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Abstract—It is often challenging to obtain large number of
labeled data for retinal layer segmentation in optical coherence
tomography scans due to the need for expert ophthalmologists.
On the other hand, huge quantities of unlabeled scans are often
collected in medical centers. In this work, we propose a novel
generative adversarial learning framework, GOctSeg, for semi-
supervised retinal layer segmentation. GOctSeg consists of a U-
Net generator, a discriminator, and a segmentor. The generation
of synthetic images from synthetic labels is performed with the
U-Net generator, which is used as input together with labeled
B-scan patches into the Segmentor network for retinal layer
boundary regression. We have also evaluated our methodology
on two datasets, the Data Resource for Multiple Sclerosis and
Healthy Controls and the Duke University Diabetic Macular
Edema dataset and demonstrated that our method outperformed
or is comparable to other state-of-the-art methods with limited
labels for boundary regression. Furthermore, we investigated the
performance of GOctSeg on images with low signal-to-noise ratio
or with blurred boundaries and showed that our methodology
remained robust. Through ablation studies, we demonstrated
the utility of synthetic labels for generative learning to guide
in semi-supervised retinal layer segmentation. We envision that
this methodology can be used to significantly reduce the effort
required to obtain labels when there is label scarcity in clinical
settings.

Index Terms—Segmentation, Life and Medical Sciences, Ma-
chine learning, Computer vision

I. INTRODUCTION

Retinal layer thickness is a critical imaging biomarker
for both ophthalmic and nonophthalmic diseases. Retinal
layer thickness can be measured noninvasively at micrometer-
resolution by optical coherence tomography (OCT) [1]. The
OCT scans are usually acquired in 3D volumes of B-scans,
with each B-scan as a sequence of A-scans. Each A-scan,
or single axial scans, indicates the composition of optical
reflectance at a certain point through the tissue depth. The
sequence of A-scans makes up a cross-sectional image of the
retina, or B-scan, by imaging across the tissue [2]. Retinal
layer thickness has been shown to be a useful diagnostic
biomarker for early age-related macular degeneration, where
studies have shown a statistically significant thickening of
retinal pigment epithelium and a reduction of photoreceptor
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thickness [3]. In addition, it also has promising applications in
early diagnosis of Alzheimer’s Disease (AD) where significant
thinning of retinal nerve fiber layer and inner and outer
macular rings were observed in AD subjects [4]. OCT is
commonly used to image the retinal layers, which are layers
of multiple structured layers of cells and synapses. These
layers are shown in Fig. 1. However, manual ground truth
of retinal layers is often challenging to obtain, and associated
with potential inter and intra-observer variability. Moreover,
speckle noise and blurring due to motion are typically present
in OCT images [5], [6]. To reduce the need for manual
labels, automatic OCT layer segmentation algorithms have
been developed over the years.

Recently, deep learning methods have been proposed to
be used for retinal layer segmentation and achieved state-of-
the-art results. A number of these approaches are based on
either convolutional neural networks [7], [8] or long short-term
memory networks (LSTM) [9], which require large labeled
datasets for training. However, label paucity due to the need
for expert ophthalmologists input necessitates the need for
semi-supervised approaches to reduce the annotation burden
required. To reduce annotation need, multiple approaches, such
as pseudo-labelling [10], vector quantization [11], and task
and data level consistency supervision [12] were introduced.
Clustering approaches [13] were also introduced in other areas
such as intravascular OCT. In addition, as each retinal layer
is extremely thin, sub-pixel accuracy is desired for retinal
layer segmentation. Another feature of these retinal layers is
that they have strict biological ordering. To address the need
for sub-pixel level accuracy and anatomical constraints, He et
al. [14] proposed a residual U-Net with two output branches
to obtain pixel-wise layer segmentation probability prediction
and a softmax mapping for probability distribution of bound-
ary predictions. Topological ordering was imposed using an
iterative topology module. SD-LayerNet [15], by Fazekas et
al., also ensures the correct topological ordering through the
use of a fully differentiable topological engine. Adversarial
learning has also been used for semi-supervised segmentation.
SGNet consists of a segmentation and a discriminator network
to utilize unlabeled data [16].

In this paper, we propose a novel generative adversarial
learning for semi-supervised retinal layer segmentation, called
GOctSeg. GOctSeg consists of a Generator, a Discriminator,
and a Segmentor network, which is trained in an end-to-end
manner. We hypothesize that by utilizing prior knowledge of



Fig. 1. Retinal layers on an OCT B-scan. There are multiple retinal layers
which can be captured with SD-OCT.

the biological ordering of retinal layers to generate synthetic
labels, and the adversarial learning of the distribution of retinal
images, GOctSeg requires less labeled data to attain reasonable
performance for layer segmentation. The contributions of the
paper are summarized as follows:

1) We propose a generative adversarial learning approach
for semi-supervised retinal layer segmentation.

