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ABSTRACT

Molecular similarity search is an often-used method in drug discovery, especially
in virtual screening studies. While simple one- or two-dimensional similarity
metrics can be applied to search databases containing billions of molecules in
a reasonable amount of time, this is not the case for complex three dimensional
methods. In this work, we trained a transformer model to autoencode tokenized
SMILES strings using a custom loss function developed to conserve similarities
in latent space. This allows the direct sampling of molecules in the generated
latent space based on their Euclidian distance. Reducing the similarity between
molecules to their Euclidian distance in latent space allows the model to perform
independent of the similarity metric it was trained on, thus enabling high-content
screening with time-consuming 3D similarity metrics. We show that the pres-
ence of a specific loss function for similarity conservation greatly improved the
model’s ability to predict highly similar molecules. When applying the model to
a database containing 1.5 billion molecules, our model managed to reduce the rel-
evant search space by 5 orders of magnitude. We also show that our model was
able to generalize adequately when trained on a relatively small dataset of repre-
sentative structures. The herein presented method thereby provides new means of
substantially reducing the relevant search space in virtual screening approaches,
thus highly increasing their throughput. Additionally, the distance awareness of
the model causes the efficiency of this method to be independent of the underlying
similarity metric.

1 INTRODUCTION

1.1 MOLECULAR SIMILARITY SEARCH

The mean financial burden of researching and developing a new drug has been estimated to exceed 1
billion US dollars (Wouters et al., 2020). Resource, cost, and time efficient methods of finding new
drug molecules are therefore imperative for reducing the costs and duration of drug development.
Using computer-based methods can help reach this goal.

A well known concept in drug development is that similar molecules exhibit similar properties and
activity profiles (Kumar & Zhang, 2018; Muegge & Mukherjee, 2016). This can enable researchers
to find novel hits by comparing them with known active substances, which is the main principle
behind similarity search in drug development. Similarities between compounds can be determined
by different strategies, from simple descriptor-based comparisons over 2D fingerprints to detailed 3D
measures such as shape-based or field-based similarities dependent on alignment of the molecules to
be compared. To calculate similarities between molecules for large-scale similarity search, typically
molecular fingerprints are utilized and computed. These fingerprints encode chemical properties and
usually consist of binary vectors. While traditional molecular fingerprints were mainly rule-based
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(e.g. based on the presence of substructures or atom-pairs (Awale & Reymond, 2014; Capecchi et al.,
2020)), data driven fingerprints (e.g. learned by machine learning models) became more prominent
in recent years (Zagidullin et al., 2021). Various metrics like the Tanimoto or Dice coefficient, or
the Tversky index can be used to compute similarities based on these binary fingerprints (Muegge
& Mukherjee, 2016).

There is a large variety of molecular fingerprints, ranging from simple fragment-based 2D methods
to complex 3D approaches (Axen et al., 2017; Kumar & Zhang, 2018). 2D based fingerprints can
easily be applied to virtual screenings of multi-million compound databases (up to several billion)
(Fischer et al., 2020; Cereto-Massagué et al., 2015). While this is possible in a relatively short period
of time due to their low complexity, more complicated 3D similarity measures are realistically only
feasible to use on smaller datasets of several hundred thousands up to a few million compounds
(Fontaine et al., 2007; Chen et al., 2020).

Here, we present a different approach to the problem of high-content similarity screening combining
transformer-based autoencoder models, similarity-based latent space shaping, and direct sampling
in the reduced latent space representation. In this current proof-of-concept study presented here,
we demonstrate the feasibility of the approach using 2D fingerprint similarities. We show that
our approach can capture molecular similarities very well in latent space. The performance of the
presented model is, however, independent of the used similarity metric. This allows researchers
to train a model on highly complex 3D similarity metrics and thus perform high-content screening
using metrics that otherwise would not be feasible to apply to a large set of compounds. Since
the presented problem falls under the domain of distance metric learning (Sun et al., 2020; Suárez-
Dı́az et al., 2018), we show how to overcome this obstacle by implementing a custom loss function
specifically designed to map similarities to Euclidian distances.

