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Abstract

Humans seamlessly group perceptual sequences in units of chunks, parsed and
memorized as separate entities. Chunking is a computational principle essen-
tial for memory compression, structural decomposition, and predictive processing.
How can this ability be accomplished in a neural system? On an algorithmic level,
computational models such as the Hierarchical Chunking Model (HCM) propose
grouping frequently occurring proximal observational units as chunks. Chunks,
once learned, are stored as separate entities in memory, ready for reuse and recom-
bination. In doing so, the HCM learns an interpretable and hierarchical represen-
tation that resembles human chunk learning, without the need for gradient based
training. In this work, we propose a biologically plausible and highly efficient im-
plementation of the HCM with spiking neurons: the neuromorphic HCM (nHCM).
When parsing through perceptual sequences, the nHCM uses sparsely connected
spiking neurons to construct hierarchical chunk representations. Simulation on a
standard computer showed remarkable improvement of nHCM in speed, power
consumption, and memory usage compared to its original counterpart. Taking
it one step further, we validate the model on mixed-signal neuromorphic hard-
ware DYNAP-SE 2, which uses analog spiking neurons in an event-driven way
to imitate biological computation. The transistors in the neural cores are run in
sub-threshold, reducing energy requirements by more than one thousand times.
We verified this implementation’s robust computing properties, overcoming the
analog circuits’ heterogeneity, variability, and low precision. This work demon-
strates cognitively plausible sequence learning in energy-efficient dedicated neural
computing electronic processing systems.

1 Introduction

When parsing through perceptual sequences, humans tend to segregate the stream of perceptual in-
put into units of chunks [11]. These segregated units are stored in memory, ready for reuse and
recombination. This ability, termed chunking, enables us, for example, to learn to play piano by
piecing together phrases, or excel at a foreign language via flexibly combining the previously ac-
quired words. Chunking has been suggested to improve memory compression, prediction, planning,
generalization, and transfer across diverse psychological domains [13, 2, 6].

Cognitive models such as the hierarchical chunking model (HCM) propose using chunks as building
blocks to recursively learn and acquire more complex representations [20]. The chunk learning algo-
rithm processes the ability to transfer representation and resembles human sequence learning [21].
While it remains unclear how chunking works in the brain, the neuromorphic HCM (nHCM) pro-
vides a potential implementation of human chunking in biological neurons.

Neuromorphic hardware is a novel computing paradigm with high potential. The asynchronous
mixed-signal neuromorphic processor DYNAP-SE 2 [12, 16] is comprised of analog neuron and
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synapse circuits that can be interconnected and configured for computation. The neuron circuits
operate in the sub-threshold regime, leading transistors that are orders of magnitudes more energy-
efficiency than state-of-the-art hardware [12], which are best suited for power-limited applications
such as edge-computing or robotics [1]. Different from rate-based neurons in software simulations,
the analog neurons in the neuromorphic chip make use of the temporal information of the spikes
from connected neurons and are inherently parallel, overcoming the von Neumann bottleneck by
combining processing with memory storage [14]. However, due to device-mismatch in the analog
circuit components, obtaining robust and reliable computations at the system level, for arbitrary
applications remains an open challenge [22].

In this work, we adapt and simplify the original HCM algorithm following a neuromorphic program-
ming paradigm, thereby harnessing the computational power efficiency of neuromorphic hardware
and the interpretability of cognitive models, while stepping toward a biologically plausible sequence
chunking implementation. In contrast to traditional recurrent neural network approaches using long
short-term memory [7] or more recently transformers [19] the HCM does not require backpropa-
gation [17]. While gradient-based training was successfully implemented on digital neuromorphic
processors[4, 10], the component variability caused by analog circuits makes such approaches unfea-
sible. In addition, deep neural networks are not interpretable which causes key shortcomings [8, 5]
and concerns regarding safety and trustworthiness [18, 15, 3]. The HCM on the other hand learns
the structure directly and represents it symbolically and hierarchically. The nHCM expands on this,
by constructing the entire network with identical small neuron circuits each representing a chunk
wired into a hierarchy. We illustrate the adaptation of HCM to neuromorphic design philosophy
implemented on a computer and on a neuromorphic processor, followed by a set of evaluations to
assess the power and computational efficacy the implementation affords.