2) We propose to synthesize labels and incorporate the
knowledge of the biological ordering of retinal layers
for model training.

3) Instead of utilizing all the labels, we use a limited
number of labels, namely, 6, 30, and 60 labels, for model
training.

4) We investigated the performance of our approach on
noisy and diseased images and demonstrated that our
approach was able to perform consistently even in
images with low signal-to-noise ratio or with blurred
boundaries.

II. METHODS

The proposed model (Fig. 2), named as GOctSeg, consists
of a Generator G, a Segmentor S, and a Discriminator D. G
generates OCT images Is from an input synthetic layer label
Ys, where s indicates that it is synthetic. D aims to differentiate
the synthetic OCT images Is from real OCT images Ir, where
r indicates a real OCT image. S aims to segment the layers of
Is, which is expected to be the same as Ys. Simultaneously,
it aims to segment the layers of labeled OCT images Il.

A. Generator

G has a U-Net structure which consists of 4 blocks in the
contracting path and 3 blocks in the expansive path. Each
block consists of 2 convolutional layers with group normal-
ization, ReLU, and dropout of 0.5 between them. The use of
dropouts was added during experimentation to improve the
model performance. The output layer is a 1× 1 convolutional
layer with 1 output channel.

B. Discriminator

D tries to minimize the distribution differences between Is
and Ir through their encodings D(Is) and D(Ir). This allows
the synthetically generated image Is to be as similar as possi-
ble to an actual OCT image Ir in terms of the appearance and
texture. It consists of 5 convolutional layers, with 64, 128, 256,

512, and 1 output channels, respectively. The architecture is
adapted from [17], with batch-normalization and LeakyReLU,
except that there is no batch normalization between the first
and second convolutional layer, and the last layer.

C. Segmentor

S maps the synthetically generated image Is to predicted
labels Ŷs and B̂s, or image Il to Ŷl and B̂l. In our imple-
mentation, each batch contains data from synthetic images Is
and real-world labeled OCT images Il in a 1:1 ratio. The
architecture of the Segmentor is given in Fig. 3. It comprises
an Attention U-Net of 7 convolutional blocks, followed by two
output branches. The first branch, conv-s, outputs a pixelwise
segmentation of the different layers, whereas the second
branch, conv-b, outputs N boundary position distributions.
Both branches, conv-s and conv-b, consist of a residual block
followed by a 1×1 convolutional layer, similar to that in [14].
Each convolutional block consists of two 3× 3 convolutional
layers with group normalization, ReLU activation, and for the
contracting path, a dropout of 0.5. In the expansive path, an
attention gate module [18] is introduced.

1) Gated Attention: Let l denote a convolution layer in the
last 3 convolutional blocks (l = 5, 6, 7). Gated attention [18]
utilizes the skip connection feature input q8−l for 5 ≤ l ≤ 7
and the output from the previous block ol−1 to generate an
attention map αl. ol−1 acts as a query to determine focus areas
of q8−l. The output ol−1 consists of NF,l−1 feature maps,
where F represents feature maps. A 1 × 1 convolution and
group normalization are performed on ol−1 to obtain zl:

zl = GroupNorm(W l
oo

l−1 + βl
o) (1)

where W l
o ∈ RNF,l×NF,l−1×1×1 and βl

o denote the weight
matrix and bias vector for the layer l. This is followed by
an upsampling operation to obtain ẑl. Similarly, a 1 × 1
convolution and group normalization are performed on skip
connection feature input, q8−l, to obtain output q̂8−l:

q̂8−l = GroupNorm(W 8−l
q q8−l + β8−l

q ) (2)

W 8−l
q ∈ RNF,l×NF,8−l×1×1 and β8−l

q denote the skipped
connection weights and biases, respectively.

The attention scores αl are computed for convolutional
block l as

αl = ρ1
(
BatchNorm

(
W l

α(max(0, (ẑl + q̂8−l))) + βl
α

))
.
(3)

where W l
α ∈ R1×NF,l×1×1 are convolution weights with 1×1

kernel size. ρ1 refers to the nonlinear sigmoid operation. The
attention scores are then multiplied elementwise with the skip
connection feature input, q8−l, to identify salient features in
the skip connection. The attention scores weigh the importance
of the different parameters in q8−l to the final output.

q8−l
α = q8−l ∗ αl (4)

∗ denotes element-wise multiplication. ol−1 is upsampled from
the previous layer using bilinear interpolation to obtain ôl−1.
Finally, q8−l

α is concatenated with the upsampled output ôl−1.



