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ABSTRACT
Federated learning (FL) is becoming a major driving force behind

machine learning as a service, where customers (clients) collabora-

tively benefit from shared local updates under the orchestration of

the service provider (server). Representing clients’ current demands

and the server’s future demand, local model personalization and

global model generalization are separately investigated, as the ill-

effects of data heterogeneity enforce the community to focus on one

over the other. However, these two seemingly competing goals are

of equal importance rather than black and white issues, and should

be achieved simultaneously. In this paper, we propose the first algo-

rithm to balance personalization and generalization on top of game

theory, dubbed PAGE, which reshapes FL as a co-opetition game

between clients and the server. To explore the equilibrium, PAGE

further formulates the game as Markov decision processes, and

leverages the reinforcement learning algorithm, which simplifies

the solving complexity. Extensive experiments on four widespread

datasets show that PAGE outperforms state-of-the-art FL baselines

in terms of global and local prediction accuracy simultaneously,

and the accuracy can be improved by up to 35.20% and 39.91%,

respectively. In addition, biased variants of PAGE imply promising

adaptiveness to demand shifts in practice.
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1 INTRODUCTION
With the rapid proliferation of data constantly generated on perva-

sive mobile and Web-of-Things (WoT) devices, federated learning
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(FL) has emerged as a promising distributed machine learning (ML)

paradigm that enables efficient data usage by unleashing the compu-

tation power on devices [20, 38]. In typical FL (TFL) [1, 10, 19, 25, 31],

represented by FedAvg [31], a central server orchestrates a group of

clients to train a single global model with desirable generalization

by iteratively averaging local models rather than accessing raw data.

Serving as a step towards high prediction accuracy and efficiency

for ML-as-a-service (MLaaS), TFL is poised to revolutionize myriad

WoT applications, such as the next word prediction on Google’s

Gboard on Android [6], healthcare [28], and e-commerce [32], etc.

However, TFL suffers severely from the data heterogeneity [26] is-
sue, which is a fundamental challenge attributed to non-independent

identically distributed (Non-i.i.d.) local data. To be specific, the pre-

diction accuracy of a single global model on individual clients is

significantly reduced in the presence of heterogeneous local data

distributions. For instance, clients from different demographics are

likely to require totally different prediction results for the same

sample due to diverse cultural nuances, while a single global model

cannot generalize well in this case.

To overcome the ill-effects of data heterogeneity, personalized
FL (PFL) has sparked increasing interest during the past few years,

where customized local models are constructed for individual clients

to provide satisfactory personalization [12, 24, 33, 45]. Currently,

the research trend is to accommodate the generalized global model

as personalized local models. In this case, global model generaliza-

tion is inevitably sacrificed with the improvement of local model

personalization [36]. (An in-depth discussion of more related works

is given in Section 2 and Appendix A.) But it is tempting to ask:

Is the personalized local model in PFL, or perhaps the generalized

global model in TFL, the most practical demand on earth? Although

this pair of seemingly competing goals has enforced the FL com-

munity to focus on one over the other, it is never a black and white

issue. Taking MLaaS as an example, customers require local mod-

els with desirable personalization, which is a current demand. On

the contrary, generalized global models are pursued by the service

provider to yield a better initialization to fine-tune local models

for numerous new participants, which is referred to as the future

demand.

Recently, Chen et al. [9] tried to draw attention back from per-

sonalization to their reconciliation, where the optimization priority

between personalization and generalization was eliminated. Be-

sides, the widely used regularizer was proven less effective and

hence removed. Still, a definite insight into the equality between

personalization and generalization was not claimed. To extend their

insight, we specify that personalization and generalization share

equal status in FL, and the balance between them is much needed.

Back to the MLaaS scenario, balance refers to a moderate condi-

tion satisfying current and future demands simultaneously. Yet, an

intuitive question springs to mind:

1
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How to achieve the balance between local model personaliza-
tion and global model generalization in FL?

In response, we propose a personalization and generalization

equilibrium (PAGE) FL algorithm. Following the optimization prob-

lem in [9], we formulate FL as a joint evolution with mutual re-

straints between global and local models by removing the reg-

ularizer. Such an evolution is intractable, as the optimization of

competing objectives would get out of control with the removal of

the regularizer. Intuitively, the iterative evolution can be viewed as

a co-opetition game, where the personas of clients and the server

switch to players with leader-follower relations. As a result, to bal-

ance the competing objectives, PAGE establishes an implicit relation

between local and global models through a feedback multi-stage

multi-leader single-follower (MLSF) Stackelberg game [4]. Addi-

tionally, to simplify the exploration of the game equilibrium, i,e.,

balance, PAGE further re-formulates the game as Markov decision

processes (MDPs) [5], and leverages the deep deterministic policy

gradient (DDPG) [27] algorithm.

The main contributions are summarized as follows:

• To the best of our knowledge, PAGE is the first algorithm to

balance generalization and personalization in FL. In partic-

ular, PAGE establishes the relation between personalization

and generalization on top of game theory.

• We re-formulate the game as server-level and client-level

MDPs, and explore the equilibrium by reinforcement learn-

ing (RL). Through rigorous analysis, the existence of the

equilibrium is proved.

• We evaluate PAGE on four widespread databases. Experi-

mental results show that PAGE outperforms the state-of-

the-art (SOTA) PFL and TFL in terms of global and local pre-

diction accuracy simultaneously, and the accuracy can be

improved by up to 35.20% and 39.91%, respectively. Besides,

biased variants of PAGE imply promising adaptiveness to

varying demand shifts in practice.

2 RELATEDWORK
Since the birth of FL, data heterogeneity has been a root cause of the

tension between generalization and personalization. Accordingly,

the research community has been divided into TFL [1, 10, 19, 25, 31]

and PTL [9, 12, 24, 33, 45], focusing on global model generalization

and local model personalization, respectively. Below we discuss the

SOTA baselines most relevant to PAGE, and a more comprehensive

literature review can be found in Appendix A.

Typical federated learning. Solutions for data heterogeneity
stemmed from FedAvg [31], which was a standard and fundamental

algorithm. Shortly, it was proven hard to meet Non-i.i.d. data [26].

Later on, to mitigate this issue, Li et al. [25] proposed FedProx to

generalize FedAvg by adding a proximal term to the objective, which

improved the stability facing heterogeneous data. Similarly, FedDyn

investigated linear and quadratic penalty terms [1]. Different from

these regularization methods, SCAFFOLD corrected local updates

through variance reduction [19]. Recently, Chen et al. [10] proposed
Dap-FL to adaptively control local contributions for aggregation.

Although the above TFL algorithms could yield expected global

model generalization, the single global model setting struggled

to satisfy customers’ current demands in MLaaS, i.e., local model

personalization.

Personalized federated learning. To overcome data hetero-
geneity, PFL has drawn significant research interest in training

customized models adapting to diverse local data. For instance,

pFedMe optimized a bi-level problem using regularized local loss

functions with 𝐿2-norm, where personalized local models were de-

coupled from the global model optimization [12]. Ditto conducted

a similar regularization method, but differed by switching the prior-

ity between global and local objectives [24]. Besides, Singhal et al.
leveraged model-agnostic meta-learning to fine-tune local models

[33]. Most recently, Zhang et al. [45] proposed FedALA, which adap-
tively aggregated the downloaded global model and local models

towards local objectives at the element level. However, PFL fared

less well in global model generalization, which cannot meet the

future demand of service providers in practice. One closely relevant

work was FED-ROD, where an implicit regularizer was introduced

to consider generalization in the presence of personalization [9].

Although FED-ROD decoupled local and global models, a definite

insight into their equal statuses was absent.

To the best of our knowledge, no prior arts take the balance of

local model personalization and global model generalization into

account, while PAGE bridges this gap through game theory, thereby

satisfying current and future demands simultaneously. More im-

portantly, PAGE converts sub-games into MDPs, and derives the

equilibrium by adaptively adjusting local training hyper-parameters

and aggregation weights on top of RL.

3 PROBLEM STATEMENT
In this section, we first formalize TFL and PFL systems, then identify

the problem to be solved in this paper
1
. Generally, FL involves 𝑁

clients C = {𝑐𝑖 , 𝑖 =1,· · ·, 𝑁 } and a central server CS. Each 𝑐𝑖 has a

private local dataset 𝐷𝑖 =
{(
𝑥𝑖,𝑘 , 𝑦𝑖,𝑘

)
, 𝑘 =1,· · ·, |𝐷𝑖 |

}
, where |𝐷𝑖 |

is the data size, 𝑥𝑖,𝑘 is the feature of a specific sample, and 𝑦𝑖,𝑘 is

the corresponding label. Also, CS owns a public dataset 𝐷CS . The

goal of TFL and PFL is to collaboratively train global and local

models, respectively. Supposing 𝑓𝑖 (𝑥𝑖,𝑘 , 𝑦𝑖,𝑘 ;𝑤𝑖 ) denotes 𝑐𝑖 ’s local
loss function (simply expressed as 𝑓𝑖 (𝑤𝑖 )), the global loss function
is denoted by 𝐹 (·) and defined as:

𝐹 (𝑊 ) =
𝑁∑︁
𝑖=1

(
𝑝𝑖 ·E𝐷𝑖

[
𝑓𝑖 (𝑥𝑖,𝑘 , 𝑦𝑖,𝑘 ;𝑤𝑖 )

] )
=

𝑁∑︁
𝑖=1

(𝑝𝑖 · 𝑓𝑖 (𝑤𝑖 )) , (1)

where𝑤𝑖 is 𝑐𝑖 ’s local model,𝑊 is the global model, 𝑝𝑖 ∈ (0, 1) is the
aggregation weight, and

∑𝑁
𝑖=1 𝑝𝑖 =1.

Mathematically, TFL aims to train a single global model with

promising generalization, shown as:

𝑊 ∗ = argmin

𝑊

𝐹 (𝐷1,· · ·, 𝐷𝑁 ;𝑊 ) , (2)

where𝑊 ∗
is the converged global model. At the opposite end of

the spectrum, to tackle data heterogeneity issues, PFL customizes

1
For clarity, we summarize important notations in Appendix B.

2
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local models with satisfactory personalization, formally given as:
𝑊 ∗ = argmin

𝑊

{
𝐹 (𝑊 ) :=

∑︁𝑁

𝑖=1
(𝑝𝑖 · (𝑓𝑖 (𝑤𝑖 ) + R𝑖 ))

}
,

s.t.𝑤∗
𝑖 = argmin

𝑤𝑖

{𝑓𝑖 (𝑤𝑖 ) + R𝑖 } , 𝑖 = 1,· · ·, 𝑁 ,
(3)

where𝑤∗
𝑖
is the optimal local model, and the regularizer R𝑖 controls

the strength of𝑊 to𝑤𝑖 .

