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ABSTRACT

Making accurate and safe drug recommendation for patients has always been a
challenging task. Even though rule-based, instance-based, and longitudinal data-
based approaches have made notable strides in drug modeling, they often neglect
to fully leverage the rich motifs information. However, it is widely acknowledged
that motifs exert a significant influence on both drug action and patient symptoma-
tology. Therefore, there is a pressing need for more comprehensive exploration
this invaluable information to further enhance drug recommendation systems. To
tackle the aforementioned challenges, we present DEPOT, a novel drug recom-
mendation framework that leverages motifs as higher-level structures to enhance
recommendations. In our approach, we employ chemical decomposition to parti-
tion drug molecules into motif-trees and design a structure-aware transformer for
drug representation, enabling us to capture the structural information among sub-
structures. To investigate the relationship between disease progression and mo-
tifs, we conduct a meticulous exploration from two perspectives: repetition and
exploration. This comprehensive analysis allows us to gain valuable insights into
the drug turnover, with the former focusing on reusability and the latter on dis-
covering new requirements. Furthermore, we incorporate historical DDI effects
and employ a nonlinear optimization objective to stabilize the training process,
ensuring the safety of recommended drug combinations. Extensive experiments
conducted on two data sets validate uniqueness and efficacy of the DEPOT.

1 INTRODUCTION

With the advancement of deep learning technology and the availability of vast medical data, ar-
tificial intelligence (AI) has emerged as a powerful ally in medical decision-making (Schimunek
et al., 2022). Among the diverse range of applications, drug recommendation emerges as a field of
paramount importance. Its main goal revolves around comprehending the inherent interplay among
diseases, diagnostic procedures, and medications, ultimately facilitating the personalized prescrip-
tion of treatments tailored to individual patient conditions—an aspect of healthcare that holds ex-
ceptional significance (Sun et al., 2022a). Notable examples in this field include Baidu’s Medical
Brain, Berkeley Lights, and Google Health, all utilizing AI-driven drug recommendation systems,
as exemplified in (Shaheen, 2021).

Unlike conventional recommendation algorithms (Wu et al., 2022a), drug recommendation encoun-
ters distinct challenges associated with safety requirements and personalized suggestions (Yang
et al., 2021b). The early rule-based approach initially depended on experienced physicians man-
ually formulating rules to guide the diagnostic process (Chen et al., 2016). Nonetheless, this method
proved to be time-consuming, labor-intensive, and reliant on extensive expert knowledge and a
substantial rule database for effective decision-making. The instance-based method draws inspi-
ration from collaborative filtering algorithms, seeking to uncover co-occurrence relationships be-
tween drugs and symptoms (Zhang et al., 2023). However, its efficacy in discerning individual
patient needs may be limited, primarily relying on commonalities observed in the broader popula-
tion. More recently, longitudinal approaches have emerged, incorporating patient history to a greater
extent (Yang et al., 2023). This longitudinal observation and analysis offer a comprehensive grasp
of the patient’s condition, facilitating the provision of precise diagnosis, as depicted in Figure 1(a).
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Figure 1: (a) is the patient’s longitudinal visit and prescription process (b) illustrates drug is com-
posed of multiple motifs (c) implies drug recommendations need to take into account patient status,
drug function, and DDI effects.

While significant progress has been made in these methods, notable challenges persist. First, the
substructures of drugs, referred to as motifs, often remain underexplored despite embodying the
essence of drug functionality, as exemplified in Figure 1(b). For example, in the case of nons-
teroidal anti-inflammatory drugs (NSAIDs), the phenyl ring and acetic acid group (two common
motifs) synergistically form a specific pharmacophore. This pharmacophore engages with the tar-
get enzyme cyclooxygenase, leading to the inhibition of prostaglandin synthesis, thereby confer-
ring anti-inflammatory, analgesic, and antipyretic effects (Lu et al., 2020). However, traditional
methods typically represent drugs as SMILES (Simplified Molecular Input Line Entry System) se-
quences (Jiang et al., 2022) or atomic connectivity graphs (Wu et al., 2023b), often overlooking the
comprehensive exploration and modeling of these intricate synergistic relationships among motifs.
Although some studies have touched upon motifs (Yang et al., 2023), they fall short of capturing
the intricate structural interactions between them, thereby impeding the accuracy of drug represen-
tation and recommendation. Secondly, current approaches lack explicit modeling of the dynamic
relationship between drug motifs and the evolution of a patient’s medical condition, even though
capturing this relationship is crucial, as evidenced in cancer treatment (Peerzada et al., 2021; Yang
et al., 2021c). For instance, specific motifs in anti-cancer drugs interact with signaling pathways
within tumor cells, effectively inhibiting their growth, necessitating the continuous administration
of drugs over a specified period. However, disease progression can lead to mutations and drug resis-
tance (Crucitta et al., 2022; Yang et al., 2021a), compromising the interaction between drug motifs
and tumor cells and calling for the exploration of new drug motifs as replacements. Therefore, it is
important to redirect efforts toward better integrating motif collaboration and accurately capturing
the dynamic interplay between drug motifs and disease progression, as depicted in Figure 1(c).

To address the aforementioned challenges, we present a novel method to enhance precision Drug
rEcommendation via fine-grained exPloration of mOtif relaTionships, namely DEPOT. Our ap-
proach harnesses specific chemical knowledge (Jiang et al., 2023) to transform each drug molecule
into a motif-tree, and associates it with the proposed structure-aware graph transformer that
effectively captures long-distance collaboration effects between motifs. This motif-level perspec-
tive alleviates the low semantic richness of previous atomic-level aggregation as well as facilitates
a more comprehensive understanding of structural dependencies within the molecule. Secondly, to
model the dynamic relationship between patient disease conditions and drug motifs, we adopt two
key perspectives. On the one hand, we design a repeat encoder that measures the extent to which
past drugs remain functionally relevant by computing Gaussian distributions of disease progression.
This enables us to assess the degree to which disease progression necessitate the continuation of
specific drug functionalities. On the other hand, we introduce an explore encoder that computes
probability using all available motifs, facilitating the discovery of novel drug options. Thirdly, we
delve deep into the Drug-Drug Interaction (DDI) effect (Dong et al., 2023) and leverage historical
DDI records to reconstruct the DDI loss function in a nonlinear fashion. This innovative approach
not only stabilizes the training process but also strengthens safety considerations in drug recommen-
dation by accounting for the historical DDI information.

