
Performance-Based Human-in-the-Loop Optimal
Bipartite Consensus Control for Multi-Agent

Systems via Reinforcement Learning
Zongsheng Huang

School of Automation Engineering
University of Electronic Science and Technology of China

Chengdu 611731, China
zs Huang@163.com

Tieshan Li
School of Automation Engineering

University of Electronic Science and Technology of China
Chengdu 611731, China

tieshanli@126.com

Yue Long
School of Automation Engineering

University of Electronic Science and Technology of China
Chengdu 611731, China

longyue@uestc.edu.cn

Hanqing Yang
School of Automation Engineering

University of Electronic Science and Technology of China
Chengdu 611731, China

hqyang5517@uestc.edu.cn

Abstract—This paper investigates the performance-based
human-in-the-loop (HiTL) optimal bipartite consensus control
problem for nonlinear multi-agent systems (MASs) under signed
topology. First, to respond to any emergencies and guarantee the
safety of MASs, the MASs are monitored by human operator
sending command signals to the non-autonomous leader. Then,
under the joint design architecture of prescribe-time performance
function and error transformation, a novel performance index
function involving transformed error and control input is de-
veloped to achieve optimal bipartite consensus with prescribed-
time. Subsequently, the reinforcement learning (RL) method
is utilized to learn the solution to Hamilton-Jacobian-Bellman
(HJB) equation, in which the fuzzy logic systems (FLSs) are
employed to implement the method. Finally, the simulation results
depict the effectiveness of the constructed control scheme.

Index Terms—Human-in-the-loop control, prescribed-time
control, reinforcement learning, nonlinear multi-agent systems.

I. INTRODUCTION

In recent years, with the rapid development of multiple
unmanned aerial vehicles (UAVs) [1], multiple unmanned
ground vehicles (UGVs) [2] and other fields, multi-agent
systems (MASs) have been paid more and more attention
by scholars. As one of the hot issues in control problems of
MASs, consensus control problems have been widely studied.
As a branch of consensus control, bipartite consensus was
first introduced in [3] taking both competition and cooperation
relationships between agents into consideration. For bipartite
consensus, the agents eventually converge to two states of
opposite sign but equal size. In [4]-[6], the various control
strategies of bipartite consensus have been designed broadly.
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part by the Natural Science Foundation of Sichuan Province under Grant
2022NSFSC0903.(Corresponding author: Tieshan Li)

Notably, the MASs mentioned above are fully autonomous.
However, incidents with Boeing 737 jetliners and Tesla’s
autonomous driving systems have raised serious concerns
and highlighted the challenges that fully autonomous MASs
face in making judgments during in uncertain and complex
environments. Therefore, it is urgent to develop monitoring
schemes to complete tasks when MASs encounter unexpected
situations [7]. Fortunately, the human-in-the-loop (HiTL) con-
trol approach was introduced in MASs to supervise the entire
system to respond to sudden changes by sending commands to
the leader agent [8]. Later, many studies on HiTL control for
MASs have emerged in [9]-[15]. In [9], the HiTL formation
tracking control scheme together with edge-based event-driven
mechanism was constructed for MASs. Considering stochastic
actuation attacks, in [13], the prescribed-time and prescribed-
accuracy HiTL cluster consensus control problem has been
solved. In view of the ability to deal with emergencies, the
HiTL control approach has also been favored by multi-UAV
systems in [14], [15].

Optimal control, a widely used control method, has garnered
significant attention. For nonlinear systems, the optimal so-
lution is derived from the Hamilton-Jacobian-Bellman (HJB)
equation. However, obtaining the solution of HJB equation
through numerical methods is infeasible. To overcome this
challenge, reinforcement learning (RL) that motivated by
animal behaviors was proposed as a powerful tool [16].
The core idea of RL is to approximate the solution of the
HJB equation using a function approximation structure. The
value iteration algorithm, one of the valuable algorithms in
RL, was developed by Murray et al. in [17], in which the
convergence analysis was also detailed. In [18], the policy
iteration algorithm, as another equally important algorithm,
was designed to obtain the optimal saturation controller for



nonlinear systems. Based on the previous work, RL method
has been used to solve the optimal problem for MASs. In
[19], an optimal control protocol based on RL was designed
to achieve containment control without prior knowledge of the
system dynamics. For unknown discrete-time MASs, in [20],
the optimal bipartite consensus control problem was solved.
Nevertheless, the above results only conclude that the optimal
controller is globally asymptotically stable. It is important to
note that achieving specified accuracy within a given time is
crucial in many fields.