Fig. 2. Training procedure of GOctSeg. In each epoch, the Generator, Discriminator and Segmentor are updated. In the first stage, the Generator takes in
synthetic label Ys as the input to generate Is. The Discriminator takes in generated Is and Ir , an image from the training dataset, and computes the loss
between the two distributions. Next, Is is used as input to the Segmentor, which is an Attention U-Net with two output branches to obtain Ŷs and B̂s.
As there is forward propagation through both the Generator and Segmentor during training, both networks are jointly trained by back-propagating both the
segmentor and generator loss. Finally, Il from the labeled dataset is used as input to the Segmentor to obtain Ŷl and B̂l. The model is updated with the
supervised losses.

Fig. 3. Model architecture of Segmentor.

2) Boundary Position Regression and Topological Correc-
tion: In conv-b, the output from the Attention U-Net is passed
into a residual block followed by a 1× 1 convolutional layer
with N channels. A column-wise softmax is performed to
obtain boundary position probabilities p(B̂; θ) for input image
I . The final boundary position B̂ is obtained with soft argmax
across J rows as in [14]: B̂ =

∑J
j=1 j · p(B̂|I; θ).

For real OCT images Il, topological correction is imposed
on {Bx}x=X

x=1 for all X A-scans to consider the anatomical

constraint of the retinal layers [14], [15].

B̂x
n+1 = B̂x

n +max(0, B̂x
n+1 − B̂x

n), (5)

where n denotes the nth layer of the total N layers.

III. EXPERIMENTS

A. Datasets and Data Preparation

Two independent datasets were used.



1) DRMSHC: The DRMSHC [14], [19], [20]1 consists of
OCT volumetric scans of 14 healthy and 21 multiple sclerosis
(MS) patients acquired using a Spectralis OCT system. Each
macular cube scan consists of 49 B-scans, where 1 B-scan
consists of 1024 A-scans and each A-scan has 496 pixels
with a resolution of approximately 3.87 micrometers per pixel.
Manual annotations delineate 8 layers, namely, Retinal Nerve
Fiber Layer (RNFL), Ganglion Cell Layer (GCL) + Inner
Plexiform Layer (IPL), Inner Nuclear Layer (INL), Outer
Plexiform Layer (OPL), Outer Nuclear Layer (ONL), Inner
Photoreceptor Segments (IS), Outer Photoreceptor Segments
(OS), and Retinal Pigment Epithelium (RPE) resulting in 9
boundaries. The dataset was split into 12, 3, 20 patients for
training, validation, and testing. The first 8 and 12 participants
who are healthy and have multiple sclerosis respectively were
selected for the test dataset, totaling 980 B-scans.

2) Duke DME: The Duke University DME dataset (Duke
DME) [21] consists of 10 volumetric scans of patients with
severe DME and acquired with the Spectralis device with an
axial resolution of 3.9 micrometers per pixel and a lateral
resolution of 11.07 to 11.59 micrometers per pixel. Each
volumetric scan consists of 61 B-scans, of which 11 B-scans
from 10 patients are annotated by 2 ophthalmologists and the
rest are unlabeled. There are 7 layers delineated: RNFL, GCL
+ IPL, INL, OPL, ONL + IS, OS, and RPE. In addition, there
are unannotated regions in certain A-scans for certain layers.
3-fold cross validation was used.

During training, each B-scan was cropped into images
of 496 × 128 pixels with a stride of 64. For DRMSHC,
this corresponded to 15 images, resulting in 8820 and 2205
images in the training and validation dataset, respectively. The
whole DRMSHC training dataset was used as the Ir. For the
Duke DME dataset, A-scans corresponding to regions where
annotations were missing in the periphery of the labeled B-
scans were removed. In total, there were 6 to 7 images per B-
scan for the labeled dataset, corresponding to 748 images, and
11 images per B-scan for the unlabeled dataset, corresponding
to 5500 images. The labeled B-scans were used as Il and both
labeled and unlabeled B-scans were used as Ir.

Each B-scan, their ground truth label, and boundaries were
flattened to the estimate of the Bruch’s membrane (BM) and
their background was removed [22]. The preprocessing steps
were based on https://github.com/heyufan1995/oct preprocess.
They were shifted to a mean starting position of 248 pixels
(half the height of the B-scan) and a standard deviation of 30
pixels, modelling on a normal distribution to add variability in
vertical position. Training with full-width OCT B-scans was
limited by the available RAM and cropping increased data
size. At test time, the B-scan was not cropped to save time,
but was flattened as a whole [23]. It was shifted vertically by
248 pixels, and the background was removed.