Different from TFL and PFL, we concentrate on balancing global

model generalization and local model personalization, rather than

facilitating any of them to a position of prominence. Following [9],

we define an optimization problem:

P0 :


𝑊 ∗ = argmin

𝑊

{
𝐹 (𝑊 ) :=

∑︁𝑁

𝑖=1
(𝑝𝑖 · 𝑓𝑖 (𝑤𝑖 ))

}
,

𝑤∗
𝑖 = argmin

𝑤𝑖

{𝑓𝑖 (𝑤𝑖 )} , 𝑖 = 1,· · ·, 𝑁 .

In this case, CS and 𝑐𝑖 would conduct an iterative co-opetition,

aiming at a joint evolution with mutual restraints between𝑊 and

𝑤𝑖 . Specifically, in any given round 𝑡 =1,· · ·,𝑇 , each 𝑐𝑖 initializes the
local model𝑤𝑖 (𝑡) as the most recent global model𝑊 (𝑡) received
from CS. Then, 𝑐𝑖 updates𝑤𝑖 (𝑡) for 𝛼𝑖 (𝑡) epochs, expressed as:

𝑤̂𝑖 (𝑡) = Train (𝜂𝑖 (𝑡), 𝛼𝑖 (𝑡);𝑤𝑖 (𝑡)) , (4)

where 𝑤̂𝑖 (𝑡) is the updated local model, and 𝜂𝑖 (𝑡) is the learning
rate. Subsequently, each 𝑐𝑖 uploads 𝑤̂𝑖 (𝑡) to CS, and CS assigns

𝑝𝑖 (𝑡) for every 𝑤̂𝑖 (𝑡) to update the global model by aggregation,

shown as:

𝑊 (𝑡 + 1) =
∑︁𝑁

𝑖=1
(𝑝𝑖 (𝑡) ·𝑤̂𝑖 (𝑡)) . (5)

4 PROPOSED METHOD: PAGE
4.1 Game (Relation) Establishment
To control the delicate balance in P0, it is essential to establish a

more effective relation between𝑊 and𝑤𝑖 . In general, the balance-

controlling factors are equivalent to the counterparts impacting

𝑓𝑖 (·) and 𝐹 (·). Empirical results show that the most significant

factors are 𝛼𝑖 (𝑡), 𝜂𝑖 (𝑡), and 𝑝𝑖 (𝑡) [10, 40]. Concretely, a larger

(smaller) 𝛼𝑖 (𝑡) provides more (fewer) steps of the optimization

of 𝑓𝑖 (·), thereby contributing more (lesser) to local model fitness

over 𝐷𝑖 , i.e., local model personalization. 𝜂𝑖 (𝑡) wields the influence
in a similar way. Besides, 𝛼𝑖 (𝑡) and 𝜂𝑖 (𝑡) impact 𝐹 (·) in an indirect

manner, where 𝑓𝑖 (·) plays a role in a bridge. Loosely speaking, over-

optimized 𝑓𝑖 (·) derived from larger 𝛼𝑖 (𝑡) and/or 𝜂𝑖 (𝑡) holds down
the convergence of 𝐹 (·) to some extent, i.e., excessive local model

personalization deteriorates global model generalization. Yet, appro-

priate 𝑝𝑖 (𝑡) could mitigate the bias of over-optimized 𝑓𝑖 (·) to facili-

tate the convergence of 𝐹 (·), which, in turn, drags 𝑓𝑖 (·) from over-

fitting. More critically, the influence of these balance-controlling

factors on either personalization or generalization might even go

beyond the apparently positive or negative correlation in practice,

which exacerbates the complexity of the relation establishment.

From a game theory point of view, the iterative evolution be-

tween𝑤𝑖 (𝑡) and𝑊 (𝑡) subject to balance-controlling factors can be

regarded as a multi-stage co-opetition game between clients and

CS with leader-follower sequences, where leaders move ahead of

the follower in each stage. On this ground, we re-formulate P0 as a

feedback multi-stage MLSF Stackelberg game in Definition 1, based

on which an implicit relation between𝑊 and𝑤𝑖 is established.

Definition 1. P0 can be formulated as a feedback multi-stage
MLSF Stackelberg game, defined as:

P
′
0 =

r〈
{𝑐𝑖 }𝑁𝑖=1 ∈ C,CS

〉
,
〈
{𝑔𝑖 (𝑡) ∈ G𝑖 }𝑁𝑖=1, 𝑔CS (𝑡) ∈ GCS

〉
,〈

{𝑢𝑖 (𝑡)}𝑁𝑖=1, 𝑢CS (𝑡)
〉
, 𝑧 (𝑡) ∈ Z, 𝑡 = 1,· · ·,𝑇

z
,where

• 𝑐𝑖 , 𝑖 = 1,· · ·, 𝑁 are leaders, and CS is the follower.
• 𝑡 = 1,· · ·,𝑇 represents the stage of the game. Note that the

initial global model distribution is not involved in P
′
0.

• 𝑔𝑖 (𝑡)= [𝛼𝑖 (𝑡), 𝜂𝑖 (𝑡)] is 𝑐𝑖 ’s strategy in the 𝑡-th stage, and G𝑖

is the strategy space.
• 𝑔CS (𝑡) = [𝑝1 (𝑡),· · ·, 𝑝𝑁 (𝑡)] is CS’s reacting strategy to all

𝑔𝑖 (𝑡), 𝑖 =1,· · ·, 𝑁 , and GCS is the strategy space.
• 𝑢𝑖 (𝑡) = 1/𝑓𝑖 (𝑤̂𝑖 (𝑡)) is 𝑐𝑖 ’s utility function.
• 𝑢CS (𝑡) = 1/𝐹 (𝑊 (𝑡+1)) = 1/∑𝑁

𝑖=1 (𝑝𝑖 (𝑡) · 𝑓𝑖 (𝑤̂𝑖 (𝑡))) is CS’s
utility function.

• 𝑧 (𝑡) is the gaming condition, andZ is the condition space.

Definition 1 depicts dynamic conflict situations between clients

and CS over time, in which each 𝑐𝑖 operates 𝑔𝑖 (𝑡), and CS optimizes

𝑔CS (𝑡) subject to the constraints of all clients’ strategies in each

stage. Also, clients are able to infer CS’s reaction to any strate-

gies they operate. Therefore, each 𝑐𝑖 could operate a strategy that

maximizes the utility, given the predicted behavior of CS.
Notably, the equilibrium of the game P′

0 provides a terminating

condition for the pursuing balance in P0, whose existence is con-
firmed at the end of this section (Theorem 1). Next, in line with the

general equilibrium solving method in Stackelberg games [4], we

split P′
0 as the Server-level and Client-level sub-games to explore

the appropriate strategy sequences in the equilibrium separately.

4.2 Strategy Exploration in the Server-level
Sub-game

For the server-level sub-game, the equilibrium of P′
0 indicates the

optimal strategy sequence of CS, where the strategy in the current

stage hinges on the gaming result in the previous stage and impacts

next-stage strategies. However, the optimal strategy sequence is

intractable through general backward induction algorithms [4], as

the complexity increases exponentially with 𝑡 .

Intuitively, such an over-time strategy conducting process is

equivalent to an MDP [5], where CS makes decisions about 𝑝𝑖 (𝑡)
sequentially through interacting with the environment, i.e., eval-

uating local updates. In other words, the MDP 3-tuple could be

naturally found in the server-level sub-game, and the optimal strat-

egy sequence could be solved by RL algorithms. Therefore, we first

model the Server-level sub-game as an MDP

〈
SCS,ACS, 𝑅CS (·)

〉
,

where SCS is the state space, ACS ≡ GCS is the action space, and

𝑅CS (·) is the reward function. Below we define the 3-tuple in detail.

• State: 𝑠CS (𝑡) ≜ [ ˆacc1 (𝑡),· · ·, ˆacc𝑁 (𝑡)] ∈ SCS , where ˆacc𝑖 (𝑡) is the
prediction accuracy of 𝑤̂𝑖 (𝑡) on 𝐷CS .

• Action: 𝑎CS (𝑡) ≜ 𝑔CS (𝑡) = [𝑝1 (𝑡),· · ·, 𝑝𝑁 (𝑡)] ∈ ACS .

• Reward: 𝑟CS (𝑡) = 𝑅CS (𝑠CS (𝑡), 𝑎CS (𝑡), 𝑠CS (𝑡 + 1)) ≜ 𝑢CS (𝑡) =

1/∑𝑁
𝑖=1 (𝑝𝑖 (𝑡) · 𝑓𝑖 (𝑤̂𝑖 (𝑡))).

3
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Mathematically, the Server-level MDP is defined as:

P′
0_CS : max

𝜇CS ( ·)
𝐽CS (·),

where 𝜇CS (·) : 𝑠CS (𝑡) → 𝑎CS (𝑡) is the policy, 𝐽CS (·) =
∑𝑇
𝑡=1 (𝛾𝑡−1 ·

𝑟CS (𝑡)), and 𝛾 is the discount factor. Note that P′
0_CS is approxi-

mately equivalent to the Server-level sub-game, as 𝛾 is usually set

as 0.99 in practice.

Due to high-dimensional and continuous action and state space,

we introduce DDPG, which consists of a MainNet and a Target-

Net with the same Actor-Critic structure [27], to solve P′
0_CS. In

the MainNet, the Actor is expressed as 𝜇CS

(
·;𝜃𝜇CS (𝑡)

)
, which takes

𝑠CS (𝑡) as the input and outputs 𝑎CS (𝑡) through the parameter-

ized policy 𝜃
𝜇

CS (𝑡). The Critic takes 𝑠CS (𝑡) and 𝑎CS (𝑡) as the input
and outputs the value of the parameterized state-action function

𝑄
𝜇

CS (·;𝜃
𝑄

CS (𝑡)). In addition, the TargetNet is a copy of the Main-

Net, which is parameterized by 𝜇 ′CS (·;𝜃
𝜇′

CS (𝑡)) and 𝑄
𝜇′

CS (·;𝜃
𝑄′

CS (𝑡)).
The detailed strategy exploration process is shown in Algorithm 1,

where the best policy 𝜇∗CS (·) outputs the selected action sequence

𝐴∗
CS =

[
𝑎∗CS (1),· · ·, 𝑎

∗
CS (𝑇 )

]
, which is CS’s optimal strategy se-

quence 𝐺∗
CS (1) =

[
𝑔∗CS (1),· · ·, 𝑔

∗
CS (𝑇 )

]
≡ 𝐴∗

CS in the equilibrium

of P′
0.