Fortunately, the prescribed-time control (PTC) was firstly
proposed by Song et al. [21]. The PTC distinguishes from
finite-time control and fixed-time control, in which the preset
settling time is not related to the initial values of the system.
Depending on [21], in [22], the convergence rate can be pre-
determined as needed, and a general method for constructing
the time-varying rate function was provided. In [23], a novel
time-varying constraint function was devised to guarantee that
the system remains operational beyond the prescribed time,
leading to a global result. In particular, the PTC-based HiTL
control scheme was developed to realize the cluster consensus
within given time in [13]. However, to the best of the authors’
knowledge, the bipartite consensus control scheme considering
both optimal performance and prescribed-time performance
under the framework of HiTL control has not been fully
explored, which promotes our research.

Driven by these observations, this paper focuses on investi-
gating the performance-based HiTL optimal bipartite consen-
sus control problem. The main contributions are summarized
below.
(1) Unlike the autonomous leader described in [4]-[6] which

lacked intelligent decision-making, this paper aims to
improve the security, stability, and emergency response
capabilities of the system by designing the leader of the
MASs to be non-autonomous, where the time-varying
control input is governed by a human operator.

(2) Compared with the existing optimal results for MASs
in [19], [20], to realize both optimal performance and
prescribed-time performance, a unified design framework
of PTC and RL method is proposed, where the settling
time and accuracy can be preset without initial values.

The structure is given below. In Section II, the considered
system and some assumptions are given. In Section III, the
main results including the PTC performance function and
optimal controller are designed. In Section IV, the convergence
analysis is provided. The simulation results is given in Section
V. Finally, the conclusion is presented in Section VI.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Signed Communication Topologies

The structurally balanced bipartition communication topol-
ogy containing N followers is represented by a directed graph
G = {V, ε,A}, where V = {V1,V2, · · · ,VN} represents the
vertex set, which is divided into the cooperative set Vα and
competitive set Vβ such that Vα ∩ Vβ = 0 and Vα ∪ Vβ = V .

ε ⊆ V × V represents the edge set of N followers. Let
A = [aij ] ∈ RN×N be the signed weight matrix, where
aij > 0 if (Vi,Vj) ∈ Vm, m ∈ {α, β} and aij < 0 if
Vi ∈ Vm,Vj ∈ Vn,m ̸= n,m, n ∈ {α, β}. The neighbor
set of ith follower is defined as Ni = {j ∈ V : aij ̸= 0}.
Define L = D − A ∈ RN×N as the Laplacian matrix of G,
where D = diag(d1, d2, · · · , dN ) ∈ RN×N denotes the degree
matrix with di =

∑N
j=1 |aij |.

The argument graph consisting of one leader and N
followers is denoted as G̃ = {Ṽ, ε̃}, in which Ṽ =
{V0,V1,V2, · · · ,VN} and ε̃ ⊆ Ṽ × Ṽ . Let B =
diag{|b1|, |b2|, · · · , |bN |} ∈ RN×N , where bi = 1 indicates
that the information of the leader is available for the ith node
and bi > 0 represents cooperative relation, bi < 0 represents
competitive relation.

B. Problem Formulation

Assume that the nonlinear MAS is composed of N(≥ 2)
followers and one leader. The dynamics model of ith follower
is provided as

ẋi = fi(xi) + gi(xi)ui, i = 1, 2, · · · , N (1)

where xi(t) ∈ Rn denotes state, ui(t) ∈ Rm is control input,
fi(xi) ∈ Rn is internal dynamics and gi(xi) ∈ Rn×m is input
dynamics.

Next, the dynamics of the human-manipulated leader is
given as

ẋh
0 = fh

0 (x
h
0 ) + uh

0 , (2)

where xh
0 (t) ∈ Rn denotes state and uh

0 (t) ∈ Rm is nonzero
control input of human operator sending to leader, fh

0 (x
h
0 ) ∈

Rn represents internal dynamics.
The following assumptions and lemma are imposed.

Assumption 1. [19] The signed graph G has a directed
spanning tree.

Assumption 2. [24] The input of human operator always
makes the leader (2) stable.

Lemma 1. [25]: The FLS can estimate a nonlinear continuous
function f(x) ∈ R on a compact set Ωf ∈ Rn as

sup
x∈Ωf

|f(x)−ΘTϕ(x)| ≤ b (3)

with b > 0.