In summary, our work has the following contributions: (1) To the best of our knowledge, DEPOT
stands as the pioneering drug recommendation framework that is based on motifs relations. Unlike
previous approaches, we not only consider the structural information and collaboration among drug
motifs, but also delve into the dynamic relationship between motifs and disease progression from
two distinct perspectives: repetition and exploration. (2) We offer a fresh perspective on tackling
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the drug-drug interaction (DDI) problem. We introduce historical DDI effect sequences for the first
time, presenting an innovative solution to address safety concerns in drug recommendation with
stability and efficiency. (3) We conduct rigorous experimental validation on two extensive public
data sets, showcasing substantial advancements achieved by our algorithm in terms of safety and
accuracy. We have released the code and data sets 1 for follow-up and reproducibility.

2 PROBLEM FORMULATION

EHR data: Suppose we have electronic health record (EHR) data, where each patient visit record
is denoted as X (k) = (x

(k)
1 ,x

(k)
2 , ...,x

(k)
Nk

). Here, k ∈ N represents the patient index, and Nk

represents the total number of visits for that patient. Each visit x(k)
i can be represented as a triplet:

x
(k)
i = (d

(k)
i ,p

(k)
i ,m

(k)
i ), where d,p, and m denote multi-hot diagnosis, procedure, and medica-

tion records, respectively. The variables d(k)
i ∈ {0, 1}|D|, p(k)

i ∈ {0, 1}|P|, and m
(k)
i ∈ {0, 1}|M|,

where D,P,M represent the set of each object, and | · | represents the size of the set.

Safety Criterion: The drug-drug interaction (DDI) graph, denoted as G = {V, E}, represents the
strong side effects between different drugs. Here, V = M = {m1, ...,m|M|} denotes the set of all
drugs, and E represents the known side effects between pairs of drugs. To elucidate the connections
within E , we utilize an adjacency matrix A ∈ {0, 1}|M|×|M|, where Ai,j = 1 if there exists a
documented side effect between drug i and drug j. Recommendations that involve a higher number
of drug side effects are deemed less reliable. Therefore, our objective is to minimize the drug-drug
interaction (DDI) rate, which indicates a lower occurrence of side effects, in order to enhance the
quality of recommendations. Now, we can provide a formal definition of DEPOT.

Medical Recommendation: Given the patient’s historical electronic medical records d
(k)
his =

(d
(k)
1 , ...,d

(k)
Nk−1), p

(k)
his = (p

(k)
1 , ...,p

(k)
Nk−1), and m

(k)
his = (m

(k)
1 , ...,m

(k)
Nk−1), along with the cur-

rent state (d
(k)
Nk

,p
(k)
Nk

) and the DDI graph G, our objective is to recommend a drug combination

m̂
(k)
Nk

while maintaining a low drug-drug interaction (DDI) rate. Here, m̂(k)
Nk

∈ {0, 1}|M| repre-
sents the recommended drug combination, where |M| denotes the size of the drug collection.

Important mathematical notes can be found in Appendix A.

3 PROPOSED METHOD

In this section, we outline the proposed framework DEPOT, whose architecture is shown in Figure 2.
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Figure 2: Overall framework of DEPOT. It contains (a) a longitudinal patient representation module,
(b) a motif-aware drug representation module, and (c) a drug recommendation module.

3.1 LONGITUDINAL PATIENT REPRESENTATION

Longitudinal temporal data contains richer semantic information compared to using only current
visit records, facilitating a better understanding of personalized disease progression.

1https://anonymous.4open.science/r/DrugRec
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Embedding Layer: Patient representation is encoded using diagnosis and procedure information,
which are both multi-hot variables. To project a multi-hot variable di or pi for a particular visit i into
a high-dimensional embedding space, i.e. eid and eip, we sum the embeddings of the corresponding
active elements. For simplicity, we have omitted the patient index (k), the same below. Formally,

eid = diEd, eip = piEp, (1)

where embedding spaces for diagnosis and procedure are denoted as Ed and Ep respectively.

Long-term Aggregation: A patient’s health status is a dynamic process influenced by various fac-
tors such as disease progression and historical treatment records. Relying solely on current symp-
toms may not provide a comprehensive understanding of the patient’s overall condition and disease
evolution. Formally, given a patient’s clinical history represented as [d1,d2, ...,dNk

], we extract
the embeddings ed and ep and utilize the RNN architecture to capture the visit-level diagnosis and
procedure information, respectively. This process can be defined as follows:

uNk

d = GRUd(e
1
d, e

2
d, · · · , e

Nk

d ), uNk
p = GRUp(e

1
p, e

2
p, · · · , eNk

p ) (2)

where u denotes the hidden vector extracted by Gated Recurrent Unit (GRU) and GRU is a two-layer
structure. The two vectors will be concatenated to form the patient’s final longitudinal representation
to query candidate drugs. Formally,

uNk = g(uNk

d ||uNk
p ), (3)

where g(·) denotes the transformation matrix and || is the concatenation operation.

3.2 MOTIF-AWARE DRUG REPRESENTATION MODULE

In this section, we introduce two modules for enhanced drug characterization: Drug-centric Rep-
resentation Module focuses on uncovering motif interactions within the drug, while Patient-centric
Representation Module considers the dynamic nature of drug effects, accounting for variations based
on the patient’s condition over time. Vivid examples of the two modules can be seen in Figure 5
and 6 in the Appendix B respectively.

3.2.1 DRUG-CENTRIC REPRESENTATION MODULE

The motif present in a drug holds significant importance in determining its functionality (Zhang
et al., 2021), we therefore model drug representation in the motif-level.

Motif Tree Construction: To preserve both semantic and structural information to the fullest
extent, we initially perform motifs fragmentation using well-defined rules and a strategy involv-
ing chemical bond reactions, specifically employing the BRICS method (Ivanov et al., 2023)
as an example. This process involves splitting drug molecules based on 16 predefined rules
and a set of reactive bonds, while adding dummy nodes to indicate the positions of the mo-
tifs. Additionally, we follow MGSSL’s post-processing approach to mitigate combinatorial ex-
plosion and enhance motif co-occurrence (Zhang et al., 2021). Next, we reassemble the motifs
based on the positions of the dummy nodes and record the degree of each node and the fre-
quency of each motif. Using CNC[C@H](O)C1=CC(O)=C(O)C=C1 as an example, we first
construct a molecular object based on its SMILES expression. Then, by applying steps 1) 2)
and 3), we fragment the molecule into {’CN’:2, ’CC’:2, ’CO’:3, ’C’:1, ’C1=CC=CC=C1’:1},
{’CN’:2, ’CC’:2, ’CO’:1, ’C’:3, ’C1=CC=CC=C1’:3}, resulting in dictionaries that represent
the motif recency and degree of motif for each molecule.