Algorithm 1 Global Aggregation Weights Tuning

Input: 𝑙𝐶𝑟𝑖
𝐶𝑆

and 𝑙𝐴𝑐𝑡
𝐶𝑆

are the learning rates for Critic and Actor in the

MainNet; 𝛽𝐶𝑆 is a tiny updating rate for the TargetNet; |𝐵 | is the batch
size.

Output: 𝑝𝑖 (𝑡 ) |𝑖 = 1, · · ·, 𝑁 , 𝑡 = 1, · · ·,𝑇 .
1: Initialize 𝜃

𝜇

𝐶𝑆
( ·) , 𝜃𝑄

𝐶𝑆
( ·) , 𝜃𝜇′

𝐶𝑆
( ·) , and 𝜃𝑄

′
𝐶𝑆

( ·) ;
2: for 𝑡 = 1, · · ·,𝑇 do
3: Observe 𝑠𝐶𝑆 (𝑡 ) , and hence calculate 𝑟𝐶𝑆 (𝑡 ) ;
4: Randomly sample a batch of experience tuples

(𝑠CS (𝜉),𝑎CS (𝜉), 𝑟CS (𝜉), 𝑠CS (𝜉+1)) , 𝜉 =1, · · ·, |𝐵 |;
5: for 𝜉 = 1, · · ·, |𝐵 | do
6: Calculate 𝑦CS (𝜉) = 𝑟CS (𝜉) + 𝛾 · 𝑄𝜇′

CS (𝑠CS (𝜉 + 1), 𝜇′
𝑖
(𝑠CS (𝜉 +

1) ;𝜃𝜇′
CS (𝑡−1)) ;𝜃

𝑄′
CS (𝑡−1)) ;

7: end for
8: Calculate LossCS (𝑡 − 1) = 1/ |𝐵 |∑|𝐵 |

𝜉=1
(𝑦CS (𝜉) −

𝑄
𝜇

CS (𝑠CS (𝜉), 𝑎CS (𝜉) ;𝜃
𝑄

CS (𝑡−1)))
2
;

9: Update 𝜃
𝑄

CS(𝑡 ), 𝜃
𝜇

CS(𝑡 ), 𝜃
𝜇′
CS(𝑡 ) , and 𝜃

𝑄′
CS (𝑡 ) as follows:

𝜃
𝑄

CS (𝑡 ) =𝜃
𝑄

CS (𝑡−1) − 𝑙𝐶𝑟𝑖
CS · ∇

𝜃
𝑄

CS
LossCS (𝑡−1) ,

𝜃
𝜇

CS (𝑡 ) =𝜃
𝜇

CS (𝑡−1) + 𝑙
𝐴𝑐𝑡
CS · ∇

𝜃
𝜇

CS
𝐽CS (𝑡−1) ,

𝜃
𝜇′
CS (𝑡 ) =𝛽CS · 𝜃𝜇

CS (𝑡−1) + (1−𝛽CS) · 𝜃𝜇′
CS (𝑡−1) ,

𝜃
𝑄′
CS (𝑡 ) =𝛽CS · 𝜃𝑄CS (𝑡−1) + (1−𝛽CS) · 𝜃𝑄

′
CS (𝑡−1) ;

10: end for
11: return 𝜇∗CS ( ·) ;
12: return 𝐺∗

CS (1) =𝐴
∗
CS = [𝑝𝑖 (𝑡 ) |𝑖 =1, · · ·, 𝑁 , 𝑡 =1, · · ·,𝑇 ].

4.3 Strategy Exploration in the Client-level
Sub-game

In the same vein, we model 𝑐𝑖 ’s Client-level sub-game as an MDP,

and define the 3-tuple as follows.

• State: 𝑠𝑖 (𝑡) ≜ [acc𝑖 (𝑡)] ∈ S𝑖 , where acc𝑖 (𝑡) is the prediction

accuracy of𝑤𝑖 (𝑡) on 𝐷𝑖 , and S𝑖 is the state space.
• Action: 𝑎𝑖 (𝑡) ≜ 𝑔𝑖 (𝑡) = [𝛼𝑖 (𝑡), 𝜂𝑖 (𝑡)] ∈ A𝑖 , where A𝑖 ≡ G𝑖 is the

action space.

• Reward: 𝑟𝑖 (𝑡)=𝑅𝑖 (𝑠𝑖 (𝑡), 𝑎𝑖 (𝑡), 𝑠𝑖 (𝑡+1))≜𝑢𝑖 (𝑡) = 1

𝑓𝑖 (𝑤̂𝑖 (𝑡 )) .
Accordingly, 𝑐𝑖 ’s Client-level MDP is defined as:

P′
0_𝑐𝑖 : max

𝜇𝑖 ( ·)
𝐽𝑖 (·),

where 𝜇𝑖 (·) : 𝑠𝑖 (𝑡) → 𝑎𝑖 (𝑡) is the policy, and 𝐽𝑖 (·) =
∑𝑇
𝑡=1

(
𝛾𝑡−1 · 𝑟𝑖 (𝑡)

)
.

Similarly, P′
0_𝑐𝑖 can be solved by performing Algorithm 2 along

with the gaming process, which outputs the appropriate action se-

quence 𝐴∗
𝑖
=
[
𝑎∗
𝑖
(1),· · ·, 𝑎∗

𝑖
(𝑇 )

]
, i.e., the strategy sequence 𝐺∗

𝑖
(1) =[

𝑔∗
𝑖
(1),· · ·, 𝑔∗

𝑖
(𝑇 )

]
≡ 𝐴∗

𝑖
in the equilibrium.

Algorithm 2 Local Training Hyper-parameters Tuning

Input: 𝜃𝜇

𝑖
( ·), 𝜃𝑄

𝑖
( ·), 𝜃𝜇′

𝑖
( ·) , and 𝜃

𝑄′
𝑖

( ·) are 𝑐𝑖 ’s DDPG model parameters;

𝑙𝐶𝑟𝑖
𝑖

and 𝑙𝐴𝑐𝑡
𝑖

are the learning rates for Critic and Actor in the MainNet;

𝛽𝑖 is the tiny updating rate for the TargetNet.

Output: [𝛼𝑖 (𝑡 ), 𝜂𝑖 (𝑡 ) |𝑡 = 1, · · ·,𝑇 ].
1: for 𝑖 = 1, · · · , 𝑁 do
2: Initialize 𝜃

𝜇

𝑖
( ·) , 𝜃𝑄

𝑖
( ·) , 𝜃𝜇′

𝑖
( ·) , and 𝜃𝑄

′
𝑖

( ·) ;
3: for 𝑡 = 1, · · ·,𝑇 do
4: Observe 𝑠𝑖 (𝑡 ) , and hence calculate 𝑟𝑖 (𝑡 ) ;
5: Sample (𝑠𝑖 (𝜉),𝑎CS (𝜉),𝑟𝑖 (𝜉),𝑠𝑖 (𝜉 + 1)),𝜉 =1, · · ·, |𝐵 |;
6: for 𝜉 = 1, · · ·, |𝐵 | do
7: Calculate 𝑦𝑖 (𝜉) like Line 6, Algorithm 1;

8: end for
9: Calculate LossCS (𝑡−1) like Line 8, Algorithm 1;

10: Update 𝜃
𝑄

𝑖
(𝑡 ),𝜃𝜇

𝑖
(𝑡 ),𝜃𝜇′

𝑖
(𝑡 ) , and 𝜃𝑄

′
𝑖

(𝑡 ) like Line 9, Algorithm 1;

11: end for
12: end for
13: return 𝜇∗

𝑖
( ·) ;

14: return 𝐺∗
𝑖
(1) =𝐴∗

𝑖
= [𝛼𝑖 (𝑡 ), 𝜂𝑖 (𝑡 ) |𝑡 =1, · · ·,𝑇 ].

4.4 Workflow of PAGE
Consequently, we propose PAGE, where CS and 𝑐𝑖 collaboratively
train global and local models by adaptively adjusting aggregation

weights and local training hyper-parameters. To provide an overall

insight, we illustrate the 𝑡-th round of PAGE in Figure 1, and depict

the details as follows:

① At the beginning of the 𝑡-th training round, CS first dis-

tributes the global model𝑊 (𝑡) to every 𝑐𝑖 .

② Every 𝑐𝑖 initializes the local model 𝑤𝑖 (𝑡) as𝑊 (𝑡). Then,
𝑐𝑖 updates the local DDPG model parameters 𝜃

𝑄

𝑖
(𝑡), 𝜃𝜇

𝑖
(𝑡),

𝜃
𝜇′

𝑖
(𝑡), and 𝜃𝑄

′

𝑖
(𝑡) to generate 𝛼𝑖 (𝑡) and 𝜂𝑖 (𝑡).

③ 𝑐𝑖 updates𝑤𝑖 (𝑡) to 𝑤̂𝑖 (𝑡) using 𝛼𝑖 (𝑡) and 𝜂𝑖 (𝑡), simply ex-

pressed as 𝑤̂𝑖 (𝑡) = Train (𝜂𝑖 (𝑡), 𝛼𝑖 (𝑡);𝑤𝑖 (𝑡)).
④ 𝑐𝑖 uploads 𝑤̂𝑖 (𝑡) to CS.
⑤ CS updates the global DDPG model parameters 𝜃

𝑄

CS (𝑡),
𝜃
𝜇

CS (𝑡), 𝜃
𝜇′

CS (𝑡), and 𝜃
𝑄′

CS (𝑡) to generate aggregation weights

{𝑝𝑖 (𝑡) |𝑖 = 1,· · ·, 𝑁 }.
⑥ CS aggregates 𝑤̂𝑖 (𝑡), 𝑖 =1,· · ·, 𝑁 to update the global model

as𝑊 (𝑡+1) according to Eq. (5).
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Figure 1: Workflow of PAGE.

PS: • CS and 𝑐𝑖 periodically perform ①-⑥ until𝑊 (𝑡) and𝑤𝑖 (𝑡)
stop evolving, i.e., achieving the equilibrium of P′

0.
• In the initial training round, the local model training and

aggregation are performed by randomly selecting 𝛼𝑖 (𝑡),
𝜂𝑖 (𝑡), and 𝑝𝑖 (𝑡), as DDPG models cannot update without

prior experience [3].

4.5 Theoretical Analysis for the Equilibrium
We then analyze the existence of the equilibrium of P′

0, which is

equivalent to the convergence analysis in TFL and PFL.

Before proceeding further, we define the equilibrium of P′
0 in

advance. Since the pay-off of every participant in a multi-stage

game is an accumulating pursuit, rather than any attained peak,

however large, we primarily define the pay-off functions of the

sub-games.