B. Synthetic Labels Generation
Synthetic labels Ys and corresponding boundaries Bs were

generated during data preparation. As a simplification, the

1It is obtained from https://iacl.ece.jhu.edu/index.php/Resources

thickness of the nth retinal layer was modelled as a random
normal variable tn with mean µtn and standard deviation σtn .
During training, average thickness µtn and the standard devia-
tion σtn of the layer thickness were computed for the training
dataset. Through computing the thickness of all layers and
applying random vertical translations, we obtained Ys. Bs was
generated by computing the vertical positions at each A-scan
of the layer surfaces. The synthetic labels incorporated prior
information regarding the positional ordering and thickness of
the different retinal layers.

C. Training Procedure

The model was trained in three steps. Firstly, the Dis-
criminator was updated via the discriminator losses. Next,
we computed the semi-supervised Segmentor losses Jl1,s and
Jdice,s and the Generator loss on the synthetic images. As
the synthetic images from the Generator were used as inputs
into the Segmentor, Jl1,s and Jdice,s were used to train the
Generator as well via backpropagation. Finally, we finetuned
the Segmentor with Jl1,l and Jdice,l on the labeled images.

1) Generator Loss: The generator loss minimizes the dis-
tribution differences between the generated synthetic images
and real OCT images:

JG = EY∼py(Y )[(D(G(Ys))− r)2] (6)

where r represents whether the image is real, and is an array
of 1.

2) Segmentor Loss: Assuming that Is falls within the
distribution of Il, the segmentation of Is to obtain predicted Ŷs

should be as similar as possible to the original synthetic labels
Ys. Similarly, the segmentation of Il to obtain predicted Ŷl and
should also be as similar as possible to the ground truth labels
Yl. We compute the segmentor losses as a combined Dice and
Smooth ℓ1 loss.

The Dice loss can be computed between predicted Ŷs and
original synthetic labels Ys, and between Ŷl and Yl, with ϵ as
a smoothing constant. Let v(j, x) be a pixel of j-th row and
x-th A-scan, and V be the set of all pixels. The Dice loss
between Ŷs and Ys is given as follows:

Jdice,s =
1

Ns + 1

Ns+1∑
s=1

(1−
ϵ+

∑
v∈V 2Ŷs(v)Ys(v)

ϵ+
∑

v∈V Ys(v) +
∑

v∈V Ŷs(v)
).

(7)
The smooth ℓ1 loss can be used between B̂s and the

synthetic ground truth boundaries Bs, and between B̂l and
labeled ground truth boundaries Bl [14]. The smooth ℓ1 loss
between B̂s and Bs is given as follows:

Jl1,s =

1

NbX

Nb∑
b=1

Nx∑
x=1

(0.5(dx)21(|dx| < 1) + (|dx| − 0.5)1(|dx| ≥ 1))

(8)

where dx represents the difference between the predicted
and the actual boundary positions for 1 A-scan.

The combined loss for the joint training of the generator
and segmentor using synthetic images is computed by



Js = λ1Jdice,s + λ2Jℓ1,s + JG. (9)

For the labeled images, it is computed by

Jl = λ3Jdice,l + Jℓ1,l (10)

where Jdice and Jℓ1 denote the Dice loss and smooth ℓ1 loss
respectively and λ1, λ2, λ3 control the balance of the losses.
λ1, λ2, λ3 are weighing hyperparameters to be optimized.

3) Discriminator Loss: The loss function for the Discrim-
inator is computed as

JD =

1

2
EI∼pdata(I)[(D(Ir)− r)2] +

1

2
EY∼py(Y )[(D(G(Ys))− s)2]

(11)

where r and s represent whether the image is real or synthetic
via arrays of 1 or 0.

D. Implementation Details

The models were trained on a NVIDIA Tesla V100 GPU,
using Python 3.7.12 and PyTorch 1.11.0. Adam optimizer with
a beta of 0.5 was used.

1) DRMSHC: Hyperparameter optimization was performed
with Tune library [24] using the training partition with 6
randomly selected labeled images as Il. Random search of
15 trials with Async Successive Halving Algorithm (ASHA)
scheduler was performed over the parameter space of learning
rate λlr = [1×10−5, 5×10−4, 1×10−4, 5×10−3, 1×10−3, 5×
10−2, 1×10−2] and weighting parameters, λ1 to λ3 which was
[0.02, 0.1, 0.5, 1, 5, 10, 50] for 50 epochs. The hyperparameters
and epoch that yielded the lowest mean absolute error (MAE)
on the validation set were selected, which were: λ1 = 0.5,
λ2 = 0.5, λ3 = 0.02, λlr = 0.001, and epoch as 25. Next, we
combined the validation and training set to train the model.