2 Methods

2.1 Overview

The original HCM assumes that independent samples of chunks constructed the observed sequence.
The goal of the algorithm is to learn these chunks, which are sequence segments comprising one
or multiple symbols, and use the chunks to parse the sequence. For this, the algorithm starts with
chunks being the atomic sequential units. When parsing, it notes the frequency of each chunk and
each chunk transition. After parsing, a χ2 test of independence picks the pair of chunks to be con-
catenated into a new chunk. This process is repeated until the independence test is no longer passed
or a satisfactory number of chunks has been reached. If the assumptions are met, the algorithm is
guaranteed to converge.

We have implemented sequence parsing in chunks on the neuromorphic chip DYNAPSE-2 [12] and
with a neuron-emulating data structure on a traditional computer. As illustrated in Fig. 1A, nHCM
also parses a perceptual sequence in units of chunks. To adapt HCM to a neural population to become
nHCM, we first adjust the algorithm to a heuristic version and propose new chunks by sampling. In
this way, nHCM learns chunks online. These chunks are manifested in a hierarchy, as illustrated in
Fig. 1B. At a neural level, nHCM uses a neuron chain to encode the temporal information of each
chunk and a disinhibition mechanism to ensure the activation of higher-order chunks dependent
upon the relative timing of its subordinate chunks, while inhibiting its subordinates in favor of the
better explanation. New neurons are recruited and integrated upon the formation of a new chunk. On
the neuromorphic processor, a combination of delay, coincidence detection and cross-inhibition is
used, whereas, on a computer, the implementation is done with a queue. We first introduce sampling
in section 2.2, followed by delay, coincidence detection, and cross-inhibition from section 2.3.1 to
2.3.3.

2.2 Sampling

Instead of an independence test, nHCM uses a sampling method to propose new chunk pairs to
concatenate into a new chunk. To do so, every time a new chunk is parsed, it is sampled probabilis-
tically in combination with the previous chunk. If the same pair of chunks gets sampled k-times in
a row, it will be combined into a new chunk and stored in long-term memory. Specifically, for each
chunk transition the nHCM parses, there is a certain possibility or sampling rate (0.05 by default)
to save that chunk transition. If this chunk transition is recorded k (k=2,3, ...) times in a row, the
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Figure 1: nHCM implementation on a computer and a neuromorphic processor (A) Online
learning while parsing the sequence with k = 2. Sampling occurs some time steps after the pars-
ing, once the neuron chains have reached their output neurons. (B) Example hierarchy. Adapted
from [20]. (C) Queue implementation on a computer. Whenever an input is parsed, as many con-
catenation steps as possible of the rightmost chunks are done. (D) Illustration of plus-neuron pop-
ulation activation of a chunk A during the parsing of sequence ABA. The signal travels one neuron
per time step. (E) Run time illustration of activation and inhibition of neurons of chunks A, B, AB,
BA, BAAB during the sequence BAAB. Inhibited neurons are grayed out and the excitatory connec-
tions are left out. (F) Neuronal disinhibition circuit of chunks A, B, and BA. 1 indicates constitutive
activation of inhibitory interneurons. Subsequent activation of population B and then A will lead
to disinhibition and activation of AB neurons. Feedback from AB neurons suppresses downstream
neurons of chunk population A and B. On chip neurons can be excitatory and inhibitory at the same
time, removing the need for I2 neurons

parsing ends, and we add the chunk transition as a new chunk before starting the next iteration. We
decided to implement at least two identical samples in a row so that a chunk transition is learned
on the probability squared of occurrence. This asymmetrically enforces learning of more frequent
transitions.

The sampling method replaces the frequency collection and independence test of the original al-
gorithm. This adaptation is necessary to transition the algorithm to a neuromorphic processor. It
slightly decreases the accuracy to trade off with online learning during the model run-time. The
effect of removing the independence test depends on the structure of the underlying sequence and is
further discussed in the section 4.1.

2.3 Neuromorphic Processor

2.3.1 Delay

A delay mechanism underlies chunk detection on the neuromorphic chip. As the hardware is event-
driven and running in parallel and all information is represented in spikes, precise timings are essen-
tial to execute any successful algorithm. To encode temporal information after each chunk has been
detected, several delay neurons are assigned to each chunk, each symbolizing a distinct time step
after the moment of chunk detection. Fig. 1D illustrates a neuron population with delayed synapses.
When chunk A activates, the primary neuron fires, and one of its synapses is delayed to activate neu-
ron A+ one timestep later. This repeats for A++ and subsequent plus iterations until the information
of chunk A is no longer necessary.
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To ensure proper activation, parent chunks are only activated by the corresponding plus neurons
and use coincidence detection to determine whether the two neurons have fired at the same time.
For example, a chunk AB would fire if the chunk A has been delayed by exactly one interval, and
neuron A+ is active at the time of the arrival of chunk B, whereas the chunk A−BB would receive
inputs only from A++ and BB. The neuron chain also solves the issue of charge accumulation that
would otherwise lead to chunk activation by repeats of the first input alone, as elaborated in 6.3.
This mechanism is not necessary on a computer and was instead solved using a queue, discussed in
section 2.4.