Definition 2 (Follower’s pay-off function [4]). The pay-off
function of CS is the discounted accumulation of 𝑢CS (𝑡) from the 𝜏-th
stage, denoted by𝑈CS (·) and defined as:

𝑈CS (𝐺CS (𝜏))=
𝑇∑︁
𝑡=𝜏

(
𝛾𝑡·𝑢CS (𝑡)

)
=

𝑇∑︁
𝑡=𝜏

𝛾𝑡

𝐹 (𝑊 (𝑡 + 1)) , (6)

where 𝐺CS (𝜏) = [𝑔CS (𝜏),· · ·, 𝑔CS (𝑇 )] ,∀𝜏 = 1,· · ·,𝑇 is CS’s strategy
sequence from the 𝜏-th stage.

Definition 3 (Leader’s pay-off function [4]). The pay-off
function of 𝑐𝑖 is the discounted accumulation of 𝑢𝑖 (𝑡) from the 𝜏-th
stage, denoted by𝑈𝑖 (·) and defined as:

𝑈𝑖 (𝐺𝑖 (𝜏)) =
𝑇∑︁
𝑡=𝜏

(
𝛾𝑡 · 𝑢𝑖 (𝑡)

)
=

𝑇∑︁
𝑡=𝜏

𝛾𝑡

𝑓𝑖 (𝑤𝑖 (𝑡))
. (7)

where 𝐺𝑖 (𝜏) = [𝑔𝑖 (𝜏),· · ·, 𝑔𝑖 (𝑇 )] ,∀𝜏 = 1,· · ·,𝑇 is 𝑐𝑖 ’s strategy se-
quence from the 𝜏-th stage.

Thus, the equilibrium of P′
0 can be defined as follows:

Definition 4 (Feedback Stackelberg Eqilibrium (FSE) [4]).

Given a feedback multi-stage MLSF Stackelberg game P′0, the feedback
stackelberg equilibrium is denoted by𝐺∗ (𝜏) =

[
𝐺∗
1
(𝜏),· · ·,𝐺∗

𝑁
(𝜏),𝐺∗

CS (𝜏)
]

and defined as:

𝑈CS
(
𝐺∗ (𝜏)

)
≥ 𝑈CS

(
𝑔CS (𝜖),𝐺∗ (𝜏)\𝑔∗CS (𝜖)

)
,

𝑈𝑖

(
𝐺∗ (𝜏)

)
≥𝑈𝑖

(
𝑔𝑖 (𝜖),𝐺∗ (𝜏)\𝑔∗𝑖 (𝜖)

)
,∀𝑖 =1,· · ·, 𝑁 ,

(8)

where 𝜖 is the stage index in the range of [𝜏,𝑇 ], 𝑔∗
𝑖
(𝑡) and 𝑔∗CS (𝑡) are

optimal strategies for obtaining the maximal utilities at the 𝑡-th stage,
𝐺∗
𝑖
(𝜏) =

[
𝑔∗
𝑖
(𝜏),· · ·, 𝑔∗

𝑖
(𝑇 )

]
and 𝐺∗

CS (𝜏) =
[
𝑔∗CS (𝜏),· · ·, 𝑔

∗
CS (𝑇 )

]
are

the optimal strategy sequences from the 𝜏-th stage, and 𝐺∗ (𝜏)\𝑔∗
𝑖
(𝜖)

and 𝐺∗ (𝜏)\𝑔∗CS (𝜖) indicate the optimal strategy sequences except for
𝑔∗
𝑖
(𝜖) and 𝑔∗CS (𝜖), respectively.
Definition 4 expounds that reaching the FSE at which P′

0 ends
requires a series of sequential interactions, no matter what stage

the measurement starts from.

Based on above definitions, the existence of the FSE of P′
0 can

be disclosed by Theorem 1.

Theorem 1. For P′0, the feedback stackelberg equilibrium (FSE)
𝐺∗ (𝜏) always exists.

Proof. We first recall the definition of the value function to

measure the strategy in the FSE.

Definition 5 (Value Function [4]). Given P
′
0 with the FSE

𝐺∗ (𝜏), let 𝑍 ∗ = [𝑧∗ (𝜏),· · ·, 𝑧∗ (𝑇 )] be the associated optimal gaming
condition trajectory resulting from 𝑧∗ (𝜏). Then, the value functions
of CS and 𝑐𝑖 are expressed as:

𝑉 ∗
CS

(
𝑧∗ (𝜏)

)
=

𝑇∑︁
𝑡=𝜏

(
𝛾𝑡 · 𝑢∗CS (𝑡)

)
, (9)

and

𝑉 ∗
𝑖

(
𝑧∗ (𝜏)

)
=

𝑇∑︁
𝑡=𝜏

(
𝛾𝑡 · 𝑢∗𝑖 (𝑡)

)
,∀𝑖 = 1,· · ·, 𝑁 , (10)

where𝑢∗
𝑖
(𝑡) and𝑢∗CS (𝑡) are the utilities derived from𝑔∗

𝑖
(𝑡) and𝑔∗CS (𝑡),

respectively.

Thus, we can obtain 𝑇 −𝜏 + 1 sets of value functions. As a result,

the only way to confirm the existence of the FSE is to verify whether

these value functions satisfy the Bellman equations, shown as:

𝑉 ∗
CS (𝜏) = max

𝑔1 (𝑡 ),· · ·,𝑔𝑁 (𝑡 ),𝑔CS (𝑡 )
𝑢CS (𝑡) + 𝛾 ·𝑉 ∗

CS
(
𝑧∗ (𝜏 + 1)

)
, (11)

and

𝑉 ∗
𝑖 (𝑧

∗ (𝜏)) = max

𝑔1 (𝑡 ),· · ·,𝑔𝑁 (𝑡 ),𝑔CS (𝑡 )
𝑢𝑖 (𝑡) + 𝛾 ·𝑉 ∗

𝑖

(
𝑧∗ (𝜏 + 1)

)
,

∀𝑖 = 1,· · ·, 𝑁 .
(12)

Note that the first term on the right side of Eq. (11) highlights the

maximal utilities given 𝑍 ∗
, and the same to Eq. (12). As a solution,

the verification could be achieved through the recursive approach,

which is referred to as the verification theorem [4]. In other words,

the existence of FSE can be confirmed in specific cases for which an

explicit solution of the Bellman equations can be obtained, which

completes the proof. □
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5 EXPERIMENTS AND EVALUATION
5.1 Experimental Settings
In this section, we compare PAGE with 10 SOTA baselines, in-

cluding 5 TFLs, i.e., FedAvg [31], FedProx [25], SCAFFOLD [19],

FedDyn [1], and Dap-FL [10], as well as five PFLs, i.e., FEDRECON

[33], pFedMe [12], Ditto [24], FedALA [45], and Fed-ROD [9]. The

global model generalization and local model personalization are

evaluated through the global and local model accuracy over global

and local testing sets (defined below), respectively. In particular,

the recorded local model accuracy is the average of local model

accuracy on clients’ corresponding local testing sets. Notably, all

presented results are averaged over 3 runs (entire collaborative

training processes) with different random seeds.

Datasets and models: Our experiments are conducted on four

widespread public datasets
2
, including Synthetic [8], Cifar-100 [21],

Tiny-ImageNet [22], and Shakespeare [31]. For Synthetic, we adopt

a multi-class logistic classification model with cross-entropy loss

[1]. Also, we adopt ResNet-18 [15] for Cifar-100 and Tiny-ImageNet,

and LSTM [16] for Shakespeare. More details of leveraged datasets

and corresponding models are summarized in Appendix C.1.

FL settings and data partition: By default, our experiments

involve 100 clients for the four tasks
3
. For Logistic on Synthetic,

we use a similar data generation process in [25], where each 𝑐𝑖
holds 210 training samples and 90 testing samples on average, and

CS holds 7500 testing samples. Clients’ samples comprise 30 di-

mensions of features and 30 classes, and CS’s samples cover all

features and classes. For ResNet-18 on Cifar-100 and ResNet-18 on
Tiny-ImageNet, we divide the original training set into 100 parts

uniformly, where the class ratio of each part follows a widely used

Dirichlet distribution 𝐷𝑖𝑟 (𝛿 =0.3) [36]. Each part is further parti-

tioned as the local training and testing sets on a 7:3 scale, and the

original testing/validation set is assigned to CS as the global testing
set. For LSTM on Shakespeare, we pick the role with more than 8000

sentences as the client, where 4900 and 2100 sentences are used

as the local training and testing data, respectively. The remaining

sentences of the pricked 100 roles are the global testing data.

Implementation and Hyperparmeters: All simulations are

implemented on the same computing environment (Linux, 32 In-

tel(R) Xeon(R) Silver 4108 CPU @ 1.80GHz, NVIDIA GeForce A100,

256GB of RAM and 2T of memory) with Pytorch. In addition,

the hyper-parameter settings of PAGE are summarized in Appen-

dix C.2, and baselines are implemented with their original hyper-

parameters
4
.We release the codes and datasets at https://github.com/ivy-

h7/PAGE.

5.2 Results and Evaluation
Prediction accuracy comparison: Table 1 illustrates the com-

parison between PAGE and baselines in terms of global and local

model accuracy. As expected, PAGE achieves at most 39.91% gains

in terms of local model accuracy, and the global model accuracy

2
These datasets are collected by the ML community for academic research, and no

ethical considerations or legal concerns were violated.

3
100 is a commonly used client amount to simulate the practical FL implementation in

literature. So are 50 and 1000 in the following ablation analysis.

4
For datasets not involved in original baselines, we provide the appropriate hyper-

parameters in our released codes.

is improved by up to 35.20%. Surprisingly, PAGE comprehensively

outperforms all baselines in most cases, where the highest global

and local model accuracy is achieved simultaneously, rather than

achieving a moderate balance merely. The reason behind this ob-

servation is that PAGE integrates the advantages of PFL and TFL

methods, to be more specific, local fine-tuning [42] and client se-

lection [29, 37]. Also, we mention that the abnormality concerning

global model generalization on Synthetic is attributed to the low

degree of data heterogeneity, where the global models of baselines

could generalize well.

Communication efficiency comparison: To explore the com-

munication efficiency of PAGE, we record the convergence round

in Table 2. As can be observed, PAGE achieves fewer rounds in

most cases, reflecting a more rapid convergence rate and higher

communication efficiency. Consequently, PAGE is more competi-

tive in MLaaS, as expensive and rare communication bandwidths

are saved in the presence of satisfying the demands of customers

and service providers to the greatest extent.

