
dure. However, although updating P̂ with S is the traditional M step, updating S using the current
estimate P̂ is not equivalent to the E step. Therefore, we cannot directly use the existing theory.

5 Experiments

5.1 Simulated Networks

To evaluate the effectiveness of our proposed method, we compare its performance with several
popular estimation methods using simulated networks with different features, including low-rank,
degree monotonicity and local structure. Each network contains 1000 vertices. The connecting
probability matrices are displayed in Figure 5, where the rows and the columns are ordered by ξ.
Graphon 1 is low rank and has vertex degree monotonicity. Graphon 2 is roughly monotone with
local structure. Graphon 3 is a periodic function. Other graphons are all full-rank with extreme
values in local area like the diagonal and the corner.

We compare the following methods: universal singular value thresholding algorithm (USVT) (Chat-
terjee, 2015), stochastic blockmodel approximation algorithm (SBA) (Airoldi et al., 2013), sorting
and smoothing method (SAS) (Chan and Airoldi, 2014), neighborhood smoothing method (NS)
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(Zhang et al., 2017), our proposed method (ICE). For fair comparison, we use random neighbor-
hood averaging estimate as the initial value. We also present the result of neighborhood averaging
with true similar vertices (Oracle) as a golden standard.

Figure 5: Graphon functions (1-8, from left to right) to generate simulated networks.

We show the results on average of 100 repetitions in Table 1. For each method, we report the mean
of RMSE with standard deviation in the bracket. For probability matrices with low rank (Graphons
1 and 3), USVT does a good job. However, if the graphon is full rank, the low-rank approximation
by USVT becomes insufficient. Although SAS method performs well on Graphons 1 and 2 since the
expected degrees is monotone, it does not work on other graphon functions. NS method performs
well in many cases, which coincides with the numerical results of Zhang et al. (2017). Our proposed
method is comparable to NS on simple networks generated by Graphons 1 and 3. Notably, on
networks with complicated structure (Graphon 4-8), our method shows significant advantage for its
ability to discover local structure.

We also display the tuning parameters (Cit, Cest) selected via cross-validation and the best Cest if
we use true similar vertices (Oracle). The Cest we select is comparable to that with true similar
vertices while the selected Cit is always smaller, which again shows the advantage of our method on
the trade-off between the smoothness of the estimate and the ability to discover local structure.

Table 1: The RMSE (multiplied by 100) of different methods and Cit and Cest selected for ICE by
cross-validation on simulated networks.

RMSE (multiplied by 100) Cit and Cest selected

Graphon USVT SBA SAS NS ICE Oracle ICE Cit ICE Cest Oracle Cest

1 1.62(0.05) 4.79(0.06) 1.72(0.04) 2.55(0.04) 2.23(0.18) 1.55 1.05(0.40) 1.85(0.43) 2.33
2 3.74(0.03) 38.66(0.05) 4.92(0.06) 3.78(0.03) 2.87(0.05) 2.40 1.13(0.43) 2.37(0.15) 2.33
3 2.67(0.03) 33.19(0.46) 34.05(0.20) 3.33(0.03) 3.21(0.13) 2.49 0.47(0.47) 1.43(0.33) 1.67
4 7.53(0.05) 43.55(0.03) 14.00(0.07) 7.25(0.05) 6.09(0.08) 5.71 0.23(0.07) 1.07(0.14) 0.67
5 6.41(0.03) 8.35(0.02) 8.24(0.02) 6.85(0.05) 4.19(0.09) 3.55 0.58(0.16) 2.03(0.32) 1.78
6 7.22(0.03) 12.86(0.01) 12.74(0.01) 6.54(0.06) 5.20(0.10) 4.51 0.28(0.07) 0.95(0.12) 0.67
7 8.09(0.09) 9.53(0.03) 9.41(0.02) 8.21(0.04) 6.84(0.11) 5.93 0.39(0.13) 2.27(0.37) 1.00
8 4.50(0.02) 10.61(0.03) 10.51(0.02) 3.88(0.05) 3.30(0.04) 2.71 0.49(0.16) 1.67(0.00) 1.00

5.2 Real Networks

We analyze a human brain projectome dataset from an experiment of Beijing Normal University in
China (Yan et al., 2009)2. The dataset is available on https://NeuroData.io/, a platform that enables
large-scale neurodata storing, analyzing, and modeling. A “projectome” is a large-scale mapping
between regions of the brain. This data include 48 anonymous healthy students as controls and each
of them has 3 scans in different statuses. A valuable task is to the study the relationship between the
regions, which may reveal the way they work together.