Structure-aware Graph Transformer: Harnessing the modeling capabilities of graph trans-
former (Li et al., 2022a; Jiang et al., 2023) to capture intricate relationships between nodes, we
employ this approach to capture molecular-level representations. Initially, we count the substruc-
tures contained in all drug molecules, recode them into a dictionary I, and assign embedding vectors
by Es. Meanwhile, considering the potential loss of structural information when converting topolog-
ical data to sequence data, we have innovatively incorporated rich structural embeddings, including
degree Edeg and recency Erec, to enhance the completeness of the representation. Formally, for a
motif si,j contained in drug i,

ei,js = si,jEs +Ws(s
deg
i,j Edeg + sreci,j Erec), (4)
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where ei,js denotes the embedding vector of si,j and Ws is the transformation matrix for struc-
ture information. s, sdeg , and srec represent the one-hot encoding of s corresponding to id, degree
and recency. Subsequently, we utilize a graph encoder to capture high-order complex collaborative
relationships between drug molecules by incorporating the obtained semantically rich representa-
tions. This graph encoder consists of stacked multi-head attention mechanisms, layernorm, and
feed-forward layers, ensuring a comprehensive and formal encoding process for the molecular data.
Formally, for certain motifs contained in the drug molecular, the update method is as follows,

H
(0)
i = [h

(0)
i,1 ,h

(0)
i,2 , · · · ,h

(0)
i,N i

s
]⊤, H

(l)
i = G-Transformer (H(l−1)

i ),∀l ∈ {1, 2, · · · , D}, (5)

where h
(0)
i,j is initialized with ei,js , which refers to the high-level representation of the motif j con-

tained in drug i, N i
s represents the number of motifs of drug i, D represents the number of encoder

layers and ⊤ is matrix transpose. Finally, without loss of generality, we use a mean pooling readout
function to obtain molecular-level representations, i.e., hi = READOUT(H(D)

i ), where hi ∈ Eh

denotes the represenation of drug i. Next, we can compute the probabilities for each drug using the
patient’s longitudinal status. Formally,

mNk

d = LN(σ(uNkE(⊤)
h )), (6)

where σ is the sigmoid activation function and LN denotes the layernorm normilization.

3.2.2 PATIENT-CENTRIC REPRESENTATION MODULE

Apart from capturing static drug functional representations, we also incorporate patient disease pro-
gression to dynamically derive patient-centric functional requirements from two angles: repetition
and novel exploration. This motivation is directly inspired by the observations in Appendix D.1.

Repeat Encoder: This encoder is utilized to evaluate the probability of re-prescribing a drug with
certain motifs, taking into account the patient’s disease progression and the functional characteristics
of the drug in their historical records. We therefore first sight ingenious ways to characterize the
progress of the patient’s disease. Formally,

qu = uNk − uNk−1, (7)
where qu represents the varying disease. Then we learn a Gaussian distribution (Kingma & Welling,
2013) to stabilize the training process and mitigate noise,

qu = ReLU(Wuq
u), µ = Wµq

u, log σ = Wσq
u, zu = µ+ ϵ⊙ σ, ϵ ∼ N (0, I), (8)

where µ and σ represent the mean and variance, respectively, ϵ denotes the sampled random value,
W denotes the learnable matrix, and N (0, I) refers to Gaussian distribution. Subsequently, we
aggregate all the motifs contained in the previously prescribed drugs for a patient as a functional set
IS and compute the attention scores between zu and each motif. Formally,

eir = v⊤r tanh(Wre
i
s + Urz

u), P (i | r, u, IS) =


∑

i exp(e
i
r)∑|IS |

j=1 exp(ej
r)

if i ∈ IS
0 if i ∈ I − IS

, (9)

where v, U are learnable vectors and es ∈ Es.

Explore Encoder: The exploration module is employed to assess the necessity of novel motifs
functionalities, denoted as i /∈ IS , thereby recommending new drugs containing such motifs. In
this case, due to the progression of the patient’s medical condition or changes in symptoms, there is
a potential need for additional drugs with new functional properties. Hence, we perform a similar
calculation of the patient’s medical condition distribution but compute the probabilities associated
with all substructures. Formally,

eie = v⊤
e tanh(Wee

i
s + Uez

u), cIS
e =

|IS |∑
i=1

exp(eie)∑|IS |
j=1 exp(e

j
e)
eie, (10)

where c refers to the patient state combined with motifs requirements. Considering that exp(−∞) =
0, we assume that if there exists an item in IS , the probability of recommending it under the explore
mode is zero. Formally,

fi =

{
−∞ if i ∈ IS
W c

e c
IS
e if i ∈ I − IS

, P (i | e, u, IS) =
exp(fi)∑I
j=1 exp(fj)

, (11)
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where f is equivalent to masking the used motif.

Discriminate Encoder: This module calculates the personalized probability of repetition and ex-
ploration for the current patient, and the input is the patient’s entire historical visit records. We
exploit the attention mechanism to synthesize personalized probability distributions. Formally,

eire = v⊤re tanh(Wre
i
s + Uru

Nk), cIS

d =

|IS |∑
i=1

exp(eire)∑|IS |
j=1 exp(e

j
re)

eire,

[P (r | u, IS), P (e | u, IS)] = softmax(W c
rec

IS

d ),

(12)

where softmax denotes the activation function. Based on these three modules, we can obtain the
repeat and explore probability of each patient-centric motif using the Bayesian formula. Formally,

pu
r = P (r | u, IS)P (i | r, u, IS) | i ∈ |I|, pu

e = P (e | u, IS)P (i | e, u, IS) | i ∈ |I|, (13)

where p denotes the probability vector for all motifs. Furthermore, by incorporating the drug-motif
inclusion matrix, we can obtain patient-centric probabilities for all drugs. Formally,

mNk
re = pu

rSIS
+ pu

eSI , (14)

where SIS
and SI are the drug-motif adjacent matrix of IS and I, respectively.

3.3 DRUG RECOMMENDATION MODULE

We multiply the Drug-centric drug retrieval probability and the Patient-centric retrieval probability
to obtain the recommendation probability for a drug. Formally,

ôNk
= σ(mNk

re ⊙mNk

d ), (15)

where ⊙ denotes the Hadarmard product (Zhao et al., 2023). In general, the three sub-modules we
designed not only integrate the long-term representation of patients, but also obtain recommendation
results from three perspectives: functionality, reusability, and exploratory.

3.4 MODEL TRAINING

Accuracy-oriented Loss: To minimize the gap between DEPOT recommendations and the
groundtruth, we employ a hybrid loss comprising binary cross-entropy and multi-label margin loss
for optimization. Formally,

LACC = γLbce + (1− γ)Lmulti , (16)

where Lmulti =
∑

i,j:mi
Nk

=1,mj
Nk

=0

max(0,1−(ôiNk
−ôjNk

))

|M | , Lbce = −
∑|M|

i=1 [m
i
Nk

log(ôiNk
)+(1−

mi
Nk

) log(1− ôiNk
)]. mi

Nk
is the i-th entry of multi-hot target medication set m (similar define ôiNk

for o), and γ is a hyper-parameter, experimentally set to 0.95.