1.2 RELATED WORK

One approach of learning chemical properties of molecules is by using so called autoencoders
(Honda et al., 2019; Bjerrum & Sattarov, 2018; Hong et al., 2020; Yan et al., 2020). An autoencoder
is a model that attempts to encode its input into latent space and decodes it again while minimiz-
ing the difference between the input and the decoded output. The latent space can be considered
a reduced representation of the underlying structures of the chemicals in the dataset. Herein, we
make use of an autoencoder in order to learn similarities of molecules. Honda et al. (2019) pre-
viously used a transformer model to generate molecular fingerprints from SMILES strings using a
simple reconstruction loss function. Bjerrum & Sattarov (2018) found that mapping enumerated to
canonical SMILES improves the conservation of similarities in latent space.

Conserving similarities in latent space is not only of high relevance in drug discovery but also in
other fields such as image recognition. Schroff et al. (2015) proposed a loss function called triplet
loss (Equation 1) which can be used to map related images to similar regions in latent space while
increasing the distance between dissimilar images:

L(A,P ,N) = max(||f(A)− f(P )|| − ||f(A)− f(N)||+m, 0) (1)
This loss function relies on the definition of an anchor (A), a positive (i.e. similar) sample (P ), and
a negative (i.e. dissimilar) sample (N ) and is therefore well suited for data with discrete labels. f(·)
describes the coordinates of a compound in latent space, ||·|| the L2-norm, and m the hyperparameter
specifying a margin to separate similar from non-similar molecules.

In this work, we follow the approach of Honda et al. (2019) and use a transformer model to autoen-
code SMILES strings to generate fingerprints suitable for similarity calculations. We then use the
generated latent space encodings for similarity search based on Euclidian distances. In order to im-
prove the similarity conservation in latent space, we compare a model based only on a reconstruction
loss with models trained on additional loss terms to specifically learn similarities. Since the triplet
loss function in Equation 1 requires discrete labels, working with similarities requires the definition
of a similarity threshold separating similar molecules from dissimilar ones. Since such a separation
is highly ambiguous for diverse sets of molecules, we developed a novel loss function which we call
the similarity loss function. The similarity loss function can be used to work with continuous data,
rendering it well-suited for working with similarities.

The herein presented models are therefore intended to estimate similarities based on Euclidian dis-
tances in latent space, allowing the subsequent use of exhaustive similarity search on a drastically
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Figure 1: Architecture of the used transformer model. Encoder and decoder layers are constructed
following the original publication of the transformer model by Vaswani et al. (2017). To help con-
serve similarities in latent space, a special loss function denoted as ”similarity loss” is added to the
reconstruction loss.

reduced search space. We also show that a model trained on a small dataset is able to generalize to
huge compound libraries containing highly diverse structures.

2 METHODS

2.1 MODEL ARCHITECTURE

In recent years, transformer-based models witnessed great success in various areas such as natural
language processing, speech recognition, object detection, and more (Misra et al., 2021; Shi et al.,
2020; Farahani et al., 2020; Hannan et al., 2021; Devlin et al., 2018). In this work, we follow
the initial transformer model architecture proposed by Vaswani et al. (2017). Figure 1 shows a
representation of the implemented model architecture. To encode simple SMILES representations
of molecules, we first tokenized the strings, embedded them and added a positional encoding. An
example of a tokenized SMILES string can be found in Figure 8. The positional encoding is done
using a set of sine and cosine functions of varying frequencies as indicated in Equation 2 where
pos refers to the position of the token in the sequence, d is the size of the embedding, and i is the
dimension of the embedding. In this study, we set d = 256.