III. MAIN RESULTS

A. Prescribed-Time Function and Error Transformation

To achieve prescribed-time (PT) performance for MASs, the
PT performance function ϑ(t) is given as

ϑ(t) =

{
ιe−β( T

T−t )
h

+ ϑTr
, 0 < t < Tr

ϑTr , t ≥ Tr

(4)

where h > 0, ι > 0, β > 0, ϑTr
> 0, 0 < Tr < ∞ and

0 < ϑTr
< ∞ represent the user-defined settling time and

steady-state tracking accuracy, respectively.



Construct the bipartite consensus error as ei =∑N
j=1 |aij |(xi − sign(aij)xj) + |bi|(xi − sign(bi)xh

0 ), ei =

[ei,1, · · · , ei,n]T ∈ Rn and adopt the error transformation
function as

ϱi,ı = tan(
π

2

ei,ı
ϑ

), ı = 1, · · · , n, (5)

where |ei,ı(0)| < ϑ(0).
Based on (5), it yields

ei,ı =
2ϑ

π
arctan(ϱi,ı), ı = 1, · · · , n, i = 1, · · · , N. (6)

Remark 1. From (5), the inequality −ϑ ≤ ei,ı ≤ ϑ,∀t ≥ 0
holds. Combined the definition in (4), it further observes that
−ϑTr ≤ ei,ı ≤ ϑTr ,∀t ≥ Tr if ϱi,ı is bounded, which means
the PT performance of ei can be ensured.

B. Optimal control Scheme Design

Define the performance index function as

Ji =

∫ ∞

t

(eTi Qiei + uT
i Riui)dτ

=

∫ ∞

t

((
2ϑ

π
Ai)

TQi(
2ϑ

π
Ai) + uT

i Riui)dτ,

(7)

where Qi and Ri are symmetric positive definite matri-
ces with suitable dimensions, Ai = [Ai,1, · · · ,Ai,n]

T =
[arctan(ϱi,1), · · · , arctan(ϱi,n)]T .

Taking the time derivative of Ai,ı, one has

˙Ai,ı =
1

1 + ϱ2i,ı
χi,ı(ėi,ı − νi,ı), (8)

where χi,ı =
π

2ϑ cos2(π
2

ei,ı
ϑ )

, νi,ı =
ei,ıϑ̇
ϑ , ėi = Γi(fi + giui)−∑N

j=1 aij ẋj − biẋ
h
0 and Γi = di + |bi|.

Then, define the Hamiltonian function as

Hi(Ai, ϑ, ui,
∂Ji
∂Ai

,
∂Ji
∂ϑ

) = (
2ϑ

π
Ai)

TQi(
2ϑ

π
Ai)

+ uT
i Riui +

∂Ji
∂Ai

[χ̄i(ėi − νi)] +
∂Ji
∂ϑ

∂ϑ

∂t

=(
2ϑ

π
Ai)

TQi(
2ϑ

π
Ai) + uT

i Riui +
∂Ji
∂ϱi

[χi(ėi − νi)]

+
∂Ji
∂ϑ

∂ϑ

∂t
,

(9)

where χ̄i = diag{ χi,1

1+ϱ2
i,1

, · · · , χi,n

1+ϱ2
i,n

}, νi = [νi,1, · · · , νi,n]
and χi = diag{χi,1, · · · , χi,n}.

The corresponding HJB equation is given as

min
ui

Hi(Ai, ϑ, u
∗
i ,

∂J∗
i

∂Ai
,
∂J∗

i

∂ϑ
) = 0. (10)

Differentiating the (10) with respect to ui, one has

u∗
i = −Γi

2
R−1

i gTi χ
T
i

∂J∗
i

∂ϱi
. (11)

Substituting (11) into (10), (10) becomes

(
2ϑ

π
Ai)

TQi(
2ϑ

π
Ai) +

∂J∗
i

∂ϱi
[χi(Γifi −

N∑
j=1

aij ẋi − biẋ
h
0

− νi)] +
∂J∗

i

∂ϑ

∂ϑ

∂t
− Γ2

i

4

∂J∗
i

∂ϱTi
giχiR

−1
i χT

i g
T
i

∂J∗
i

∂ϱi
= 0.