2) Duke DME: Nested 3-fold cross validation was per-
formed, with the outer loop used to estimate the model
generalization error and the inner loop used for hyperpa-
rameter optimization. In each inner loop, 15 random trials
were performed over the same parameter space of λlr, λ1,
λ2, and λ3 as DRMSHC and the hyperparameters which
yielded the lowest MAE on the validation fold were selected.
As only 11 of 61 B-scans from each volumetric scan were
labeled, both the labeled and unlabeled images were used to
train the Discriminator. During training, A-scans with missing
annotation were removed from the loss computation. After
tuning, we combined the validation and training partition of
inner loop to obtain the outer train set for each outer fold.

The images were augmented by random horizontal flipping
with a probability of 0.5. Batch size of 8, with 4 labeled
and 4 unlabeled images, was used. Instead of training the
model using all labels, we selected the following quantities
for training, with the rest of images used as Ir: (i) 6 labeled
images; or (ii) 30 labeled images; or (iii) 60 labeled images,
randomly selected from the whole labeled dataset.

IV. RESULTS

At test time, only the Segmentor network was used to
predict on the test dataset.

A. Comparison with existing approaches

We implemented our approach on the DRMSHC dataset
and compared with SD-LayerNet [15]2, a semi-supervised
approach; the method by He et al. [14], which is fully
supervised, and which we termed as Structured-Layer; and
SGNet, another semi-supervised approach [16]. For com-
parison, we performed similar preprocessing steps involving
retina flattening, background removal, and patch extraction
for all methods. SD-LayerNet was implemented with 1 tex-
ture factor, batch size of 8 with 4 labeled and 4 unlabeled
images, and gradient clipping of 0.5. To standardize for time
and computational resources, we standardized the epochs for
both SD-LayerNet and GOctSeg. For Structured-Layer, it was
replicated based on [14], except with no vertical scaling, with
gradient clipping of 0.5, same weight for pixels around the
surfaces, and batch size of 4. Hyperparameter optimization
determined the optimal epoch for convergence. For SGNet,
the implementation was replicated based on [16], with lambda
as 1, no random cropping, and gradient clipping of 20. The
median frequency balance was computed based on the labeled
data. Hyperparameter optimization determined the optimal
learning rate and epoch to prevent instabilities. To obtain the
MAE and root-mean-square error (RMSE) for SGNet, which
is a segmentation approach, boundary tracing was done on
the predictions. 3-fold cross validation was performed for all
methods for Duke DME dataset. We evaluated all methods on
the test dataset on MAE, RMSE, and Dice.

From Table I, it can be seen that our approach was sta-
tistically significantly better than other approaches for 6, 30
and 60 images using the one-tailed Wilcoxon signed-rank
test for MAE and RMSE (p-values of comparison for 6
images for MAE: GOctSeg vs SD-LayerNet: 3.6 × 10−162,
GOctSeg vs SGNet: 4.8 × 10−162, GOctSeg vs Structured-
Layer: 3.0×10−162). Using Dice, we observed that Structured-
Layer performed better for 30 and 60 images, as semantic
segmentation is an easier task than boundary regression. When
the experiment for Structured-Layer was repeated with the full
labeled dataset, we obtained 3.78µm for MAE, which is almost
equivalent to the MAE of GOctSeg for 60 labeled images.

When we computed the MAE by the different boundaries
as seen in Fig. 4, our approach performed comparably across
all boundaries, other than the boundary between RNFL and
GCL+IPL. In contrast, Structured Layer trained on 6 labeled
images had very large mean MAE for many boundaries.
Although SD-LayerNet also performed reasonably well, there
was a higher mean MAE for all boundaries with 6 labeled
images, for all boundaries except upper boundary of RNFL
for 30 images, and for all boundaries with 60 labeled images.
While GOctSeg should perform better with 30 labeled images,

2The implementation of SD-LayerNet used was
https://github.com/ABotond/SD-LayerNet.



TABLE I
COMPARISON OF GOCTSEG WITH SD-LAYERNET, SGNET, AND

STRUCTURED-LAYER ON THE DRMSHC DATASET FOR 6, 30, AND 60
LABELED IMAGES. AXIAL RESOLUTION WAS 3.87 MICROMETERS PER
PIXEL (MPP). THE * INDICATES A P-VALUE ≤ 0.05 WHEN COMPARING

WITH GOCTSEG USING THE ONE-SIDED WILCOXON SIGNED-RANK TEST.