Safety-oriented Loss: In addition to addressing accuracy concerns, we also take into account the
safety aspect of drug recommendation. Follow (Yang et al., 2021b; Wu et al., 2022b), using the DDI
adjacency matrix A, we design the following loss function to ensure the least side effects,

LDDI =

|M|∑
i=1

|M|∑
j=1

(ô
(i)
Nk

· ô(j)
Nk

) · Aij , (17)

where ô
(i)
Nk

· ô(j)
Nk

computes the combination probability between two drugs. This approach helps
mitigate the potential increase in DDI effects within each recommendation set.

Total Loss: Given the presence of erroneous prescriptions by doctors, real Electronic Health Record
(EHR) data contains a certain level of Drug-Drug Interaction effect (Tan et al., 2022; Shang et al.,
2019). Regardless of whether the predictions are correct or incorrect, they have the potential to
increase the occurrence of DDIs. To address this issue, we introduce weighting functions that aim
to find a solution that improves both prediction accuracy and reduces the DDI effect. Formally,

L = αLACC + (1− α)LDDI, (18)
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Table 1: Performance comparison: MIMIC-III
Method Jaccard ↑ F1 ↑ PRAUC ↑ DDI ↓ Avg.# of Drugs
K-near 0.4691±0.0021 0.6268±0.0012 0.6576±0.0011 0.0762±0.0007 20.56±0.2836
Logistic Regression 0.4900±0.0027 0.6470±0.0026 0.7227±0.0031 0.0774±0.0006 16.47±0.1091
ECC 0.4868±0.0016 0.6428±0.0030 0.7602±0.0024 0.0806±0.0011 16.01±0.1107
RETAIN 0.4875±0.0022 0.6469±0.0027 0.7595±0.0023 0.0827±0.0007 19.19±0.2303
LEAP 0.4672±0.0023 0.6401±0.0022 0.7506±0.0022 0.0725±0.0012 19.02±0.0508
GAMENet 0.5092±0.0007 0.6654±0.0007 0.7675±0.0007 0.0806±0.0007 25.98±0.2509
MICRON 0.5170±0.0012 0.6722±0.0018 0.7628±0.0016 0.0719±0.0011 18.87±0.1323
SafeDrug 0.5139±0.0015 0.6702±0.0017 0.7672±0.0023 0.0698±0.0009 20.55±0.1632
COGNet 0.5215±0.0019 0.6758±0.0014 0.7712±0.0034 0.0807±0.0023 26.14±0.1061
MoleRec 0.5306±0.0021 0.6843±0.0026 0.7737±0.0023 0.0726±0.0010 20.91±0.1169
DEPOT (Ours) 0.5335±0.0025 0.6871±0.0024 0.7814±0.0036 0.0684±0.0007 20.21±0.1887

Table 2: Performance comparison: MIMIC-IV
Method Jaccard ↑ F1 ↑ PRAUC ↑ DDI ↓ Avg.# of Drugs
K-near 0.3978±0.0023 0.5473±0.0022 0.3917±0.0023 0.0815±0.0013 12.78±0.2203
Logistic Regression 0.4499±0.0033 0.5985±0.0027 0.7259±0.0024 0.0769±0.0008 10.36±0.1111
ECC 0.4350±0.0017 0.5809±0.0020 0.7193±0.0021 0.0681±0.0003 8.76±0.2115
RETAIN 0.4182±0.0020 0.5729±0.0016 0.6775±0.0012 0.0835±0.0004 11.29±0.2007
LEAP 0.4123±0.0022 0.5661±0.0019 0.6026±0.0025 0.0667±0.0005 12.13±0.1530
GAMENet 0.4594±0.0015 0.6126±0.0011 0.7229±0.0020 0.0803±0.0006 18.86±0.3302
MICRON 0.4605±0.0023 0.6132±0.0021 0.6893±0.0022 0.0671±0.0003 13.75±0.2172
SafeDrug 0.4643±0.0035 0.6165±0.0020 0.7051±0.0011 0.0672±0.0004 14.06±0.2615
COGNet 0.4786±0.0010 0.6264±0.0011 0.6963±0.0018 0.0825±0.0002 14.71±0.1105
MoleRec 0.4721±0.0021 0.6242±0.0017 0.7145±0.0015 0.0724±0.0007 14.04±0.2203
DEPOT (Ours) 0.4813±0.0019 0.6321±0.0015 0.7245±0.0020 0.0660±0.0005 13.19±0.2258

where α is are hyper-parameters to achieve a balance. In contrast to prior research that solely exam-
ines the DDI rate of the current training batch (Shang et al., 2019), we incorporate the historical DDI
to promote training stability and smoothness, thereby mitigating the influence of outliers. Formally,

α = { 1 κ ≤ η
min{1, tanh(τ η

κ−η )} κ > η , (19)

where κ is the mean of fixed-length T historical DDI rates. In this way, our optimization goal is
modified to comprehensively extract historical DDI information to ensure that the average value of
multiple DDIs is low, thereby ensuring the safety of the model. The overall optimization process of
the algorithm is shown in Algorithm 1 in Appendix C.

4 EXPERIMENTS

To demonstrate the state-of-the-art and robustness of our model, we conduct extensive experiments
on two extensive real-world Electronic Health Record (EHR) data sets: MIMIC-III (Johnson et al.,
2016) and MIMIC-IV (Johnson et al., 2020). We select some advanced baselines for compari-
son according to the paradigm to prove the superiority of the proposed DEPOT. 1) Rule-based:
K-near (Shang et al., 2019) 2) Instance-based: LR (Luaces Rodrı́guez et al., 2012), ECC (Read
et al., 2011) 3) Longitudinal-based: RETAIN (Choi et al., 2016), LEAP (Zhang et al., 2017),
GAMENet (Shang et al., 2019), SafeDrug (Yang et al., 2021b), MICRON (Yang et al., 2021a),
COGNet (Wu et al., 2022b), MoleRec (Yang et al., 2023). The algorithm’s performance is assessed
using Jaccard, F1-score, PRAUC, and DDI as evaluation metrics. For crucial data statistics and
analysis, baseline mechanism, implementation details and evaluation metrics, please refer to Ap-
pendix D. With regard to the necessary hyperparameter tests, please consult Appendix E.