PE(pos, 2i) = sin

(
pos

10000
2i
d

)
PE(pos, 2i+ 1) = cos

(
pos

10000
2i
d

) (2)

The pre-processed data are then passed to a transformer encoder consisting of four layers. Each
layer contains a multi-head attention layer. In this model, we used four heads per attention layer.
To compute the attention, we follow the original article where attention is defined as shown in
Equation 3 where Q, K, and V are matrices containing the queries, keys, and values, respectively,
and dk is the dimensionality of the keys (Vaswani et al., 2017).

attention(Q,K,V ) = softmax

(
QKT

√
dk

)
V (3)
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Figure 2: Predicting similarities between two molecules. The L2 norm is used to calculate the
distance in latent space based on tokenized SMILES strings.

This encoder computes a latent space representation of the input. To obtain a single vector repre-
sentation for each source molecule, we average over all tokens in the sequence. For the decoder
part, we feed the tokenized target SMILES to an embedding layer and add a positional encoding
the same way it was done for the encoder part. Note that since we are working with an autoen-
coder, the source and target represent the same SMILES string while the target is right shifted. The
transformer decoder layers combine the predicted latent space representation of the source with the
attention weights and masked target embeddings, and subsequently predict the target sequence.

In a reqular transformer model, this prediction is then used to calculate the reconstruction loss usu-
ally in form of a cross entropy loss which is used to train the model. Here, we develop and test novel
loss functions to conserve similarities in the produced latent space. When applying the model to
predict similarities, the decoder part of the model will not be used. Similarities are calculated based
solely on the latent space representation of the query molecules; the L2 norm is used to calculate the
distance between two molecules in latent space (Figure 2). In praxis, a perfect correlation between
latent space distance and ground truth similarity metric cannot be expected. Therefore, the purpose
of this model is to obtain high enrichment in predicted, similar compounds to reduce the relevant
search space by a significant degree. This will drastically increase the efficiency of virtual screening.

2.2 SIMILARITY CONSERVATION IN LATENT SPACE

When using a transformer model to auto-encode SMILES strings, the used loss function commonly
only consists of a reconstruction term, e.g. in form of a cross entropy loss. While this may be
sufficient to conserve similarities in latent space for small datasets, the model does not specifically
learn relationships between molecules. The triplet loss function introduced in the previous section
can be used to separate labelled samples in latent space. Since the herein presented work uses
continuous data, a similarity threshold has to be defined with the intention of distinguishing between
similar and dissimilar compounds. The determination of such a threshold is ambiguous and may
differ between systems and their active molecules.

To better deal with the continuous nature of our data, we developed a novel loss function which we
call the similarity loss (Equation 4).

L(A,X) =
∣∣a · ∥(1− sim(A,X)∥ − ∥f(A)− f(X)∥

∣∣ (4)

The similarity loss depends on an anchor (A) sample much like in the triplet loss function. However,
it does not have to rely on the determination of positive and negative (i.e. similar and dissimilar)
samples. Instead, it compares each anchor in a batch with all other samples (X) in the same batch.
Since most similarity metrics sim(·, ·) range from 0 to 1 (0 being completely different and 1 being
identical), 1− sim(·, ·) can be used to convert the similarity to a relative distance. The loss function
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is therefore trying to set the Euclidian distance in latent space equal to the relative distance in data
space. In order to spread the embedded samples in latent space, we included a scaling factor a to the
term describing the relative distance in data space. The complete loss function consists of the sum
of reconstruction loss (here we use a cross entropy loss) and our similarity loss:

L(A,X) =
∣∣a · ∥(1− sim(A,X)∥ − ∥f(A)− f(X)∥

∣∣− ∑
I∈{A,X}

nI∑
i=1

∑
c

ti,c · log(p̂i,c) (5)

where ti,c is the label of a token i, p̂i,c is the predicted probability for class c for token i, and nI is
the number of tokens for compound I .

In the following subsections, we compare the performance of the presented loss functions in order
to determine their suitability to conserve similarities in latent space.