2.3.2 Coincidence detection

Coincidence detection is an essential part of the algorithm, as neuromorphic hardware is inher-
ently noisy due to manufacturing imperfections of analog circuits. This results in constitutively
active neurons, large mismatch, variable delay from synapses, and differences in spike amplitude
and activation thresholds, which require robust and error-mitigating algorithms. For a bio-plausible
coincidence detection method, we picked a disinhibition approach, which has been suggested to fa-
cilitate precise firing windows in the brain [9]. A newly implemented chunk population includes an
interneuron from the second child population, that constitutively inhibits the new chunk, and only
once that interneuron has inhibited itself, can an input activate the population. This asymmetric
architecture eliminates most false positives, which are the most harmful for our model as a chunk
neuron firing too frequently strongly influences subsequent learning behavior. False negatives are
less harmful, as the chunk can be relearned, with a different set of neurons replacing the malfunc-
tioning ones. The disinhibition has proven to be more easily tuned and resistant to mismatch than
an AMPA/NMDA method. As illustrated in Fig. 1F, we picked the first input to be the activator and
the second input for the disinhibition. As the second input always stems from the first neuron in the
delay chain, assigning it for disinhibition minimizes the number of neurons needed in the topology.
We implemented the architecture on the chip to allow for coincidence detection between 4 and 250
milliseconds intervals. Faster interval times are increasingly hard to achieve due to the inherent ex-
citation time that a neuron takes to charge and fire. Slower speeds are limited mostly by mismatch
and their viability for practical applications. The final implementation of the nHCM uses an interval
time of 10 ms.

2.3.3 Learning and cross-inhibition

Only the last instance of the plus-delay chain counts as an activation of the chunk for learning
purposes. As a parent chunk will fire immediately after its children have fired, it will activate before
the next plus neuron in the children’s delay chain will activate.
The parent neuron is wired to inhibit the next plus neuron of its children in case of activation. This
way, the plus-delay chain of the children will be broken, and the last instance of the chain, which
counts as the final activation, will never be activated. If we have a sequence ABC with chunks
{A,B,C,A − B,B − C,AB − C}, the chunk AB will stop the chunk B from being relayed
another time step and activate BC. However, ABC can still be activated.
This takes advantage of the fact that only proximal chunks get learned as new chunks, so a new
signal can never lead to multiple chunk activations. A runtime example is illustrated in Fig. 1E, and
a complete three-chunk circuit is illustrated in Fig. 1F.

2.4 Computer

2.4.1 Queue

When implementing the design on traditional computers, no considerations for coincidence detec-
tion and delay are necessary. Instead, a queue is used, that keeps track of the most recent chunk
activations. Whenever a new entry is parsed, it gets compared with the entry before that in the
queue. If they form a known chunk together, they concatenate. This process is repeated until the
chunks no longer concatenate, as illustrated in Fig. 1C. The queue size is set to be one larger than
the hierarchy depth. When the size is exceeded, the oldest chunk gets removed, and the transition
between the removed and the new oldest chunk is probabilistically sampled. We also implemented
a deterministic method where all chunks are recorded and the most frequent transition is selected.
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3 Results

3.1 Computer Implementation

The design principles implemented on a computer using a deterministic version and a probabilistic
variant that is similar to the neuromorphic implementation were compared to the original model.
An evaluation of bits needed to encode the sequence during the learning process on a handcrafted
sequence Fig. 2A and on a generated hierarchy Fig. 2B shows that the nHCM in some cases com-
presses more quickly, due to learning the most frequent chunks first. In our experiments over 30
trials with a sequence length of 5000 symbols, Fig. 2C, the original, rational model took an average
of 9.52 ± 0.81 seconds. The deterministic version took 0.22 ± 0.03 and the probabilistic 0.07 ±
0.02 seconds, giving us a significant improvement for each group comparison (two-sample t-test <
0.05). The adaptations lead to a speed-up of about two magnitudes to the original version. To com-
pare accuracy between models, a sequence is generated from the learned hierarchy, which is then
partitioned into chunks using the ground truth hierarchy. The frequency distribution of the ground
truth hierarchy with probabilities based on the generated sequence and the original sequence are
then evaluated on their similarity using the Kullback-Leibler (KL) divergence. The rational (orig-
inal) model achieved a KL divergence of 0.71 ± 0.14, the deterministic version of 0.75 ± 0.17,
and the probabilistic of 1.12 ± 0.28. No significant difference was observed between the rational
and deterministic version (two-sample t-test p = 0.335) but between the probabilistic and the other
two (two-sample t-test p ≤ 0.05). The models were tested on sequences generated by the method
developed in the original paper [20].