Comparison with Baselines: In Table 1 and Table 2, we present our framework along with the
results of all baselines. Overall, DEPOT outperforms all other methods on both data sets in terms
of accuracy and safety criteria. Compared to MIMIC-III, the performance of all algorithms on
the MIMIC-IV data set shows a slight decrease, attributed to the data set’s greater diversity and
heterogeneity in diagnosis and treatment options, as well as its more complex and challenging drug-
disease patterns. In terms of accuracy, the K-Near method performs the worst because it relies on a
rule-based approach, neglecting the patient’s individual factors and the collaborative filtering effects
among drugs. Instance-based methods like LR and ECC show greater improvements in recall and
accuracy compared to K-Near, with a nearly 4.5% improvement in jaccard indicators. However,
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Figure 3: RECAP Decomposition

due to the lack of consideration for the patient’s historical information, they cannot fully capture
the patient’s state, resulting in significantly lower performance compared to DEPOT. Regarding
longitudinal-based baslines, RETAIN and LEAP exhibit weaker performance in comparison with
SafeDrug and COGNet as they ignores topological information in molecular characterization and
high-order similarity. MoleRec, which also models from motifs, is the strongest baseline. However,
its effectiveness is still inferior to DEPOT because it fails to consider the structural connections
between motifs and the relationship between motifs and dynamic disease progression. In terms of
safety, the baselines that include DDI regularization, such as GAMENET, MICRON, and COGNET,
outperform the baselines that do not consider security criteria, such as K-near, LR, and ECC, on both
data sets. Among them, SafeDrug achieves the most competitive DDI rate, which stems from its
strict principle of sacrificing recommendation accuracy, that is, only optimizes DDI when the target
DDI is exceeded. In contrast, DEPOT optimizes the DDI loss in a non-linear form and utilizes
past DDI rates to stabilize training, enabling exploration of a broader optimization space. This
comprehensive approach allows DEPOT to achieve the superior performance in terms of safety,
further distinguishing it from other baseline methods.

Diverse Motif-tree Construction. To further assess the algorithm’s stability, we applied the RE-
CAP decomposition (Liu et al., 2017) to reconstruct the motif-tree and conducted comparisons
with several competitive algorithms. The results, presented in Figure 3, demonstrate that our algo-
rithm consistently achieves favorable experimental outcomes even under the RECAP decomposition
method. It indicates that our approach can effectively handle variations in data decomposition tech-
niques, ensuring consistent performance. This versatility enhances the algorithm’s practical utility
and suggests its potential for application in different real-world scenarios. Moreover, considering
the possibility of future advancements in semantic decomposition methods, our algorithm holds
promise for further improvement. By leveraging more sophisticated semantic decomposition tech-
niques, our algorithm has the potential for pluggable enhancements, enabling it to adapt to evolving
decomposition methodologies and potentially achieve even better performance.

DDI Loss: Figure 4 illustrates the impact of integrating the historical DDI weight determination
strategy into SafeDrug (linear), MoleRec (nonlinear), and DEPOT (nonlinear) on their DDI loss.

0 5 10 15 20 25 30 35 40

Convergence (MIMIC-III)

SafeDrug
SafeDrug+our WA
MoleRec
MoleRec+our WA
DEPOT-
DEPOT+our WA

Figure 4: Plug-in DDI Loss. + our WA
means using our weighted strategy.

On the one hand, the evidence in the figure demonstrates
that the three algorithms exhibit varying degrees of reduc-
tion in the lower bound of DDI loss convergence, thus
confirming that the incorporation of historical informa-
tion ensures safer recommendations. On the other hand,
the integration of historical DDI enables the three mod-
els to achieve a more stable training process, resulting in
a smoother loss curve. This stability contributes to more
reliable and consistent predictions, ultimately improving
the accuracy and robustness of DEPOT.

Ablation Studies: We further compare DEPOT with sev-
eral ablation variants to demonstrate the effectiveness of
different sub-modules. For fairness, we maintain consis-

tent settings across all experiments except for the specific ablation module being tested.

In Table 3, we present the results of different variant methods, showcasing their performance across
various metrics. Among the ablation variants, the DEPOT stands out as the top performer across all
metrics. On the other hand, the DEPOT-NE method demonstrates the weakest performance. This is
attributed to its limited exploration of the relationships between previously interacted drug motifs,
leading to a narrowed recommendation range. The performance of DEPOT-NR is less degraded
compared to that of DEPOT-NE, as it benefits from the collaborative filtering of diseases and drugs
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Table 3: Ablation Study: MIMIC-III. (1) DEPOT-NS is not aware of motifs collaborations and uses
atomic embeddings for graph pooling. (2) DEPOT-NR removes the repeat module. (3) DEPOT-NE
removes the explore module. (4) DEPOT-NH has no historical DDI considerations.

Method Jaccard ↑ F1 ↑ PRAUC ↑ DDI ↓ Avg.# of Drugs
DEPOT 0.5335±0.0025 0.6871±0.0024 0.7814±0.0036 0.0684±0.0007 20.21±0.1887
-NS 0.5309±0.0011 0.6841±0.0010 0.7799±0.0012 0.0688±0.0012 21.26±0.2264
-NR 0.5303±0.0015 0.6822±0.0012 0.7798±0.0013 0.0704±0.0006 20.26±0.2134
-NE 0.5298±0.0018 0.6811±0.0014 0.7777±0.0007 0.0696±0.0008 21.07±0.3001
-NH 0.5313±0.0013 0.6856±0.0009 0.7797±0.0014 0.0696±0.0009 20.45±0.3339

through a drug-centric module. DEPOT-NS performs graph aggregation at the atomic level, limiting
its ability to perceive the semantics and synergistic interactions of high-order motifs, thereby result-
ing in weak performance. Comparing Drug-NH to DEPOT, both models exhibit similar accuracy
indexes. However, Drug-NH slightly lags behind DEPOT in terms of DDI. This discrepancy can be
attributed to the impact of DDI outliers in the model.

Overall, each module in our design plays a crucial role in the effectiveness of the DEPOT model. The
superiority of the DEPOT and the relatively weaker performance of the ablation variants highlight
the significance of the individual modules and the comprehensive design of our framework.

Case Study: To showcase the superiority of DEPOT and provide an intuitive understanding,
we present the recommendation of DEPOT, SafeDrug, and MoleRec for an anonymous patient.