Metric Method 6 30 60

MAE

GO 4.25 ± 3.08 4.94 ± 7.73 3.77 ± 2.83
SDLN 7.38 ± 6.18* 6.32 ± 5.50* 4.85 ± 3.22*
SGN 7.55 ± 8.00* 7.39 ± 6.86* 7.64 ± 7.63*
SL 35.82 ± 16.75* 8.73 ± 5.04* 7.18 ± 4.72*

RMSE

GO 6.22 ± 5.54 6.91 ± 9.12 5.42 ± 5.00
SDLN 13.93 ± 12.47* 11.27 ± 11.25* 7.97 ± 7.23*
SGN 12.62 ± 19.42* 11.52 ± 15.33* 11.94 ± 15.86*
SL 39.64 ± 16.97* 10.39 ± 6.49* 8.25 ± 5.08*

Dice a

GO 0.86 ± 0.07 0.85 ± 0.12 0.87 ± 0.07
SDLN 0.82 ± 0.10* 0.84 ± 0.09* 0.86 ± 0.08*
SGN 0.84 ± 0.09* 0.84 ± 0.09* 0.83 ± 0.09*
SL 0.44 ± 0.35* 0.86 ± 0.07 0.89 ± 0.06

Dice b

GO 0.87 ± 0.07 0.86 ± 0.12 0.88 ± 0.07
SDLN 0.82 ± 0.10* 0.84 ± 0.09* 0.86 ± 0.08*
SGN 0.79 ± 0.10* 0.79 ± 0.10* 0.79 ± 0.11*
SL 0.21 ± 0.21* 0.60 ± 0.36* 0.64 ± 0.37*

a Dice computed from predicted semantic segmentations.
b Dice computed from predicted boundaries.
GO: GOctSeg, SDLN: SD-LayerNet, SGN: SGNet, SL: Structured-Layer.

the slightly higher MAE was due to outliers in the predicted
segmentation for a minority of the images. When comparing
the 50th percentile of mean MAE of B-scan, we obtained
3.85µm with 6 images, compared to 3.74µm with 30 images.

B. Ablation studies

We also conducted two ablation studies, (i) training the
Segmentor network in a fully supervised manner (GOctSeg-
Sup) and (ii) training the Generator and Disciminator first to
generate synthetic images, followed by training the Segmentor
on the synthetic and labeled images (GOctSeg-Sep). Table
II shows the model performance of GOctSeg, GOctSeg-Sup,
and GOctSeg-Sep. We observed that our approach had the
lowest mean MAE and RMSE in the 6 and 60 images
setting (p-values of MAE for 6 images’ comparison: GOctSeg
vs GOctSeg-Sup: 3.0 × 10−162, GOctSeg vs GOctSeg-Sep:
2.3 × 10−137). Using one-sided Wilcoxon signed-rank test,
we obtained statistical significance of p = 1.1 × 10−6 when
comparing GOctSeg-Sep and GOctSeg for 30 labeled images,
with GOctSeg having more predictions with a lower MAE.
Upon investigation, the 50th percentile of mean MAE per b-
scan for GOctSeg-Sep with 30 labeled images was 3.81µm
compared to 3.74µm for GOctSeg.

C. Implementation on Duke DME dataset

The Duke DME dataset contains eyes with severe DME
pathology. Table III shows a comparison of the mean metric
and range of GOctSeg, SD-LayerNet, SGNet, and Structured-
Layer on the Duke DME dataset for 6, 30, and 60 labeled
images for 3-fold cross validation. Our approach performed
significantly better than SD-LayerNet, SGNet, and Structured
Layer for 6 labeled images on MAE and RMSE, as seen from
Table III. From Fig. 5 we observed that GOctSeg had smoother
segmentation compared to SD-LayerNet at 6 images. For the

Fig. 4. Bar plot of the MAE (µm) by boundary for DRMSHC dataset with 6,
30, and 60 labeled images. Error bar represents the standard deviation. x-axis
represents the 9 boundaries, where RNFL upper, RNFL-GCL+IPL, and RPE
lower indicate the upper boundary of RNFL, boundary between RNFL and
GCL+IPL, and lower boundary of RPE respectively.

limited number of labeled images, Structured Layer appeared
to be unable to delineate the layers properly, but was able to
do so with enough labeled images, i.e. 60 images.

D. Comparison under noisy conditions

Next, we investigated the performance of GOctSeg with SD-
LayerNet under different noisy scenarios at 6 images. We com-
pared with SD-LayerNet as it had the closest performance to
GOctSeg. In the first three scenarios, we investigated reducing
the signal-to-noise ratio of the images by approximately 10%,
20%, and 40% (10% red, 20% red, and 40% red on Table IV).
This was done by adding Gaussian noise with mean of 0 and
standard deviation, empirically determined by calculating the
decrease in signal-to-noise ratio via adding varying amounts of
Gaussian noise, to the volumetric scans and then clipping the
images from 0 to 1. In the next two scenarios, we investigated
adding Gaussian noise only at the high frequency components
for boundary blurring. In the fourth scenario (i.e. FT on Table
IV), we performed Fourier transform on the image and adding
Gaussian noise at the periphery of the real component of the



TABLE II
ABLATION STUDIES ON THE DRMSHC DATASET FOR 6, 30, AND 60

LABELED IMAGES. * INDICATES A P-VALUE ≤ 0.05 WHEN COMPARING
WITH GOCTSEG USING THE ONE-SIDED WILCOXON SIGNED-RANK TEST.