Inspired by [26], ∂J∗
i

∂ϱi
can be segmented as

∂J∗
i

∂ϱi
=

2ki
Γi

χ−2
i ϱi +

2

Γi
χ−2
i Fi(Xi) +

1

Γi
χ−2
i Ji(Xi), (12)

where ki > 0, Fi(Xi) = Riχi(fi(xi) − ẋh
0 − o−1νi) with

o = λmax(L+ B), Ji(Xi) = −2kiϱ
2
i − 2Fi(Xi) + kiχ

2
i
∂J∗

i

∂ϱi
.

Substituting (12) into (11), one has

u∗
i =− kiR

−1
i χ−1

i ϱi − R−1
i χ−1

i Fi(Xi)

− 1

2
R−1

i χ−1
i Ji(Xi).

(13)

C. PI Algorithm and FLSs-Based Implementation

Obviously, the HJB equation can not be acquired by numer-
ical methods. Therefore, the PI approach is given in Algorithm
1 to find the optimal result.

Algorithm 1: PI Algorithm for Solving PT Optimal
Consensus Control Policy

1 Step 1: Initialization. Give an initial control protocols
u
(0)
i ,∀i.

2 Step 2: Policy evaluation. Solve the cost function J l
i

as: Hi(Ai, ϑ, u
∗
i ,

∂Jl
i

∂Ai
,
∂Jl

i

∂ϑ ) = 0.
3 Step 3: Policy improvement. Update optimal control

input u(l+1)
i as Eq. (13).

4 Step 4: If ∥J (l+1)
i − J

(l)
i ∥ ≤ ℵ with the predefined

parameter ℵ > 0, stop; otherwise, set l = l + 1 and
return to Step 2.

The convergence and optimality of Algorithm 1 have been
proved in [27] and are omitted here.

In view of the unknown term Fi(Xi) and Ji(Xi) in (13),
the FLSs is used to approximate these terms as.

Fi(Xi) = ωT
Fi
ϕFi

(Xi) + ϵFi
(Xi), (14)

Ji(Xi) = ωT
Ji
ϕJi

(Xi) + ϵJi
(Xi), (15)

where ωFi
∈ Rhc1×n and ωJi

∈ Rhc2×n represent ideal
weight matrices with hc1 and hc2 are the number of fuzzy
rules; ϕFi

∈ Rhc1 and ϕJi
∈ Rhc2 are fuzzy basis functions;

ϵFi(Xi) and ϵJi(Xi) denote bounded approximation errors.
Thus, (13) becomes

u∗
i =− kiR

−1
i χ−1

i ϱi − R−1
i χ−1

i (ωT
Fi
ϕFi

(Xi) + ϵFi
(Xi))

− 1

2
R−1

i χ−1
i (ωT

Ji
ϕJi

(Xi) + ϵJi
(Xi)).

However, the ωFi and ωJi are unknown, the estimation
forms of (14) and (15) are

F̂i(Xi) = ω̂T
Fi
ϕFi(Xi), (16)



Ĵi(Xi) = ω̂T
Ji
ϕJi

(Xi), (17)

where ω̂Fi
∈ Rhc1×n and ω̂Ji

∈ Rhc2×n represent estimated
weight matrices.

According to (16) and (17), one has

û∗
i =− kiR

−1
i χ−1

i ϱi − R−1
i χ−1

i (ω̂T
Fi
ϕFi

(Xi))

− 1

2
R−1

i χ−1
i (ω̂T

Ji
ϕJi(Xi)).

(18)

The updating laws are constructed as

˙̂ωFi
= Ci(oϕFi

(Xi)ϱ
T
i R−1

i − rFi
ω̂Fi

), (19)

˙̂ωJi
= −rJi

(ϕT
Ji
(Xi)ϕJi

(Xi) + rIhc2
)ω̂Ji

, (20)

where Ci ∈ Rhc1×hc1 is a positive-definite matrix, rFi
>

0, rJi
> 0, r > 0 are design parameters.

IV. STABILITY ANALYSIS

Theorem 1. Consider the MAS consisting of followers (1)
and leader (1) under Assumption 1-3, by choosing ki >

3
4 and

adopting optimal control input (18) and adaptive law (19) and
(20), then the consensus error can converge to the prescribed
accuracy within prescribed time.