Table 4: Example Recommendation Result
Method Recommended Drug Set
Ground-Truth

Num: 10
TP: [’A06A’, ’N02B’, ’B01A’, ’A01A’, ’C02D’,
’A04A’, ’N02A’, ’A12B’, ’M03B’, ’C08C’]

SafeDrug
Num:12

Recall:0.700
Precision:0.583

TP: [’N02A’, ’A12B’, ’A04A’, ’A01A’, ’B01A’,
’N02B’, ’A06A’]
FN: [’C02D’, ’C08C’, ’M03B’]
FP: [’B05C’, ’N05B’, ’A12C’, ’A02B’, ’D04A’]

MoleRec
Num:12

Recall:0.800
Precision:0.667

TP: [’A01A’, ’C02D’, ’A12B’, ’N02B’, ’A04A’,
’A06A’, ’N02A’, ’B01A’]
FN: [’M03B’, ’C08C’]
FP: [’D04A’, ’A12C’, ’A02B’, ’B05C’]

DEPOT
Num:11

Recall:0.800
Precision:0.727

TP: [’A12B’, ’N02A’, ’C02D’, ’A06A’, ’B01A’,
’N02B’, ’A01A’, ’A04A’]
FN: [’M03B’, ’C08C’]
FP: [’A12C’, ’A02B’, ’B05C’]

Analyzing the results in Table 4,
it becomes evident that DEPOT
surpasses other methods in both
recall and precision. This ex-
ceptional performance can be at-
tributed to the fact that DEPOT
considers the intricate functional
collaboration between drug mo-
tifs and their relevance to disease
processes during the recommen-
dation process. To minimize the
occurrence of potent side effects,
certain drugs, specifically M03B
and C08C, have been omitted
from the recommended results of
DEPOT. In contrast, SafeDrug

overlooks potential drugs due to excessively strict safety guidelines, while MoleRec fails to con-
sider possible drug re-use due to its lack of a dynamic perspective. We recognize that doctors’ levels
of experience and expertise can vary, resulting in different prescribed drugs for patients. As a conse-
quence, there is no absolute gold standard for comparison. However, the findings presented strongly
suggest that DEPOT holds promise as an advanced drug recommendation system.

5 RELATED WORK

For a thorough comparison with prior studies, we provide a systematic review in Appendix F, cov-
ering drug recommendation and molecular characterization.

6 CONCLUSION

In this study, we present DEPOT, a drug recommendation framework that leverages drug motifs
to provide accurate and safe prescription recommendations to healthcare professionals. Our frame-
work incorporates a structural information-aware module, enhancing the representation of molecular
graphs. Additionally, we introduce two modules, repeat and explore, to capture the dynamic relation-
ship between drug motifs and disease progression. Moreover, we integrate historical DDI informa-
tion in a non-linear fashion to ensure recommendation stability and minimize DDI rates. Through
comprehensive comparison and robustness testing on two data sets, we demonstrate that DEPOT
showcases improved safety and accuracy, thereby assisting healthcare professionals in making in-
formed decisions and paving the way for further advancements in the field of drug recommendation.
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A NOTATIONS USED IN DEPOT

We provide a comprehensive list of important mathematical symbols and their corresponding mean-
ings in Table 5 to facilitate better comprehension of the paper.
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Table 5: Mathematical Notations
Notations Descriptions

X electronic health record
D, P, M, I diag, proc, drug, and motif set
d, p, m multi-hot vector of diag, proc, drug, and motif

s, sdeg, srec one-hot vector of motif, degree, and recency
x concatenation of medical codes
G ddi graph
V vertex set same as M

E ,A edge set and adjacency matrix of G
e∗ medical embedding of medical codes ∗
u∗ patient embedding at ∗ visit
E∗ embedding tables of medical codes ∗
z patient disease progression
p∗ probability vector of mode ∗
S drug-motif adjacent matrix
ô recommendation probability vector for drugs

β, α hyperparameters for accuracy and safety loss
η target ddi value
κ mean value of historical ddi rate

B VIVID EXAMPLES

To enhance comprehension, we have created the following illustrations. Figure 5 and 6 elucidate the
algorithms presented in section 3.2.1 and 3.2.2, respectively.

Recency Embedding

Degree Embedding Structure 

Information

Graph 

Transformer

Node

𝑯𝟎

Figure 5: Drug-centric representation module, including motif tree construction and structure-aware
graph transformer. H0 denotes the initial embedding.

C ALGORITHMS

Algorithm 1 presents a detailed overview of the flow and optimization process employed by the
DEPOT algorithm.

D EXPERIMENT SETUP

In this section, we present the statistics of the data sets, necessary parameter settings, and advanced
baselines.

D.1 DATA SETS ANALYSIS

We conduct experiments using two extensive real-world Electronic Health Record (EHR) data sets:
MIMIC-III (Johnson et al., 2016) and MIMIC-IV (Johnson et al., 2020). The MIMIC-III data set
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Figure 6: Patient-centric representation module, including repeat encoder, explore encoder and dis-
criminate encoder. The probability output matrix q will be multiplied with the drug-motif adjacency
matrix S respectively to obtain the drug recommendation probability.

Algorithm 1 The Algorithm of DEPOT
Input: EHR X , DDI Graph G
Output: Parameters Θ;

1: Random initialize model parameters Θ,
2: Data preprocessing ed ∈ Ed, ep ∈ Ep, es ∈ Es

3: while not converged do
4: Sample a patient X (k) from X ;
5: for t = 1 to Nk do
6: Obtain patient representation u in Eq. 3
7: Obtain drug-centric representation h in Eq. 5;
8: Calculate drug-centric probability md in Eq. 6;
9: Obtain disease progression z in Eq. 8

10: Obtain repeating probability of the IS in Eq. 9
11: Obtain exploring probability of the I − IS in Eq. 11
12: Obtain the discrimination probability in Eq. 12
13: Calculate patient-centric probability mre in Eq. 14;
14: Generate the recommendation result ô in Eq. 15
15: end for
16: Evaluate and obtain DDI Rate for the patient
17: Update the parameters using the loss in Eq. 18
18: end while
19: return Parameters Θ

encompasses data from adult patients in the intensive care unit between 2001 and 2012, while the
MIMIC-IV data set comprises comprehensive electronic medical records and clinical information
of hospitalized patients between 2008 and 2019. It is important to note that these data sets are
fully anonymized and subjected to privacy protection measures before our access. Table 6 provides
detailed statistics regarding the data sets, offering insights into patient numbers, diagnosis codes,
and medication usage.