Origin of performance gains: In Figure 2, we illustrate the

accuracy curves of PAGE together with the reward curves of cor-

responding DDPG models. One can observe the same variation

trends between global/local model accuracy and server/client-side

reward curves. It suggests that the server-side DDPG model facili-

tates global model generalization by adjusting 𝑝𝑖 to obtain larger

rewards, and client-side DDPGmodels conduct local training hyper-

parameter adjustment for expected rewards, benefiting local model

personalization. In the same vein, the gains of convergence rates

stem from the RL-based adjustment. Besides, global and local mod-

els collaboratively evolve into stable conditions, i.e., FSE, which

validates the co-opetition intention of PAGE.

Performance under quantity-skewed heterogeneity: To test
the performance of PAGE facing quantity-skewed data heterogene-

ity, we conduct unbalanced data partitions on top of the default

setting for ResNet-18 on Cifar-100, where the ratio of clients’ local

sample numbers follows logarithmic normal distributions
5
with

the mean of 0 and the standard deviation 𝜎 =0.1, 0.3, and 0.5. In this

case, we compare PAGE with PFL in the left part of Table 3. As ex-

pected, the global model accuracy are higher than all PFL baselines,

while keeping relatively desirable local model personalization. In

particular, the global model generalization of PAGE remains stable

with the increasing unbalance degree, while PFL becomes worse.

Such a property is attributed to the adaptive adjustment of 𝑝𝑖 .

Performance under label-skewed heterogeneity:We then

study the effectiveness of PAGE facing label-skewed data hetero-

geneity for ResNet-18 on Cifar-100. The right side of Table 3 il-

lustrates the comparison between PAGE and PFL baselines when

adjusting 𝛿 as 0.1, 0.5, and 1 in the default setting. With the label-

skewed degree increasing, PFL manifests better local model person-

alization, but fares less well in global model generalization, which

is a somewhat disappointing property in MLaaS. Conversely, PAGE

consistently exhibits outstanding personalization, while maintain-

ing generalization. The adjustment of 𝜂𝑖 and 𝛼𝑖 accounts in part

for the stable performance.

Ablation of hyper-parameter tuning completeness: To un-

derstand how the game-based relation contributes to generalization

5
A commonly used distribution to calibrate the data quantity [43].
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Table 1: Prediction accuracy comparison between PAGE and baselines. We record the average and variance of global models of
3 runs, as well as the average and variance of clients’ local model accuracy. Also, Improvement refers to the largest accuracy
improvement. Note that Logistic on Synthetic cannot be achieved by FedRECON, as the linear layer of the logistic model cannot
be partitioned to construct local variables [9].

Algorithm

Logistic on Synthetic ResNet-18 on Cifar-100 ResNet-18 on Tiny-ImageNet LSTM on Shakespeare

global acc (%) local acc (%) global acc (%) local acc (%) global acc (%) local acc (%) global acc (%) local acc (%)

More attention on the comparison with local model accuracy of TFL baselines

FedAvg 91.46 ±0.07 95.26 ±1.26 32.97 ±0.03 38.30 ±0.44 7.85 ±0.04 11.29 ±0.74 47.52 ±0.07 40.24 ±1.45
FedProx 91.48 ±0.05 95.49 ±0.35 33.46 ±0.12 39.22 ±0.77 7.79 ±0.05 11.55 ±0.93 47.29 ±0.12 40.51 ±1.25

SCAFFOLD 97.37 ±0.08 95.71 ±0.53 32.81 ±0.03 36.12 ±0.81 8.39 ±0.02 9.17 ±0.94 49.14 ±0.06 39.36 ±0.49
FedDyn 97.57 ±0.07 94.11 ±1.42 33.47 ±0.05 35.28 ±1.11 7.84 ±0.27 11.45 ±1.14 51.68 ±0.14 42.82 ±0.72
Dap-FL 92.19 ±0.13 94.14 ±1.11 32.28 ±0.27 40.72 ±1.41 8.40 ±0.43 11.75 ±2.19 51.67 ±0.26 48.85 ±1.38

More attention on the comparison with global model accuracy of PFL baselines

FedRECON / / 24.88 ±0.14 31.75 ±0.65 6.25 ±0.25 10.15 ±1.13 38.54 ±0.06 35.61 ±2.02
pFedMe 85.59 ±0.25 90.23 ±1.02 30.29 ±0.03 38.68 ±0.45 6.60 ±0.08 9.23 ±0.36 43.19 ±0.04 41.99 ±0.69
Ditto 92.09 ±0.17 95.56 ±1.12 31.86 ±0.24 39.93 ±1.35 7.77 ±0.05 9.59 ±0.22 48.95 ±0.04 47.05 ±0.47

FedALA 85.51 ±0.04 95.42 ±1.07 32.10 ±0.05 39.63 ±0.84 7.63 ±0.05 9.83 ±0.66 43.45 ±0.09 46.77 ±1.14
Fed-ROD 87.93 ±0.21 90.63 ±1.12 31.75 ±0.41 31.47 ±0.59 8.13 ±0.46 12.34 ±0.52 46.04 ±0.11 43.23 ±1.17
PAGE 92.67 ±0.13 96.24 ±0.33 33.55 ±0.14 40.94 ±0.26 8.45 ±0.17 12.83 ±0.48 51.74 ±0.24 49.27 ±0.55

Improvement 8.37 6.66 34.85 30.09 35.20 39.91 34.25 38.36

Table 2: Convergence round of PAGE and baselines. Convergence round refers to the round that the global (averaging local)
model accuracy stops increasing for TFL (PFL). The column of PAGE records the round at which the FSE achieves.

Task PAGE FedAvg FedProx SCAFFOLD FedDyn Dap-FL FedRECON pFedMe Ditto FedALA Fed-ROD

Synthetic 891 902 896 878 901 900 / 843 491 501 497

Cifar-100 499 510 497 540 502 337 641 550 313 506 401

Tiny-ImageNet 404 430 479 422 366 402 361 513 490 523 493

Shakespeare 602 552 655 546 607 590 657 642 498 646 556

Figure 2: Model accuracy curves of PAGE together with corresponding DDPG reward curves. The left y-axes calibrate the model
accuracy of FL models (solid curves), and the right y-axes calibrate the rewards of DDPG models (dotted curves).

and personalization, we conduct ablation analyses for ResNet-18
on Cifar-100 by adjusting one or two factors in PAGE, while other

factors remain constant. In Figure 3, only adjusting 𝑝𝑖 benefits the

global model performance, while adjusting 𝜂𝑖 or 𝛼𝑖 promotes the

local model performance. By contrast, simultaneously adjusting 𝜂𝑖
and 𝛼𝑖 achieves higher local model accuracy and more rapid conver-

gence rates than solely adjusting one factor. In addition, compared

to the equilibrium in the setting of remaining 𝜂𝑖 or 𝛼𝑖 constant,

PAGE’s equilibrium has better generalization and personalization.

Thus, the completeness of balance-controlling factors is confirmed.

Ablation of client amount: The top part of Table 4 explores the
performance with different client amounts for Logistic on Synthetic.
Seemingly, the balance between global and local models would not

change with the client amount increasing, but requires more rounds.

But we mention that the increasing round with the increasing client

amount widely exists in diverse FL methods rather than merely in

PAGE. The reason behind this attribute is that more participants

would expand the feature space of local data, which exacerbates the

difficulty of achieving the equilibrium (convergence in TFL/PFL).
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Table 3: Comparison between PAGE and PFL under different data heterogeneity. Smaller 𝜎 reflects lower unbalance data
distributions, and smaller 𝛿 indicates heavier label skew.

Algorithm

Quantity Skew – acc (%) Label Skew – acc (%)

𝜎 = 0.1 𝜎 = 0.3 𝜎 = 0.5 𝛿 = 0.1 𝛿 = 0.5 𝛿 = 1

global local global local global local global local global local global local

PAGE 33.47 40.96 33.61 40.91 33.52 40.93 32.69 54.58 33.57 40.97 33.53 40.02
FedRECON 24.13 31.88 22.91 32.91 21.23 34.95 23.77 47.29 25.24 25.65 25.69 20.13

pFedMe 30.22 38.92 30.18 39.45 30.09 39.68 28.26 47.23 31.36 33.28 31.47 29.62

Ditto 31.46 39.93 30.96 39.93 30.31 39.95 30.59 53.50 32.47 36.46 32.79 33.24

FedALA 31.55 39.63 31.46 39.64 31.08 39.64 30.46 53.58 32.27 34.98 32.84 30.24

Fed-ROD 31.71 32.19 31.39 32.31 31.06 32.88 30.53 49.44 32.35 28.18 32.16 22.98

Figure 3: Completeness of balance-controlling factors.

This provides an instructive insight into product FL with enormous

clients, i.e., the practical implementation of PAGE at scale.

Table 4: Exploration of other properties. The last column
refers to the round achieving equilibrium. 50 and 1000 indi-
cate default settings with distinct client amounts, and 10 :1

and 1 :10 are the ratios between global and local rewards.

Task global acc (%) local acc (%) Round

Client amount (Synthetic)

PAGE-50 91.75 96.62 618

PAGE-1000 92.39 96.43 928

PAGE (100) 92.67 96.24 891

Generalization or personalization trend (Cifar-100)

PAGE-10:1 35.11 40.19 538

PAGE-1:10 31.91 41.55 493

PAGE 33.55 40.94 499

Bias between generalization and personalization: Also, we
discuss the biased variant of PAGE for ResNet-18 on Cifar-100, where
the reward ratio

6
between the server-side DDPG and the client-side

6
The ratios are empirical settings in our simulation, which, for reproducibility, could

be adjusted with the changes in the bias degree, client amount, task, etc.

DDPG varies to simulate the varying biases between generalization

and personalization in practice. As shown in the bottom part of

Table 4, PAGE could tip the balance to an expected side by changing

the reward ratio according to the market demand in MLaaS. Particu-

larly, by comparing the results with baselines in Table 1, the biased

variants of PAGE outperform all TFL/PFL baselines in terms of

corresponding global/local model accuracy and convergence rates.

Computation efficiency: Besides, we record the computation

performance of the main operations of PAGE in Table 5, where the

DDPG model training efficiency is higher than FL models by an

order of magnitude. Also, the model size of the DDPG model is

significantly smaller than FL models in practice, such as prevailing

large language models. It suggests that PAGE is efficient in terms of

computation, as the DDPG model training could be accomplished

rapidly during the entire collaborative training process. Besides,

DDPG can be implemented on CPU rather than rarer GPU resources,

which highlights the technical feasibility of PAGE.

Table 5: Computation performance of main operations.