Metric Method 6 30 60

MAE
GO 4.25 ± 3.08 4.94 ± 7.73 3.77 ± 2.83
GO-Sup 14.07 ± 10.45* 7.61 ± 5.56* 9.28 ± 6.69*
GO-Sep 5.48 ± 4.83* 4.42 ± 3.83* 6.32 ± 5.02*

RMSE
GO 6.22 ± 5.54 6.91 ± 9.12 5.42 ± 5.00
GO-Sup 16.10 ± 11.28* 9.56 ± 6.66* 10.71 ± 7.00*
GO-Sep 7.82 ± 7.44* 6.44 ± 6.20* 8.64 ± 7.32*

Dice a
GO 0.86 ± 0.07 0.85 ± 0.12 0.87 ± 0.07
GO-Sup 0.50 ± 0.17* 0.81 ± 0.12* 0.85 ± 0.09*
GO-Sep 0.83 ± 0.09* 0.86 ± 0.08 0.79 ± 0.12*

Dice b
GO 0.87 ± 0.07 0.86 ± 0.12 0.88 ± 0.07
GO-Sup 0.50 ± 0.33* 0.69 ± 0.29* 0.61 ± 0.37*
GO-Sep 0.84 ± 0.10* 0.87 ± 0.08* 0.81 ± 0.12*

a Dice computed from predicted semantic segmentations.
b Dice computed from predicted boundaries.
GO: GOctSeg, GO-Sup: GOctSeg-Sup, GO-Sep: GOctSeg-Sep.

complex image. We performed inverse Fourier transform to get
the new images. In the fifth scenario (i.e. HPF on Table IV),
we performed high pass filtering of the image, added Gaussian
noise of mean 0 and sigma 0.05 to the high pass filtered image,
which was added with the low pass filtered image.

As shown on Table IV which compares the models over
various noisy conditions, GOctSeg performed robustly in most
noisy conditions and performed better in 20% SNR reduction,
10% SNR reduction, and boundary blurring conditions in
MAE, RMSE and Dice compared to SD-LayerNet.

V. DISCUSSION AND CONCLUSION

In this paper, we introduced a semi-supervised learning
generative adversarial learning framework for retinal layer
segmentation. Via our methodology, we propose the generation
of synthetic images from synthetic boundaries, which would
be able to capture positional and intensity changes of the

Fig. 5. Visualization of predicted boundaries on 2 B-scans from different
volumetric scans from Duke DME test dataset. Background is cropped for
visualization and images resized. From top to bottom: Ground Truth (GT),
predicted boundaries from GOctSeg, SD-LayerNet, SGNet, and Structured-
Layer at 6 labeled images.

TABLE III
COMPARISON OF GOCTSEG WITH SD-LAYERNET, SGNET, AND

STRUCTURED-LAYER ON DUKE DME DATASET FOR 6, 30, AND 60
LABELED IMAGES WITH 3-FOLD CROSS VALIDATION. AXIAL RESOLUTION

WAS 3.9 MPP.

Metric Method 6 30 60

MAE

GO 13.7 [12.8,15.4] 11.3 [9.0,15.0] 8.0 [5.3,10.0]
SDLN 17.6 [12.8,23.7] 9.2 [7.0,11.6] 8.4 [6.2,10.2]
SGN 19.3 [13.4,30.4] 11.3 [9.8,12.1] 10.7 [9.8,11.5]
SL 31.1 [26.7,36.2] 13.6 [10.2,16.6] 11.1 [8.2,16.6]

RMSE

GO 21.1 [20.5,22.4] 17.3 [15.5,20.3] 12.6 [7.8,15.4]
SDLN 27.1 [20.5,36.1] 14.9 [11.7,18.1] 13.6 [10.2,15.7]
SGN 28.9 [19.2,43.8] 16.7 [13.9,19.0] 15.8 [13.9,17.3]
SL 35.7 [31.8,38.8] 17.2 [12.9,20.3] 14.8 [11.1,20.8]

Dice a

GO 0.73 [0.72,0.74] 0.76 [0.65,0.82] 0.83 [0.79,0.87]
SDLN 0.73 [0.72,0.75] 0.82 [0.78,0.85] 0.83 [0.80,0.86]
SGN 0.72 [0.65,0.78] 0.78 [0.77,0.79] 0.79 [0.79,0.80]
SL 0.54 [0.44,0.62] 0.82 [0.81,0.84] 0.84 [0.82,0.86]

Dice b

GO 0.74 [0.73,0.76] 0.76 [0.67,0.80] 0.83 [0.80,0.87]
SDLN 0.71 [0.67,0.75] 0.81 [0.77,0.85] 0.82 [0.79,0.86]
SGN 0.72 [0.67,0.77] 0.77 [0.76,0.79] 0.78 [0.77,0.79]
SL 0.27 [0.18,0.33] 0.57 [0.45,0.69] 0.72 [0.53,0.82]

a Dice computed from predicted semantic segmentations.
b Dice computed from predicted boundaries.
GO: GOctSeg, SDLN: SD-LayerNet, SGN: SGNet, SL: Structured-Layer.