We have evaluated the performance of our methods on several subjects. For the sake of brevity,
we only display the result on estimating the projectome of the subject with ID 0027055 in the first
status3. The network consists of 349 vertices and 3772 edges. We present the adjacency matrix in
Figure 6(a). The rows and columns are ordered according to the function of the regions.

As is shown in Figure 6, the estimates of these methods are quite different. USVT tends to estimate
the probability matrix as a SBM model with many blocks. It fails to recover the local structure in
the top left. SBA and SAS both perform poorly, because the degree disruption does not coincide
with the connecting behaviors. The result of NS is more similar to that of ICE. They both obtain a

2http://dx.doi.org/10.15387/fcp_indi.corr.bnu1
3http://mrneurodata.s3-website-us-east-1.amazonaws.com/BNU3/ndmg_0-0-48/graphs/DS00350/sub-

0027055_ses-1_dwi_DS00350.gpickle
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smooth estimate with local structure. The difference is that, since the whole network is sparse, NS is
easier to underestimate the connecting probability of moderately connected pairs. This shortcoming
derives from its assumption about the smoothness, which may lead to over-smoothing.

(a) Adjacency & USVT (b) SBA & SAS (c) NS & ICE

Figure 6: Adjacency matrix and probability matrix estimated by different methods. Column 1: Adja-
cency matrix (lower) and USVT (upper). Column 2: SBA (lower) and SAS (upper). Column 3: NS
(lower) and ICE (upper).

As the true probability matrix is unknown, it is hard to examine and compare the results of different
methods on real networks. Zhang et al. (2017) evaluate their method by applying it to the task of
link prediction. Assume that A is the true adjacency matrix while Amiss is the observed version.
Assume that each edge in the true network will be removed in the observed network with probability
p, which can be formulated as Amiss = M ∗A, where Mij

i.i.d.∼ Bernoulli(1− p). Based on Amiss,
the estimate P̂ gives the scores proportional to the connecting probabilities (Gao et al., 2016). With
threshold t > 0, Zhang et al. (2017) define the false positive rate and the true positive rate by

FP(t) =
∑
i,j

I
(
P̂ij > t,Aij = 0,Mij = 0

)
/
∑
i,j

I (Aij = 0,Mij = 0) ,

TP(t) =
∑
i,j

I
(
P̂ij > t,Aij = 1,Mij = 0

)
/
∑
i,j

I (Aij = 1,Mij = 0) .

By varying t, we can obtain the ROC curve and compare the precision of different methods with
AUC. The missing rate p is set as 0.1.

Here we develop a new approach for evaluation of connecting probability estimation methods in
practice. Although P is unknown, we can estimate it by one of the existing methods and apply the
result Phost as the baseline. Then we generate the adjacency matrix Agen with Phost and apply
different methods to estimate it. We refer to the method used to obtain Phost as the “host” method.
The “host” is always the best due to the home-court advantage. We focus on those methods whose
performances are competitive and even comparable to the “host”, which demonstrates the capability
of generalization.

To evaluate the precision on estimation, we display the results of the link prediction task in Fig-
ure 7(a). It is obvious that SBA and SAS are outperformed by others significantly. Our method
is slightly better than NS and USVT due to its ability to recover the local structure with higher
precision.

To evaluate the the capability of generalization, we use the approach we propose. For each “host”,
we generate the adjacency matrix for 100 repetitions and present the RMSE on average in Fig-
ure 7(b). When Phost is based on USVT, it outperforms others significantly because Phost is low
rank. However, if the “host” is our proposed method, USVT performs poorly as it is hard to recover
local structure. Under this setting, NS is also defeated by our method due to over-smoothing. When
the “host” are SBA and SAS, NS outperforms others slightly. The reason is that both SBA and
SAS output smooth estimated probability matrices and satisfy the assumption about smoothness of
NS. No matter what the “host” is, our method is always competitive, which manifests its ability of
generalization.

6 Conclusions

We propose an iterative connecting probability matrix estimation method which updates the set of
similar vertices and the estimate progressively. It is intuitive, easy to implement and computationally
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Figure 7: The performances of different methods on real network.

feasible for its fast convergence. Even starting with an estimate by random neighborhood averaging
performs well. The main strength of our method is the ability to discover local and complicated
structure for networks. In our algorithm, deciding the size of the similar vertex set is crucial. We
propose a two-stage strategy using different sizes to balance its ability to discover local structure
and output a smooth estimate. In practice, the appropriate size may vary from vertex to vertex.
A possible variation of our method is to set specific size of the similar vertex set for each vertex.
Although it may introduce more turning parameters, we believe that this issue is worth of further
investigation.
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