Index Operation Time (ms/Byte)

1 Local training 1.45×10−4
2 Model aggregation 1.93×10−6
3 Local DDPG training 6.84×10−5
4 Global DDPG training 7.38×10−5

6 CONCLUSION AND FUTUREWORK
PAGE is the first FL algorithm that balances the local model per-

sonalization and global model generalization. A key insight into

developing PAGE is that an iterative co-opetition exists between

the server and clients, which runs parallel with a feedback multi-

stage MLSF Stackelberg game. Particularly, the server/client-level

sub-games and MDPs have uncanny resemblances. As such, PAGE

introduces DDPG to solve the equilibrium of the formulated game,

thereby providing a stable terminating condition for FL, i.e., the

balance between personalization and generalization.

As a future work, we will take the security and privacy issues

into account. In addition, by jointly considering resource hetero-

geneity, a variant of PAGE could be implemented in a more practical

scenario, which is already investigated in Appendix D theoretically.

We leave the empirical validation in the future.

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

PAGE: Equilibrate Personalization and Generalization in Federated Learning WWW ’24, May 13-17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina,

Paul N Whatmough, and Venkatesh Saligrama. 2021. Federated learning based

on dynamic regularization. In Proceedings of the 9th International Conference on
Learning Representations. 1–36.

[2] Eitan Altman. 2021. Constrained Markov decision processes. Routledge, New

York.

[3] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony

Bharath. 2017. Deep Reinforcement Learning: A Brief Survey. IEEE Signal
Processing Magazine 34, 6 (2017), 26–38.

[4] Tamer Başar and Georges Zaccour. 2018. Handbook of Dynamic Game Theory.
Springer International Publishing, Cham.

[5] Richard Bellman. 1957. A Markovian Decision Process. Journal of Mathematics
and Mechanics 6, 5 (1957), 679–684.

[6] Kallista Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konečný, Stefano Mazzocchi,

H. Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and

Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. In

Proceedings of the 2nd Machine Learning and Systems. 1: 374–388.
[7] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge

university press, Cambridge.

[8] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný,

H. Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2019. LEAF: A

Benchmark for Federated Settings. arXiv preprint arXiv:1812.01097 (2019), 1–9.

[9] Hong-You Chen and Wei-Lun Chao. 2022. On Bridging Generic and Person-

alized Federated Learning for Image Classification. In Proceedings of the 10th
International Conference on Learning Representations. 1–32.

[10] Qian Chen, ZilongWang, Jiawei Chen, Haonan Yan, and Xiaodong Lin. 2023. Dap-

FL: Federated Learning Flourishes by Adaptive Tuning and Secure Aggregation.

IEEE Transactions on Parallel and Distributed Systems 34, 6 (2023), 1923–1941.
[11] Yae Jee Cho, Jianyu Wang, Tarun Chirvolu, and Gauri Joshi. 2023.

Communication-Efficient and Model-Heterogeneous Personalized Federated

Learning via Clustered Knowledge Transfer. IEEE Journal of Selected Topics in
Signal Processing 17, 1 (2023), 234–247.

[12] Canh T. Dinh, Nguyen H. Tran, and Tuan Dung Nguyen. 2020. Personalized

Federated Learning with Moreau Envelopes. In Advances in Neural Information
Processing Systems. 33: 21394–21405.

[13] Moming Duan, Duo Liu, Xianzhang Chen, Renping Liu, Yujuan Tan, and Liang

Liang. 2021. Self-Balancing Federated Learning With Global Imbalanced Data

in Mobile Systems. IEEE Transactions on Parallel and Distributed Systems 32, 1
(2021), 59–71.

[14] Filip Hanzely, Slavomír Hanzely, Samuel Horváth, and Peter Richtárik. 2020.

Lower Bounds and Optimal Algorithms for Personalized Federated Learning. In

Advances in Neural Information Processing Systems. 33: 2304–2315.
[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Resid-

ual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 770–778.

[16] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.

Neural Computation 9, 8 (1997), 1735–1780.

[17] Tiansheng Huang, Li Shen, Yan Sun, Weiwei Lin, and Dacheng Tao. 2023. Fusion

of Global and Local Knowledge for Personalized Federated Learning. Transactions
on Machine Learning Research (2023), 1–38.

[18] Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. 2023. Improving

federated learning personalization via model agnostic meta learning. arXiv
preprint arXiv:1909.12488 (2023).

[19] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J. Reddi, Se-

bastian U. Stich, and Ananda Theertha Suresh. 2020. SCAFFOLD: Stochastic

Controlled Averaging for Federated Learning. In Proceedings of the 37th Interna-
tional Conference on Machine Learning. 119: 5132–5143.

[20] Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik,

Ananda Theertha Suresh, and Dave Bacon. 2016. Federated learning: Strategies

for improving communication efficiency. InNIPSWorkshop on Private Multi-Party
Machine Learning. 1–10.

[21] Alex Krizhevsky. 2009. Learning multiple layers of features from tiny images.

Technical Report (2009).
[22] Ya Le and Xuan Yang. 2015. Tiny imagenet visual recognition challenge. CS

231N 7, 7 (2015), 1–6.

[23] Guanghao Li, Wansen Wu, Yan Sun, Li Shen, Baoyuan Wu, and Dacheng Tao.

2023. Visual Prompt Based Personalized Federated Learning. arXiv preprint
arXiv:2303.08678 (2023).

[24] Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. 2021. Ditto: Fair

and Robust Federated Learning Through Personalization. In Proceedings of the
38th International Conference on Machine Learning. 139: 6357–6368.

[25] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and

Virginia Smith. 2020. Federated Optimization in Heterogeneous Networks. In

Proceedings of the 3rd Machine Learning and Systems. 2: 429–450.

[26] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang.

2020. On the convergence of fedavg on non-iid data. In Proceedings of the 8th
International Conference on Learning Representations. 1–26.

[27] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom

Erez, Yuval Tassa, David Silver, andDaanWierstra. 2016. Continuous control with

deep reinforcement learning. In Proceedings of the 4th International Conference
on Learning Representations. 1–14.

[28] Zelei Liu, Yuanyuan Chen, Yansong Zhao, Han Yu, Yang Liu, Renyi Bao, Jinpeng

Jiang, ZaiqingNie, Qian Xu, andQiang Yang. 2022. Contribution-Aware Federated

Learning for Smart Healthcare. In Proceedings of the AAAI Conference on Artificial
Intelligence. 36(11): 12396–12404.

[29] Lingjuan Lyu, Jiangshan Yu, Karthik Nandakumar, Yitong Li, Xingjun Ma, Jiong

Jin, Han Yu, and Kee Siong Ng. 2020. Towards Fair and Privacy-Preserving

Federated Deep Models. IEEE Transactions on Parallel and Distributed Systems
31, 11 (2020), 2524–2541.

[30] Othmane Marfoq, Giovanni Neglia, Laetitia Kameni, and Richard Vidal. 2022.

Personalized Federated Learning through Local Memorization. In Proceedings of
the 39th International Conference on Machine Learning. 162: 15070–15092.

[31] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise

Aguera y Arcas. 2017. Communication-Efficient Learning of Deep Networks

from Decentralized Data. In Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics. 54: 1273–1282.

[32] Chaoyue Niu, FanWu, Shaojie Tang, Lifeng Hua, Rongfei Jia, Chengfei Lv, Zhihua

Wu, and Guihai Chen. 2020. Billion-Scale Federated Learning on Mobile Clients:

A Submodel Design with Tunable Privacy. In Proceedings of the 26th Annual
International Conference on Mobile Computing and Networking. 31: 405–418.

[33] Karan Singhal, Hakim Sidahmed, Zachary Garrett, Shanshan Wu, John Rush,

and Sushant Prakash. 2021. Federated Reconstruction: Partially Local Federated

Learning. In Advances in Neural Information Processing Systems. 34: 11220–11232.
[34] Morton Slater. 2013. Lagrange Multipliers Revisited. Traces and Emergence of

Nonlinear Programming (2013), 293–306.

[35] Benyuan Sun, Hongxing Huo, Yi Yang, and Bo Bai. 2021. PartialFed: Cross-

Domain Personalized Federated Learning via Partial Initialization. In Advances
in Neural Information Processing Systems. 34: 23309–23320.

[36] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. 2022. Towards Person-

alized Federated Learning. IEEE Transactions on Neural Networks and Learning
Systems Early access (2022), 1–17.

[37] HaoWang, Zakhary Kaplan, Di Niu, and Baochun Li. 2020. Optimizing Federated

Learning on Non-IID Data with Reinforcement Learning. In Proceedings of the
IEEE Conference on Computer Communications. 1698–1707.

[38] Kaibin Wang, Qiang He, Feifei Chen, Chunyang Chen, Faliang Huang, Hai

Jin, and Yun Yang. 2023. FlexiFed: Personalized Federated Learning for Edge

Clients with Heterogeneous Model Architectures. In Proceedings of the ACMWeb
Conference. 2979–2990.

[39] Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hubert Eichner, Françoise Beau-

fays, and Daniel Ramage. 2019. Federated evaluation of on-device personalization.

arXiv preprint arXiv:1910.10252 (2019).
[40] Hongda Wu and Ping Wang. 2021. Fast-Convergent Federated Learning With

Adaptive Weighting. IEEE Transactions on Cognitive Communications and Net-
working 7, 4 (2021), 1078–1088.

[41] Chaoqun You, Kun Guo, Howard H. Yang, and Tony Q. S. Quek. 2023. Hierar-

chical Personalized Federated Learning Over Massive Mobile Edge Computing

Networks. IEEE Transactions on Wireless Communications Early access (2023),

1–17.

[42] Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov. 2022. Salvaging federated

learning by local adaptation. arXiv preprint arXiv:2002.04758 (2022).
[43] Dun Zeng, Siqi Liang, Xiangjing Hu, Hui Wang, and Zenglin Xu. 2023. FedLab:

A Flexible Federated Learning Framework. Journal of Machine Learning Research
(2023), 1–7.

[44] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wencao Xu, and Feijie Wu.

2021. Parameterized Knowledge Transfer for Personalized Federated Learning.

In Advances in Neural Information Processing Systems. 34: 10092–10104.
[45] Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and

Haibing Guan. 2023. FedALA: Adaptive Local Aggregation for Personalized

Federated Learning. In Proceedings of the AAAI Conference on Artificial Intelligence.
37(9): 11237–11244.

[46] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. 2021. Data-Free Knowledge

Distillation for Heterogeneous Federated Learning. In Proceedings of the 38th
International Conference on Machine Learning. 139: 12878–12889.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13-17, 2024, Singapore Anon. Submission Id: 1206

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDIX: RELATEDWORKS
Since the main battlefield against data heterogeneity is PFL, our

literature review mainly focuses on its two major categories: data-

based and model-based methods. In general, data-based methods

emphasize reducing statistical divergence among local datasets,

while model-based methods aim to tailor customized models for

diverse clients.