3.2 Neuromorphic processor implementation

The nHCM on the neuromorphic processor achieves comparable results in the experiments (Fig. 2D).
As the hardware has a fixed time constant, no speed comparisons were made. During 3 trials with a
sequence length of 500 the rational model showed a mean KL divergence of 0.051 ± 0.02 and the
neuromorphic processor implementation 0.398 ± 0.269. While the performance of the neuromor-
phic model is significantly worse (one-tailed two-sample t-test p ≤ 0.05), we show that it can work
in theory. Core issues stem from the hardware itself, and with further improvement to the technology
and fine-tuning of the parameters we expect an improvement to similar values as the probabilistic
version. Example outputs can be seen in Fig. 2E, displaying the hardware mismatch and noise.

4 Discussion

4.1 Removing the independence test

Removing the independence test, changes the overall objective of the algorithm. The nHCM will
find the most frequent chunks that make up the sequence, while the original algorithm will only find
chunks that appear more often than their components would suggest. The preferable method depends
on the sequence and the objective. We constructed a way to reintroduce the independence test and
implemented it on a computer. To achieve this, the sampling rate of a transition is set by the weight
of the synapse from the final plus neuron leading to the sampling circuit. This weight is reduced
whenever the neuron is active while simultaneously increasing all other chunks by a fraction of the
same amount. This normalizes the chunk sampling and as it is rooted in the frequency of component
chunks, transitions that appear more often than by random chance have an increased probability of
sampling. This biases the learning circuit to discover underlying chunks.

4.2 Hierarchy depth

Even though we did not observe this with our experiments, we theorize that the algorithm might
eventually learn the deepest possible hierarchy given enough time and data due to its probabilistic
nature. This might lead to an underlying hierarchy {AB, CD, ABCD} being learned as {A-B,AB-
C,ABC-D, C-D} even if the more concise chunking is available, as the chunks ABC might show up
without the concluding D. Once the chunks ABC is learned, it will break the chunk AB-CD as it will
be chunked into ABC first. A deeper hierarchy will lead to more neurons needed and higher-order
chunking will lose precision due to accumulation of hardware irregularities. If observed, this should
also be solved by reintroducing the independence test.
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Figure 2: nHCM results on a computer and neuromorphic processor compared to the HCM
(A,B) Decline in bits needed to encode a sequence of length 5000 using the rational (original) HCM
and the deterministic nHCM. (A) on a hand-made ground truth hierarchy (”transfer original”) (B)
on a generative model with 12 complex chunks and 4 atomic chunks. (C) Experiments with rational
HCM, deterministic version of nHCM and probabilistic version with online learning on a computer
(Chunks 16, Sequence length 5000, n = 30). (Top) KL divergence when compared to no learning
(Bottom left) Speed comparison. (Bottom right) Number of chunks formed. (D) Experiments with
rational HCM on a computer and nHCM on the neuromorphic processor (Chunks 12, Sequence
length 500, n = 3). (Top) KL divergence compared to no learning. (Bottom) Number of chunks
formed. (E) Spike train output of the nHCM on the neuromorphic processor showing chunking of
inputs AB and BAB. Primary activation of atomic elements at the bottom. Chunks are ordered from
bottom to top as primary activation, constitutive inhibition, and downstream delayed neurons with
temporal information. I2 interneurons not included.

4.3 Future Work

While the algorithm works as a proof of concept, it has not yet been applied to a real-world problem.
We see future work focusing mainly on making the time-components more flexible and applying the
nHCM to bio-signal processing in energy-limited environments. The nHCM on standard computers,
should be evaluated on its capability to evaluate large quantities of real data.