TABLE IV
COMPARISON OF GOCTSEG WITH SD-LAYERNET ON DUKE DME

DATASET FOR 6 LABELED IMAGES UNDER DIFFERENT NOISY CONDITIONS
WITH 3-FOLD CROSS VALIDATION.

Metric Method GO SDLN

MAE

40% red 17.3 [12.8,23.3] 16.1 [13.0,17.9]
20% red 14.7 [11.4,19.3] 16.2 [13.4,18.3]
10% red 12.0 [10.5,12.9] 17.6 [12.5,20.5]
FT 12.2 [10.3,15.0] 16.7 [11.2,21.3]
HPF 12.1 [10.2,14.6] 15.0 [11.6,16.8]

RMSE

40% red 26.2 [20.2,37.0] 25.7 [20.6,29.4]
20% red 23.9 [18.3,30.1] 25.2 [20.8,29.1]
10% red 19.2 [17.4,20.2] 27.7 [19.4,34.1]
FT 18.4 [15.9,21.3] 25.8 [17.6,31.5]
HPF 18.8 [16.1,22.2] 23.3 [18.2,26.6]

Dice a

40% red 0.72 [0.69,0.75] 0.72 [0.70,0.74]
20% red 0.75 [0.72,0.76] 0.73 [0.72,0.74]
10% red 0.76 [0.74,0.78] 0.71 [0.66,0.74]
FT 0.74 [0.72,0.75] 0.72 [0.66,0.77]
HPF 0.75 [0.72,0.78] 0.73 [0.70,0.76]

Dice b

40% red 0.70 [0.65,0.75] 0.72 [0.69,0.75]
20% red 0.76 [0.73,0.78] 0.71 [0.69,0.74]
10% red 0.78 [0.76,0.80] 0.70 [0.65,0.74]
FT 0.76 [0.73,0.78] 0.71 [0.66,0.77]
HPF 0.76 [0.73,0.79] 0.72 [0.68,0.77]

a Dice computed from predicted semantic segmentations.
b Dice computed from predicted boundaries.
GO: GOctSeg, SDLN: SD-LayerNet.

different layers. This allowed us to constraint the search space
for mapping the image to the corresponding label, reducing
the number of labels required for a good segmentation. As
demonstrated above, when labels were limited, GOctSeg was
able to perform almost on par to Structured-Layer trained
on the full labeled dataset for DRMSHC. In addition, we
demonstrated that GOctSeg was able to perform better than
other approaches with 6 labeled images, in severe disease
pathology cases. In such cases, the presence of pathologies
such as intraretinal fluid would complicate the convergence of
the algorithm due to unclear intensity changes in the retinal



layers. Nonetheless, this did not significantly degrade the
performance of GOctSeg. Furthermore, GOctSeg was robust
in different noisy conditions. In particular, we compared the
performance of GOctSeg with SD-LayerNet after reducing the
signal-to-noise ratio and blurring boundary, and observed that
it performed better compared to SD-LayerNet in most con-
ditions. This is extremely promising in real-world scenarios,
where OCT images usually have low signal-to-noise ratio [25].

Nevertheless, there are still limitations. Currently, prepro-
cessing is required, to minimize the variability of the retina
images for modeling the distribution with the Generator. The
ground truth annotations provided might also have imperfec-
tions, although such slight imperfections do not affect the
synthetic labels as the labels were generated based on the mean
thickness and the standard deviations of the ground truth. One
future improvement would be to generate more sophisticated
labels which would capture curvature changes of the retina.

In summary, GOctSeg would be extremely useful in ob-
taining a reasonable segmentation when labels are limited.
Furthermore, given an estimate of the layer thickness, it is also
possible to utilize the model to explore images in the absence
of ground truth as the Segmentor could be trained on synthet-
ically generated images. This could occur in situations where
only the caliper measurements of the retina are available,
which provides an estimate of the layer thickness but lacks the
granularity offered by layer segmentation. In such scenarios,
the model could be trained to generate synthetic images which
could be used to learn the intensity and biological ordering of
these layers. This would be critical in real world settings.
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