To be specific, data augmentation [13, 23] is a common data-

basedmethod, which generates proxy datasets based on shared local

data distribution for model training, reducing client drift. However,

sharing local data distribution is viewed as a violation of privacy and

data minimization [36]. Another line of data-based methods is client

selection [29, 37], where selected datasets approach homogeneous

data distribution to heightenmodel personalization. Although client

selection is equivalent to the Server-level sub-game if adjusting

some aggregation weights to zero, it never occurs in PAGE, thereby

ensuring extensive local data feature capture and system fairness.

By contrast, model-based PFL methods are more practical, which

mainly consist of local fine-tuning [39, 42], transfer learning [44],

meta-learning [18, 33], regularization [12, 14, 24], knowledge dis-

tillation [11, 46], etc. The dominant method is local fine-tuning

[39, 42], where clients fine-tune the global model through several

gradient descent steps over their local datasets. A variant of lo-

cal fine-tuning is transfer learning [44], which takes advantage of

the knowledge extracted by the global model to employ personal-

ized models for different clients. Similarly, meta-learning methods

[18, 33] could be regarded as another variant of local fine-tuning,

where local adaptation is achieved by mapping the meta-testing

step to the personalization process. However, the main drawback

of local fine-tuning (including transfer learning and meta-learning)

is that the personalized model is pruned to overfitting, whereas the

other important part, global model generalization, is deteriorated.

Although the Client-level sub-game of PAGE is parallel to local fine-

tuning to some extent, global model generalization is taken into

account in the Server-level sub-game, which mitigates the overfit-

ting drawback. Regularization methods [12, 14, 24] introduce new

formulations for PFL, where regularizers on the distance of local

and global models are added to control the optimization degree.

Also, knowledge distillation methods [11, 46] apply regularizers

on the predictions between local and global models in a teacher-

student paradigm. Yet, regularizers have been proven less effective

by Chen et al. [9]. Besides, multi-task learning [30], model mix-

ture [14, 24], clustering [11, 30, 41], and model decoupling [17, 35]

could be leveraged to achieve PFL as well. For more details, we

recommend Tan et al.’s survey [36].

B APPENDIX: NOTATION SUMMARY
For clarity, we summarize important notations in Table 6.

C APPENDIX: EXPERIMENTS & EVALUATION
C.1 Details of leveraged datasets and models
Synthetic [8] is a classification dataset, where two factors control

how much the local data at each client differs from that of others. In

our experiments, we generate 210 training samples and 90 testing

samples for each client, as well as 7500 testing samples for the

Table 6: Notations in PAGE

Notations Definition

𝑐𝑖 , 𝑖 = 1, · · ·, 𝑁 𝑁 clients; Leaders in the game

CS Central server; Follower in the game

𝑡 = 1, · · ·,𝑇 Round; Stage in the game

𝐷𝑖 Private local dataset

𝐷CS Public global dataset

𝑓𝑖 ( ·) Local loss function

𝐹 ( ·) Global loss function

𝑤𝑖 , 𝑤
∗
𝑖

Local model and optimal local model

𝑊 ,𝑊 ∗
Global model and optimal global model

𝑝𝑖 Aggregation weight

𝛼𝑖 Local training epoch

𝜂𝑖 Local learning rate

𝑔𝑖 , 𝑔CS Strategies of 𝑐𝑖 and CS
𝑢𝑖 , 𝑢CS Utilities of 𝑐𝑖 and CS
𝑠𝑖 , 𝑠CS States of 𝑐𝑖 and CS
𝑎𝑖 , 𝑎CS Actions of 𝑐𝑖 and CS
𝑟𝑖 , 𝑟CS Rewards of 𝑐𝑖 and CS

𝜇𝑖 ( ·) , 𝜇CS ( ·) Policies of 𝑐𝑖 and CS
𝛾 Discount factor

𝜃
𝑄

𝑖
(𝑡 ) , 𝜃𝜇

𝑖
(𝑡 ) , 𝜃𝜇′

𝑖
(𝑡 ) , 𝜃𝑄

′
𝑖

(𝑡 ) ,
𝜃
𝑄

CS(𝑡 ) , 𝜃
𝜇

CS(𝑡 ) , 𝜃
𝜇′
CS(𝑡 ) , 𝜃

𝑄′
CS (𝑡 )

DDPG model parameters of 𝑐𝑖 and CS

central server. Clients’ samples comprise 30 dimensions of features

and 30 classes, and the samples held by the server cover all features

and classes.

Cifar-100 [21] is an image classification dataset consisting of

30×30×3 color images in 100 classes, with 600 images per class.

Each class has 500 training samples and 100 testing samples.

Tiny-ImageNet [22] is an image classification dataset contain-

ing 100000 samples of 200 classes (500 for each class) downsized

to 64×64×3 color images. Each class has 500 training images, 50

validation images, and 50 test images.

Shakespeare [31] is built from The Complete Works of William
Shakespeare by treating each role in the play as a client, and their

dialogue lines as the samples. The main task of this dataset is for

next-character prediction.

Multi-class classification model [1] has a linear layer, which
takes each 30-dimensional input sample of Synthetic as the input,

and outputs a 30-dimensional vector. In addition, the cross-entropy

loss is used as the loss function.

LSTM [16, 25] consists of an 8-dimensional embedding layer, two

LSTM layers with a hidden size of 100 units, and a fully connected

output layer. For each input sequence sample, the model embeds

80 characters into a learned 8-dimensional space, and outputs one

character.

ResNet-18 [15] consists of a 7 × 7 convolutional layer, two

pooling layers, eight residual units, and one fully connected layer.

The loss function is set as the cross-entropy loss. In particular, the

BatchNormalization after the convolutional operation is substituted

by Group Normalization. For each input sample, ResNet-18 outputs

a 100-dimensional vector for Cifar-100 and a 200-dimensional vector

for Tiny-ImageNet, respectively.
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C.2 Default hyper-parameter settings
For reproducibility, we summarize the default hyper-parameter

settings of PAGE across the four tasks in Table 7.

Table 7: Default hyper-parameter settings of PAGE.

Task Synthetic Cifar-100 Tiny-ImageNet Shakespeare

𝑙𝐶𝑟𝑖
𝐶𝑆

0.01 0.05 0.001 0.005

𝑙𝐴𝑐𝑡
𝐶𝑆

0.001 0.005 0.0001 0.0005

𝛽𝐶𝑆 0.01 0.05 0.001 0.005

𝑙𝐶𝑟𝑖
𝑖

0.01 0.05 0.001 0.005

𝑙𝐴𝑐𝑡
𝑖

0.001 0.005 0.0001 0.0005

𝛽𝑖 0.01 0.05 0.001 0.005

D APPENDIX: RESOURCE HETEROGENEITY
D.1 Time-varying resource consumption model
Following [10], our resource consumption model considers clients’

time-varying resource consumption but neglects CS, as CS usually
has sufficient resources for stable aggregation and communication.

In particular, the resource consumption comprises computation

and communication consumption:

• Computation resource consumption. In FL, 𝑐𝑖 ’s local training

process only occurs on the computation unit of its local device.

Assuming the frequency of 𝑐𝑖 ’s computation unit in the 𝑡-th training

round is Γ𝑖 (𝑡), 𝑐𝑖 ’s computation resource consumption for one epoch

of local training is denoted by 𝐸
𝑐𝑚𝑝

𝑖
(𝑡) and defined as:

𝐸
𝑐𝑚𝑝

𝑖
(𝑡) = |𝐷𝑖 | · 𝜅𝑖 · Λ𝑖 (𝑡) · Γ2𝑖 (𝑡), (13)

where Λ𝑖 (𝑡) is the number of computation unit cycles per sample,

and 𝜅𝑖 is the effective switched capacitance.

• Communication resource consumption. The communication of

FL hinges on the general wireless communication system, e.g., the

orthogonal frequency division multiple access (OFDMA). In detail,

the communication of 𝑐𝑖 refers to uploading local models and down-

loading the global model. Thus, in the light of the Shannon formula,

the uplink and downlink communication resource consumption

could be denoted by 𝐸𝑐𝑜𝑚
𝑖

(𝑡) and 𝐸′𝑐𝑜𝑚
𝑖

(𝑡), and defined as:

𝐸𝑐𝑜𝑚𝑖 (𝑡) = 𝜌𝑖 (𝑡) · Υ

Ψ𝑖 (𝑡) · log2
(
1 + 𝜙𝑖 (𝑡 )𝜌𝑖 (𝑡 )

Δ𝑖 (𝑡 )Ψ𝑖 (𝑡 )

) , (14)

and

𝐸
′𝑐𝑜𝑚
𝑖 (𝑡) =

𝜌 ′
𝑖
(𝑡) · Υ

Ψ′
𝑖
(𝑡) · log

2

(
1 + 𝜙′

𝑖
(𝑡 )𝜌′

𝑖
(𝑡 )

Δ′
𝑖
(𝑡 )Ψ′

𝑖
(𝑡 )

) , (15)

where 𝜌𝑖 (𝑡) and 𝜌 ′
𝑖
(𝑡) are the transmission power, Ψ𝑖 (𝑡) and Ψ′

𝑖
(𝑡)

are the allocated communication bandwidths, 𝜙𝑖 (𝑡) and 𝜙 ′
𝑖
(𝑡) are

the channel gains, Δ𝑖 (𝑡) and Δ′
𝑖
(𝑡) are the power spectral density of

noise for uplink and downlink, respectively, and the local model and

the global model share the same size Υ. Note that the consumption

of uplink is much larger than downlink in practice.

A ground truth is that 𝑐𝑖 ’s total resource for computation and

communication in any given round is limited, expressed as a re-

source constraint:

𝛼𝑖 (𝑡) · 𝐸𝑐𝑚𝑝

𝑖
(𝑡) + 𝐸𝑐𝑜𝑚𝑖 (𝑡) + 𝐸

′𝑐𝑜𝑚
𝑖 (𝑡) ≤ 𝐸𝑖 (𝑡), (16)

where 𝐸𝑖 (𝑡) is the upper bound of the total resource in the 𝑡-th

training round. Thus, by jointly considering P0 and resource con-

straints during the whole FL procedure, we further formulate FL as

an optimization problem with constraint conditions, defined as:

P1 :


𝑊 ∗ = argmin

𝑊

{
𝐹 (𝑊 ) :=

𝑁∑︁
𝑖=1

(𝑝𝑖 · 𝑓𝑖 (𝑤𝑖 ))
}
,

𝑤∗
𝑖 = argmin

𝑤𝑖

{𝑓𝑖 (𝑤𝑖 )} , 𝑖 = 1,· · ·, 𝑁 ,

s.t. 𝛼𝑖 (𝑡) · 𝐸𝑐𝑚𝑝

𝑖
(𝑡) + 𝐸𝑐𝑜𝑚𝑖 (𝑡) + 𝐸

′𝑐𝑜𝑚
𝑖 (𝑡) ≤ 𝐸𝑖 (𝑡),

𝑡 = 1,· · ·,𝑇 .