In order to test our hypotheses and intuitions, we perform preliminary data analysis on the data sets.
As depicted in Figure 7(a), we notice that drug recommendation scenarios require the recommenda-
tion of a collection of drugs of various sizes, rather than a single item, which represents a significant
departure from traditional recommendation mechanisms. Figure 7(b) displays the proportion distri-
bution of historical drug reuse, while Figure 7(c) presents the distribution of historical motif reuse.
Both distributions demonstrate a right-skewed pattern, providing compelling evidence for the im-
portance of leveraging repetition and exploration perspectives. In a nutshell, these data analysis
results serve as an empirical foundation for our research, ensuring the reliability and feasibility of
our experiments.
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Table 6: Data Statistics
Items MIMIC-III MIMIC-IV
# of patients / # of visits 6,350 / 15,032 61,267 / 163,875
diag. / prod. / drug. set size 1,958 / 1,430 / 130 2,000 / 11,055 / 130
avg. / max # of visits 2.3672 / 29 2.6748 / 70
avg. / max # of diag per visit 10.5089 / 128 8.2345 / 270
avg. / max # of prod per visit 3.8437 / 50 2.3579 / 95
avg. / max # of drug per visit 11.4296 / 65 6.4889 / 72
total # of DDI pairs 674 800
total # of motifs 225 225
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Figure 7: Data analysis.

D.2 BASELINES

In line with the genre in related work, we have chosen several advanced baselines for comparison.

• K-Near (Shang et al., 2019): Exactly the same medications recommended for the current visit
as prescribed for the last visit.

• LR (Luaces Rodrı́guez et al., 2012): LR is a traditional recommendation technique with L1
regularization, we train a separate classifier for each class for multi-label classification.

• ECC (Read et al., 2011): ECC employs boosting-based ensemble learning for multi-label clas-
sification, where the output of the previous base classifier serves as a feature input for the subse-
quent classifier.

• RETAIN (Choi et al., 2016): RETAIN integrates attention mechanism and RNN with the GRU
architecture to represent historical electronic medical records.

• LEAP (Zhang et al., 2017): LEAP formulates drug recommendation as a sequential decision
problem, utilizing a recurrent decoder and an attention mechanism to capture label dependencies.

• GAMENet (Shang et al., 2019): GAMENet incorporates DrugGraph and EHR Graph in the
longitudinal modeling process to ensure the effectiveness and safety of recommendations.

• MICRON (Yang et al., 2021a): MICRON leverages residual-based inference to link drug
changes and disease changes, enabling incremental learning of new patient characteristics.

• SafeDrug (Yang et al., 2021b): SafeDrug utilizes the atomic architecture of drug molecules for
characterization and designs mask matrices to explore the relationship between molecules and
diseases. We use the linear adjusting version.

• COGNet (Wu et al., 2022b): COGNet retrieves his or her historical diagnosis and drug rec-
ommendations, and mines their relationship with the current diagnosis, which is embedded in
Transformer as a plug-in for generative inference.

• MoleRec (Yang et al., 2023): MoleRec constructs substructure embeddings according to the
inclusion relationship of molecules and substructures, and designs an attention mechanism to
capture their interaction relationship with diseases.

Please Note that these algorithms are categorized as follows, 1) Rule-based: K-near 2) Instance-
based: LR, ECC 3) Longitudinal-based: RETAIN, LEAP, GAMENet, SafeDrug,MICRON, COGNet,
MoleRec. To be fair, we tune the hyper-parameters of each model to achieve the best results.
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D.3 IMPLEMENTATION DETAILS AND EVALUATION PROTOCOLS

Our code has been open-sourced and can be found on GitHub 2. Regarding the data set, we divided
it into three subsets: training set, validation set, and test set as previous (Shang et al., 2019; Yang
et al., 2021b; 2023). The training set accounts for 2/3 of the data set, while the validation and test
sets each comprise 1/6 of the data set. Our model was implemented using PyTorch and trained on
an Ubuntu system with a GeForce RTX 3090ti GPU. The initial embeddings were initialized using
Kaiming initialization (He et al., 2015) and had a dimension of 64, unless specified otherwise for
concatenation operations. To optimize the model during training, we employed the Adam optimizer
with a learning rate of 5e-4. We conducted hyperparameter tuning on relevant parameters, including
parameter dim within [32, 48, 64, 96], parameter l within [1, 2, 3, 4], parameter T within [2, 3, 4, 5],
and parameter τ within [0.5, 0.6, 0.8, 1.0] .

In evaluating the performance of our recommendation model, we utilize several metrics, includ-
ing Precision-Recall AUC (PR-AUC), Jaccard Similarity Score, and average F1 score (F1). These
metrics provide insights into the model’s accuracy and performance. Additionally, we consider the
drug-drug interaction rate (DDI Rate) as a crucial safety evaluation metric, where a lower DDI Rate
indicates a safer recommendation in terms of drug-drug interactions.

The following provides detailed definitions of each metric used to evaluate the performance of all
algorithms. The Jaccard coefficient is a mathematical metric used to assess the similarity between
two sets. Formally,

Jaccard =
1

Nk

Nk∑
t=1

Jaccard (t)

=
1

Nk

Nk∑
t=1

|{i : ô(t)
i = 1} ∩ {i : o(t)

i = 1}|
|{ô(t)

i = 1} ∪ {i : o(t)
i = 1}|

,

(20)

where Nk refers to the total number of visits of the patient, t represents the t-th visit, oi and ôi refer
to the i-th entry of the groudtruth and prediction results, respectively. Please note that the final result
is obtained by calculating the mean of the Jaccard coefficients across all visits for each patient.

The F1-score is a single metric that combines precision and recall to provide a balanced measure
of a model’s performance. Formally,

Precision(t) =
|{i : ô(t)

i = 1} ∩ {i : o(t)
i = 1}|

|{i : ô(t)
i = 1}|

,

Recall(t) =
|{i : ô(t)

i = 1} ∩ {i : o(t)
i = 1}|

|{i : o(t)
i = 1}|

,

(21)

F1-score =
2

Nk

Nk∑
t=1

Precision (t) Recall (t)

Precision (t) + Recall (t)
. (22)

PRAUC assesses the overall effectiveness of the model across various thresholds of the decision
boundary in terms of precision and recall. Formally,

PR-AUC =
1

Nk

Nk∑
t=1

|M|∑
k=1

Precision(k)(t)∆Recall(k)(t) (23)

where ∆Recall(k)(t) = Recall(k)(t) − Recall(k − 1)(t).

DDI is used to measure the safety of recommendations, that is, the proportion of side effects con-
tained in recommendation results. Formally,

DDI =

∑Nk

i=1

∑
a,b∈{j:ô(t)

j =1} I{Aa,b = 1}∑Nk

i=1

∑
a,b∈{j:ô(t)

j =1} 1
, (24)

where I is an indicator function that equals 1 when Aa,b is 1, and 0 otherwise.
2https://anonymous.4open.science/r/DrugRec
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Figure 8: Hyperparameter-tests.

E HYPER-TESTING

In this subsection, we present the tuning of several key hyper-parameters in our framework.