Proof. Develop the Lyapunov function as

V =
1

2
ϱT ϱ+

1

2

N∑
j=1

(ω̃T
Fi

C−1
i ω̃Fi + ω̃T

Ji
ω̃Ji) (21)

where ϱ = [ϱT1 , · · · , ϱTn ]T ∈ RN×n, estimation error ω̃Fi
=

ωFi
− ω̂Fi

and ω̃Ji
= ωJi

− ω̂Ji
.

Invoking (5), (19) and (20), it yields

V̇ =ϱT [χ(L+ B)ė− χν]−
N∑
j=1

(ω̃T
Fi
(oϕFi

(Xi)ϱ
T
i R−1

i

− rFi ω̂Fi) +

N∑
j=1

(ω̃T
Ji
(rJi(ϕ

T
Ji
(Xi)ϕJi(Xi) + r)Ihc2)ω̂Ji)

≤
N∑
j=1

ϱTi o(−kiR
−1
i ϱi − R−1

i ω̃T
Fi
ϕFi

(Xi) + R−1
i ϵFi

(Xi)

− 1

2
R−1

i ω̂T
Ji
ϕJi

(Xi))−
N∑
j=1

(ω̃T
Fi
(oϕFi

(Xi)ϱ
T
i R−1

i

− rFi ω̂Fi) +

N∑
j=1

(ω̃T
Ji
(rJi(ϕ

T
Ji
(Xi)ϕJi(Xi) + r)Ihc2)ω̂Ji)

≤
N∑
j=1

ϱTi o(−kiR
−1
i ϱi + R−1

i ϵFi
(Xi)−

R−1
i

2
ω̂T
Ji
ϕJi

(Xi))

+

N∑
j=1

(rFi
ω̃T
Fi
ω̂Fi

) +

N∑
j=1

(ω̃T
Ji
(rJi

(ϕT
Ji
(Xi)ϕJi

(Xi)

+ r)Ihc2
)ω̂Ji

).
(22)

Using Young’s inequality, we have

oϱTi R−1
i ϵFi

≤ o

2
R−1

i ||ϱi||2 +
o

2
R−1

i ||ϵFi
||2, (23)

−oR−1
i

2
ω̂T
Ji
ϕJi

(Xi)) ≤
oR−1

i

4
ω̂T
Ji
ϕJi

(Xi))ϕ
T
Ji
(Xi))ω̂Ji

+
oR−1

i

4
||ϱi||2,

(24)
ω̃T
Fi
ω̂Fi

≤ −1

2
ω̃T
Fi
ω̃Fi

+
1

2
ωT
Fi
ωFi

, (25)

ω̃T
Ji
(ϕT

Ji
(Xi)ϕJi(Xi) + rIhc2)ω̂Ji ≤

−ω̃T
Ji

2
(ϕT

Ji
(Xi)ϕJi(Xi)

+ rIhc2
)ω̃Ji

+
ω̂T
Ji

2
(ϕT

Ji
(Xi)ϕJi

(Xi) + rIhc2
)ω̂Ji

.

(26)
Calculating (22) by bringing (23)-(26), one has

V̇ ≤−
N∑
j=1

oR−1
i (ki −

3

4
)||ϱi||2 −

N∑
j=1

rFi

2
ω̃T
Fi
ω̃Fi

−
N∑
j=1

(
ω̃T
Ji

2
(ϕT

Ji
(Xi)ϕJi(Xi) + rIhc2)ω̃Ji) + Λ

≤− κ1

2

N∑
j=1

||ϱi||2 −
κ2

2

N∑
j=1

ω̃T
Fi

C−1
i ω̃Fi

− κ3

2
ω̃T
Ji
ω̃Ji

+ Λ

≤− κV + Λ,
(27)

where Λ =
∑N

j=1
o
2R−1

i ||ϵFi ||2 +∑N
j=1

oR−1
i

4 ω̂T
Ji
ϕJi

(Xi))ϕ
T
Ji
(Xi))ω̂Ji

+
∑N

j=1
oR−1

i

4 ||ϱi||2 +∑N
j=1

rFi

2 ωT
Fi
ωFi

+
∑N

j=1

ω̂T
Ji

2 (ϕT
Ji
(Xi)ϕJi

(Xi)+ rIhc2
)ω̂Ji

,
κ1 = mini=1,··· ,N{2oR−1

i (ki − 3
4 )}, κ2 =

mini=1,··· ,N{ rFi

λmax(C
−1
i )

}, κ3 = mini=1,··· ,N{rJiλmin(ϕi)},
κ = min{κ1, κ2, κ3}, λmin(ϕi) is the minimal eigenvalue of
ϕT
Ji
(Xi)ϕJi(Xi).