5 Conclusion

In this paper, we investigate a bio-plausible implementation of the HCM on standard computers and
a neuromorphic processor. We show that replacing the frequency collection and independence test
with a sampling method transforms the algorithm into a heuristic version that increases the compu-
tation speed significantly while retaining high accuracy. We also demonstrate the nHCM running on
a neuromorphic processor, successfully taking advantage of the inherent parallel computation and
energy efficiency. Finally, we demonstrate that neuroplausible design encourages working principles
that are intrinsically efficient and robust to component failure and noise.
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6 Supplementary material

6.1 Sampling rate

The probability we used for sampling, is based on the assumption that a certain hierarchy is gov-
erning the sequence. The sampling rate needs to be low enough, to escape local dependencies and
ensure that chunks can be learned. Else, if there are large chunks without repeats, we will not be
able to encounter a constituent twice in a row, as we sample again before we leave the local chunk.
If we know that the chunks that govern the sequence are very large, the sampling rate has to be
adjusted to be lower. For a sequence governed by small chunks, we could increase the sampling rate
to speed up the learning process, but caution is advised, as we usually cannot be certain of the chunk
size, and by its probabilistic nature, even the lowest sampling rate introduces a bias. We recommend
a sampling rate that has a maximum probability of 0.05 to sample twice within the largest chunk
size. We say ps is our sampling rate and use Cmax as the largest chunk we expect in our underlying
hierarchy. The number of samplings within the largest chunk follows a binomial distribution, and
the condition that this number is smaller than 2 is F, where F(x; N, p) is the CDF of a binomial
distribution. and can be calculated with the formula (1):

(1− ps)
Cmax + Cmaxps(1− ps)

Cmax−1 > 0.95 (1)

Figure 3: The maximum chunk size the algorithm can parse without sampling twice within a chunk
in correlation with the sampling rate.

As we sample chunk transitions, we should add plus one to the maximum length of chunks, as the
sampling takes place on two proximal entities at once. Thus for the base rate of 0.05, the probability
of sampling a chunk twice is lower than 5% for chunks up to the size of 8. For a sampling rate of
0.01, the maximum chunk length increases to 36.

6.2 DYNAP-SE 2

The DYNAP-SE 2 is a the neuromorphic chip that was used for the nHCM. It is made up of 4 cores,
each with a total of 1024 neurons. Each neuron has a fan-in of maximally 64 Synapses, meaning that
it can only receive signals from 64 synapses in total. the fan-out is much larger and a neuron can have
outgoing synapses to all other neurons. The neurons work event-driven without a clock governing
the system. As the chip is comprised only of neurons and synapses, no conventional memory exists.
To store information, one has to implement neurons and synapses to encode this information. This is
especially limiting for arithmetic functions and requires entirely different approaches to implement
algorithms. This design principle drove our design to end up in the architecture used.

The number of synapses available per neuron, limit the number of chunks that an individual
chunk can activate. A neuron has a total of 64 synapses. A total amount of 8 synapses are used
to activate the next instance in the chain, 4 to inhibit each child respectively and 4 are used
per new chunk created. A child of same temporality can thus activate a maximum of 12 parent
chunks. This maximum is present for each instance of the plus-chain individually, but as the right
chunk always uses its first chain-instance to activate the parent, a chunk will be limited to around
24 parent chunks. Multiple synapses are used simultaneously to average out chip-inherent mismatch.
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6.3 Delay

Alternatives to the delay approach could have been AMPA/NMDA or a simple charge addition
system, but would need a non-zero voltage in a neuron one interval after the first input has fired, to
enable interaction with the second input. This makes an accumulation of charge solely by repeats
of the left input possible. This could cause potential misfiring if the underlying sequence contains
high repeats, no matter how small the voltage of the first input is. Another reason why the delay
approach was chosen, is that it allows for implementing chunks that have the same child neuron
twice. For example, the chunk B − B should only fire when BB appears in the sequence but not
with a single B. With the delay approach, we do not need to distinguish between left and right
input as all other methods would have to. Instead, we can wire an activation resulting from the
simultaneous activation of B+ and B
This method also guarantees that the wiring stays simple and that underlying child chunks can be
inhibited. The chip constrains the delay to be no longer than the interval time, as a chunk cannot
start firing again before the last firing is complete. This means that if the delay were longer than
the interval time, the sequence AA would only activate A+ once, for the first A. This results in
a slight mismatch between the delay or plus instances of neurons and the next interval. This will
accumulate for all plus neurons, but does not traverse chunk hierarchies as the higher order chunks
will fire immediately after the second input, and the second input is never delayed. Due to this delay
accumulation, the primary input needs to have a low time constant Tau to bridge the gap between
the primary and secondary input. The time constant Tau, determining the voltage decay needs to be
kept low for the primary input, to bridge the mismatch caused by the delay. This leads to multiple
spikes from the parent chunk but does not alter any subsequent firings and is reduced to one spike
again after the first plus instance. Another issue is that the inhibition of the parent neuron needs to
be deactivated extremely quickly by the disinhibition, to allow for an immediate response. Further
tuning of this process is necessary, especially for long delays
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