Embedding size dim. To examine the impact of embedding dimension on the performance of our
proposed model, we conduct scaling experiments by varying the embedding size. The results are
presented in Figure 8(a). The findings demonstrate that DEPOT initially experiences improvement
as the embedding dimension increases. This improvement continues until reaching a peak when
the dimension is set to 64. However, when the dimension exceeds 64, there is a significant drop
in performance. This decline can be attributed to the introduction of noise and the potential for
overfitting in the model when the dimensionality becomes too large. Emperimentally, we set dim =
64.

Number of Transformer Layers l. The number of Transformer layers in our model plays a crucial
role in capturing higher-order collaboration between motifs. Figure 8(b) illustrates the results of our
experiments, indicating that the best performance is achieved when l = 2 (the optimal number of
layers). When the number of layers is too small, the model may struggle to effectively capture the
structural relationships between motifs. This limitation hampers the model’s ability to understand
complex interactions and may result in suboptimal performance. Conversely, when the number
of layers is excessively large, the performance improvement may reach saturation, making further
increases in the number of layers unnecessary and inefficient.

History Length T . When the historical length is longer, the calculated historical indicator rate is
more stable and accurate. The calculation of the average value is based on a larger number of data
points, providing a better reflection of the trends in historical drug interactions. However, there may
be some potential issues with excessively long historical lengths, such as increased computational
complexity and data storage requirements. Moreover, longer historical lengths may include outdated
or less representative data, which can have a negative impact on the accuracy of the results. As shown
in Figure 8(c), we observe better performance when T = 3.

Temperature τ . τ controls the nonlinearity of the tanh function, which affects the level of constraint
on DDI effect. A smaller value of τ causes the curve to rise more rapidly when it surpasses the target
DDI, thereby assigning higher weight to DDI optimization. Conversely, a larger value of τ results in
a more gradual curve and less emphasis on DDI optimization. As illustrated in Fig. 8(d), our model
achieves superior performance on both accuracy and safety objectives when τ = 0.08.

F RELATED WORK

To provide readers with a comprehensive understanding of the advancements in the field and es-
tablish the connections and distinctions between our work and other studies, this section presents
a systematic review of the most pertinent literature in the domains of drug recommendation and
molecular characterization.

F.1 DRUG RECOMMENDATION

Drug recommendation, as a challenging sub-problem in the field of smart healthcare, serves as an
essential tool to assist doctors in making prescriptions and alleviate their workload. In contrast
to traditional recommendation systems (Ren et al., 2019; Zhao et al., 2023), drug recommendation
systems face a dual challenge of recommending target sets of varying sizes and adhering to stringent
safety criteria (Yang et al., 2021b; He et al., 2018; Zheng et al., 2023).
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In the early stages of research in the field of drug recommendation, manual rule-based methods were
commonly employed. For instance, methods like K-freq (Wang et al., 2019) and K-Near (Shang
et al., 2019) relied on selecting drugs based on their symptom frequency or the drug set used in
previous visits. However, these approaches heavily relied on the expertise of doctors and lacked
flexibility in adapting to individual patient needs. Inspired by recommender systems used in e-
commerce (Wu et al., 2022a), instance-based methods were introduced to enhance the efficiency
and accuracy of drug recommendation. These methods leveraged the co-occurrence relationship be-
tween drugs and patients, akin to collaborative filtering algorithms. For example, MedRec (Zhang
et al., 2023) constructed a knowledge graph linking symptoms and drugs and utilized link prediction
techniques. ECC (Read et al., 2011) formulated the recommendation task as a multi-label classi-
fication problem and employed chained ensemble classifiers to improve accuracy. Subsequently,
researchers explored drug recommendation from a longitudinal perspective, taking into account pa-
tient history and temporal dependencies among drugs. GameNet (Shang et al., 2019) employed
recurrent neural networks (RNNs) to model the patient’s historical states and combined electronic
health records (EHRs) with drug-drug interaction (DDI) graphs to explore co-occurrence relation-
ships among drugs. SafeDrug (Yang et al., 2021b) integrated drug molecular graphs into the rep-
resentation module to enhance the drug-side representation. COGNet (Wu et al., 2022b) retrieved
a patient’s historical diagnoses and drug recommendations, and mined their relationship with the
current diagnosis to generate personalized recommendations. Safety considerations in drug rec-
ommendations also gained attention to promote the preference for safer drug combinations. For
instance, 4SDrug (Tan et al., 2022) incorporated small and safe principals into the training pro-
cess of the recommendation model, utilizing a mixed penalty loss to ensure that the generated drug
combinations carried lower risk.

Despite decent performance, these methods often overlook crucial motifs information. One rele-
vant work in this regard is MoleRec (Yang et al., 2023), which primarily focuses on the inclusion
relationship between drugs and substructures. While this approach captures some aspects of mo-
tifs information, it fails to fully explore the structural intricacies between motifs and their dynamic
connections with changes in patient diseases. Our proposed framework, DEPOT, takes this into
account by introducing motif trees, allowing us to capture essential motifs information for more ro-
bust molecular characterization. In addition, we incorporate the relationship between longitudinal
disease progression and drug structure, a factor that is not accounted for in MoleRec.

F.2 MOLECULAR CHARACTERIZATION

Effective characterization of drugs is crucial for enhancing the performance of drug recommen-
dations. Currently, there are two main streams of molecular modeling methods: sequence-based
models and graph-based representation models (Atz et al., 2021; Sun et al., 2022b; Pattanaik &
Coley, 2020).

Sequence-based models drew inspiration from successful approaches in natural language process-
ing. These models could capture the statistical features and semantic information of molecular
SMILE sequences, enabling the understanding of molecular structures and properties. For instance,
recurrent neural networks (RNNs) or transformers could be employed to model SMILES sequences
and make predictions on molecular properties (Zheng et al., 2019; Huang et al., 2021). On the other
hand, graph-based models represented molecules as graphs, where atoms or groups are nodes, and
chemical bonds are edges (Yi et al., 2022; Fang et al., 2022). This approach incorporated non-
Euclidean geometry data mining and took into account the connections, topological relationships,
and chemical bond information between atoms. Graph convolutional neural networks (GCNs) or
graph attention networks (GATs) were commonly utilized to model molecular graphs and predict
molecular properties (Li et al., 2022b; Xu et al., 2021). In recent years, efforts have been made
to unify sequence-based and graph-based modeling methods by representing molecular graphs as
atomic sequences and utilizing positional encoding to incorporate coordinate information (Li et al.,
2022a; Wu et al., 2023a).

In our study, we draw inspiration from molecular characterization and employ various chemical
decomposition methods to divide drug molecules into meaningful motifs. We consider the struc-
tural associations between these motfis at a higher level and integrate them into the graph trans-
former model. This approach provides a richer and more comprehensive molecular characteriza-
tion, thereby improving the performance of drug recommendations.
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