Note that 𝐸
𝑐𝑚𝑝

𝑖
(𝑡), 𝐸𝑐𝑜𝑚

𝑖
(𝑡), and 𝐸

′𝑐𝑜𝑚
𝑖

(𝑡) vary with time, as they

are strongly impacted by practical time-varying factors, such as

temperature, battery power, etc.

D.2 Strategy exploration under resource
heterogeneity

In practice, heterogeneous local resources restrict the model train-

ing process to a great extent, thereby significantly impacting the

balance that PAGE achieves. Particularly, clients with limited com-

putation or communication resources might fail to complete the lo-

cal training or model uploading using the obtained optimal strategy

within a stipulated time window. Fortunately, resource heterogeneity
only restricts the operations of clients instead of CS, as CS usually
has ample computation and communication resources. Thus, if for-

mulating P1 as a feedback multi-stage MLSF Stackelberg game, the

Server-level sub-game P′
1_CS and its strategy exploration process

would be totally the same as P′
0_CS. Yet, the Client-level sub-game

of every 𝑐𝑖 should incorporate the resource constraints, denoted by

P′
1_𝑐𝑖 and defined as:

P′
1_𝑐𝑖 : max

𝜇𝑖 ( ·)
𝐽𝑖 (·),

s.t. 𝑏𝑖 (𝑡) ≤ 0, 𝑡 = 1,· · ·,𝑇 ,

where 𝑏𝑖 (𝑡) = 𝛼𝑖 (𝑡) · 𝐸𝑐𝑚𝑝

𝑖
(𝑡)+𝐸𝑐𝑜𝑚

𝑖
(𝑡)+𝐸′𝑐𝑜𝑚

𝑖
(𝑡)−𝐸𝑖 (𝑡).

In contrast to P′
0_𝑐𝑖 , P

′
1_𝑐𝑖 cannot be solved by DDPG directly,

as the complexity is significantly exacerbated in domains where

𝐽𝑖 (·) and the constraints require joint optimization. Therefore, we

convert P′
1_𝑐𝑖 into its Lagrangian dual problem [2]

˜P′

1_𝑐𝑖 , expressed
as:

˜P′

1_𝑐𝑖 : min

𝜆𝑖 (𝑡 )
max

𝜇𝑖 ( ·)
𝐽𝑖 (·), 𝑡 = 1,· · ·,𝑇 ,

where 𝐽𝑖 (·) = 𝐽𝑖 (·) −
∑𝑇
𝑡=1 (𝜆𝑖 (𝑡) ·𝑏𝑖 (𝑡)), and 𝜆𝑖 (𝑡) ≥ 0 is the La-

grangian multiplier.

Hence,
˜P′

1_𝑐𝑖 could be optimized by DDPG with some modifi-

cations. In detail, on the one hand, 𝐽𝑖 (·) is changed to 𝐽𝑖 (·) when
updating 𝜃

𝜇

𝑖
(𝑡). On the other hand, after updating the DDPG model

parameters in every 𝑡-th training round, 𝜆𝑖 (𝑡) should be updated

accordingly, shown as:

𝜆𝑖 (𝑡) = 𝜆𝑖 (𝑡−1) − 𝑙
𝐿𝑎𝑔

𝑖
· ∇𝜆𝑖 𝐽𝑖 (𝑡−1), (17)

where 𝑙
𝐿𝑎𝑔

𝑖
is the learning rate, and ∇𝜆𝑖𝐽𝑖 (𝑡−1) is the gradient.
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D.3 Theoretical analysis of the conversion
The rationality of the conversion from P′

1_𝑐𝑖 to
˜P′

1_𝑐𝑖 mainly cor-

responds to the existence of the Lagrangian dual problem and the

equivalence of the two problems. For the existence, we first provide

some basic definitions and assumptions.

Definition 6. The lowest-consumption policy, which generates
actions consuming minimum resources in each training round, is
denoted by 𝜇𝑙𝑜𝑤

𝑖
(·) and defined as:

𝜇𝑙𝑜𝑤𝑖 (·) = argmin

𝜇𝑖 ( ·)
𝐻 (𝑎𝑙𝑜𝑤𝑖 (𝑡)), 𝑡 = 1,· · ·,𝑇 , (18)

where𝑎𝑙𝑜𝑤
𝑖

(𝑡) is the action consumingminimum resources,𝐻 (𝑎𝑙𝑜𝑤
𝑖

(𝑡)) =
𝛼𝑙𝑜𝑤
𝑖

(𝑡) · 𝐸𝑐𝑚𝑝

𝑖
(𝑡) + 𝐸𝑐𝑜𝑚

𝑖
(𝑡) + 𝐸′𝑐𝑜𝑚

𝑖
(𝑡) is the resource consumed by

𝑎𝑙𝑜𝑤
𝑖

(𝑡), and 𝛼𝑙𝑜𝑤
𝑖

(𝑡) is the local training epoch in 𝑎𝑙𝑜𝑤
𝑖

(𝑡).
Definition 7. The highest-consumption policy, which generates

actions consuming maximal resources in every training round, is
denoted by 𝜇

ℎ𝑖𝑔ℎ

𝑖
(·) and defined as:

𝜇
ℎ𝑖𝑔ℎ

𝑖
(·) = argmin

𝜇𝑖 ( ·)
𝐻 (𝑎ℎ𝑖𝑔ℎ

𝑖
(𝑡)), 𝑡 = 1,· · ·,𝑇 , (19)

where𝑎ℎ𝑖𝑔ℎ
𝑖

(𝑡) is the action consumingmaximal resources,𝐻 (𝑎ℎ𝑖𝑔ℎ
𝑖

(𝑡)) =
𝛼
ℎ𝑖𝑔ℎ

𝑖
(𝑡) · 𝐸𝑐𝑚𝑝

𝑖
(𝑡) + 𝐸𝑐𝑜𝑚

𝑖
(𝑡) + 𝐸′𝑐𝑜𝑚

𝑖
(𝑡) is the resource consumed by

𝑎
ℎ𝑖𝑔ℎ

𝑖
(𝑡), and 𝛼ℎ𝑖𝑔ℎ

𝑖
(𝑡) is the local training epoch in 𝑎ℎ𝑖𝑔ℎ

𝑖
(𝑡).

Assumption 1. The total resources under the lowest-consumption
policy are strictly feasible, expressed as:

𝐻 (𝑎𝑙𝑜𝑤𝑖 (𝑡)) < 𝐸𝑖 (𝑡), 𝑡 = 1,· · ·,𝑇 . (20)

Assumption 2. The consumed resources exceed the total resources
under the highest-consumption policy, expressed as:

𝐻 (𝑎ℎ𝑖𝑔ℎ
𝑖

(𝑡)) > 𝐸𝑖 (𝑡), 𝑡 = 1,· · ·,𝑇 . (21)

Thus, the existence of the Lagrangian dual problem can be drawn

in Theorem 2.

Theorem 2. The optimal value of 𝜆𝑖 (𝑡) always exists and is posi-
tive under Assumption 1 and Assumption 2.

Proof. In practice, Assumption 1 and Assumption 2 are nat-

urally held. On the one hand, Assumption 1 discloses that any

potential policy of
˜P′

1_𝑐𝑖 would not derive an over-exceeded re-

source consumption. Therefore, P′
1_𝑐𝑖 and

˜P′

1_𝑐𝑖 always have a

strictly feasible solution. On the other hand, under Assumption 2, a

positive optimal Lagrangian multiplier would penalize the violation

of the total resource constraint. Conversely, if the consumption of

𝜇
ℎ𝑖𝑔ℎ

𝑖
(·) does not exceed 𝐸𝑖 (𝑡), ˜P

′

1_𝑐𝑖 degrades into P′
0_𝑐𝑖 , which

completes the proof. □

Theorem 2 not only discloses the existence of the Lagrangian

dual problem of P′
1_𝑐𝑖 , but also provides a prerequisite to the equiv-

alence of the Lagrange-based conversion. Consequently, the equiv-

alence of such a Lagrange-based conversion from P′
0_𝑐𝑖 to

˜P′

1_𝑐𝑖 is
given in Theorem 3.

Theorem 3. For P′1_𝑐𝑖 and P̃

′

1_𝑐𝑖 with any 𝜆𝑖 (𝑡), there exists a
feasible 𝜇𝑖 (·), such that 𝐽 ∗

𝑖
(·) ≤ 𝐽 ∗

𝑖
(·), where 𝐽 ∗

𝑖
(·) and 𝐽 ∗

𝑖
(·) are the

optimal values of 𝐽𝑖 (·) and 𝐽𝑖 (·), respectively.

Proof. We first recall some basic definitions and lemmas.

Definition 8 (Slater condition). [34] For P′1_𝑐𝑖 or P̃
′

1_𝑐𝑖 , there

exists a 𝜇𝑖 (·) ∈ relint

(
𝑇⋂
𝑡=1

𝑑𝑜𝑚 (𝑏𝑖 (𝑡))
)
, such that 𝑏𝑖 (𝑡) < 0, 𝑡 =

1,· · ·,𝑇 .

Lemma 1 (Strong Duality). [7] Suppose that Slater condition
holds, and 𝐽𝑖 (·) is convex, 𝐽 ∗𝑖 (·) = 𝐽 ∗

𝑖
(·).

Lemma 2 (Weak Duality). [7] 𝐽 ∗
𝑖
(·) is upper bounded by 𝐽 ∗

𝑖
(·),

i.e., 𝐽 ∗
𝑖
(·) ≤ 𝐽 ∗

𝑖
(·).

Since 𝐽𝑖 (·) is defined as the discounted accumulation of immedi-

ate rewards based on the loss function of FL, the convexity of 𝐽𝑖 (·)
is ambiguous. Thus, we discuss the equivalence of P′

1_𝑐𝑖 and
˜P′

1_𝑐𝑖
by category.

If 𝐽𝑖 (·) is convex, according to Lemma 1,
˜P′

1_𝑐𝑖 is apparently
equivalent to P′

1_𝑐𝑖 . In contrast, if 𝐽𝑖 (·) is non-convex, the Strong
Duality does not hold anymore. Still, according to Lemma 2, the

convexity can be loosed. Therefore, the optimal value of
˜P′

1_𝑐𝑖 is
approximate to the optimal value of P′

1_𝑐𝑖 , which completes the

proof. □
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