V. SIMULATION

A nonlinear MAS composed by four single-link robot arms
(three followers and one human-controlled leader) is given to
verify the effectiveness of the proposed control scheme. The
model of agent is given as [12]

Jiq̈i +Diq̇i +Migdi sin(qi) = ui, i = 1, · · · , 3,

the physical parameters of g,Mi, Di, Ji and di can be found
in [12] for details. uh

0 is set as

uh
0 =

 0.3 ∗ sin(t) ∗ sin(t), 0 ≤ t < 15
0, 15 ≤ t < 30
sin(t) ∗ cos(t), 30 ≤ t ≤ 50.

The communication graph is shown below

Fig. 1: Communication graph.



As shown in Fig. 1, it can be obtained that

A =

0 −1 1
0 0 0
0 0 0

 ,L =

2 1 −1
0 0 0
0 0 0

 ,

B = diag{1, 0, 0, 0, 0}.

For PT performance function, select ϑTr = 0.06, Tr = 3s.
The initial state values of followers and leader are presented
in Table 1.

TABLE I: Initial state values of followers and leader.

State i = 0 i = 1 i = 2 i = 3

xi,1(0) 1 0.8 0.5 0.8
xi,2(0) -1 0.8 -0.5 -0.8

For the unknown term Fi(Xi), Xi = [xi, x
h
0 , ẋ

h
0 , ϑ, ϑ̇]

T

and defined over [−6, 6]. Choose X 0
i =

[[−6− L ,−6 + L ]T , · · · , [−6− L ,−6 + L ]T︸ ︷︷ ︸
5

]T and

ϕFL
i
(Xi) = exp(− (Xi−X 0

i )T (Xi−X 0
i )

2 ).

For the unknown term Ji(Xi), Xi = [xi, ϱi, x
h
0 , ẋ

h
0 , ϑ, ϑ̇]

T

and defined over [−6, 6]. Choose X 0
i =

[[−6− L ,−6 + L ]T , · · · , [−6− L ,−6 + L ]T︸ ︷︷ ︸
6

]T and

ϕJi
(Xi)

L (Xi) = exp(− (Xi−X 0
i )T (Xi−X 0

i )
2 ).

For updating law (19) and (20), ω̂F1
(0) =

ω̂F2
(0) = ω̂F3

(0) = [0.1]12×2, ω̂J1
(0) = ω̂J2

(0) =
ω̂J3

(0) = [0.92]12×2, C1 = diag {0.5, · · · , 0.5}︸ ︷︷ ︸
12

,C2 =

diag {0.7, · · · , 0.7}︸ ︷︷ ︸
12

,C3 = diag {0.3, · · · , 0.3}︸ ︷︷ ︸
12

,

Ri = diag{0.8, 0.8}, rFi = 2, ki = 45, rJi = 1.
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Fig. 2: Curves of x̃i,1, xh
0,1 and −xh

0,1.
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Fig. 3: Curves of x̃i,2, xh
0,2 and −xh

0,2.
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Fig. 4: Curves of errors and performance bounds.
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Fig. 5: Curves of optimal control input.
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Fig. 6: Curves of ||ωFi ||.



From Fig. 2 and Fig. 3, the bipartite consensus can be
achieved and the leader, followers 1 and 2 belong to a
group while the follower 3 is geared to another group with
opposite sign. Fig. 4 shows the bipartite consensus and the
PT performance bounds. It can be obtained that the consensus
error can reach the given accuracy 0.06 with the prescribed
time 3s. The optimal control input for each agent is depicted in
Fig. 5, in which ui rapidly converges to a small region of zero.
The norm of updating weights in unknown terms Fi(Xi)are
given in Fig. 6.

VI. CONCLUSION

In this article, the problem of performance-based HiTL
optimal bipartite consensus control for nonlinear MASs has
been studied. First, the MASs have been monitored by human
operator sending command signals to the non-autonomous
leader to respond to any emergencies and guarantee the
safety of MASs. Then, under the joint design architecture of
prescribe-time performance function and error transformation,
a novel performance index function has been developed to
achieve optimal bipartite consensus with prescribed-time. Sub-
sequently, the RL has been utilized to learn the solution to HJB
equation, in which the FLSs are employed to implement the
algorithm. The validity of the designed control scheme has
been confirmed by simulation.
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