3 RESULTS AND DISCUSSION

3.1 INITIAL TESTS USING A SMALL DATASET

For a comparison of the three loss functions, the model was trained on a small dataset containing
10,000 compounds (see section A.1.1 for details). The three models were trained using the recon-
struction loss of SMILES strings (vanilla transformer), reconstruction plus triplet loss function, and
reconstruction plus our newly developed similarity loss function. To compare the performance of
the three models, we predicted the distances between a set of 100 randomly chosen reference com-
pounds from the validation set and all other compounds in the dataset and compared them to the
respective ground truth similarities. Based on these calculations, we computed the area under the
receiver operating characteristics curve (AUROC) using different similarity thresholds to distinguish
similar from dissimilar compounds. To avoid bias from the high number of dissimilar compounds
leading to increased AUROC values, we only included compounds with a mimimum similarity of
0.40 to the individual reference compounds in this analysis. As shown in Table 1, although there

Table 1: AUROC values for the different models trained on a small dataset of 10,000 compounds.
While the vanilla transformer model was trained using only a reconstruction loss function, the other
two models were trained with an additional loss term to specifically enforce the conservation of
ground truth similarities in the latent space.

Similarity threshold Vanilla transformer Triplet loss Similarity loss
0.45 0.68 ± 0.17 0.73 ± 0.17 0.82 ± 0.18
0.50 0.69 ± 0.18 0.75 ± 0.16 0.86 ± 0.17
0.55 0.75 ± 0.18 0.80 ± 0.15 0.92 ± 0.08
0.60 0.76 ± 0.18 0.81 ± 0.15 0.91 ± 0.11
0.65 0.80 ± 0.17 0.85 ± 0.13 0.94 ± 0.09
0.70 0.84 ± 0.18 0.89 ± 0.12 0.96 ± 0.07
0.75 0.87 ± 0.16 0.91 ± 0.12 0.97 ± 0.07
0.80 0.90 ± 0.14 0.94 ± 0.09 0.98 ± 0.07
0.85 0.92 ± 0.14 0.96 ± 0.08 0.98 ± 0.07
0.90 0.94 ± 0.14 0.98 ± 0.05 0.98 ± 0.08
0.95 0.97 ± 0.09 0.99 ± 0.04 1.00 ± 0.01

were overlapping error bands, the model trained with our similarity loss function in addition to the
reconstruction loss outperformed the other two models. The AUROC values were above 0.90 for all
tested similarity thresholds except the lowest two. For all three methods, we observed an increase
in AUROC values with increasing similarity threshold. This is likely due to a negative correlation
between the true positive rate and the total number of positives in a dataset.

The vanilla model often failed to distinguish between similar and dissimilar compounds based on
the Euclidian distances in latent space. The predicted distances are all very similar which likely
caused a blurring in latent space, rendering it difficult to accurately distinguish between similar
and dissimilar samples. While the model trained with an additional triplet loss was often able to
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Figure 3: Similarity conservation in latent space. A) 2D structure of a randomly chosen reference
compound. B) 2D structure of a molecule similar to the reference. Similarity was defined as having
a Tanimoto coefficient above 0.8. The distances to the reference in latent space are shown for the
individual models. C) 2D structure of a dissimilar molecule. Dissimilarity was defined as having a
Tanimoto coefficient below 0.3. Latent space distances to the reference are shown for the individual
models.

map similar compounds closer to the reference than dissimilar compounds, it also generated a very
dense latent space in which small errors can lead to incorrect predictions. By including our custom
similarity loss, the model not only learned to correctly distinguish between similar and dissimilar
molecules most of the times, it also spread out the generated latent space much more, making a
separation between molecules much clearer.

Figure 3 highlights the differences between the three models on a randomly selected example. Com-
pound B is highly similar to compound A, whereas compound C does not share a high similarity
with A. Scaling the latent space distance dij between two molecules i and j to the range [0, 1]
and translating them into similarities sLS

ij , allows for a comparison of ground truth and predicted
similarities in latent space:

sLS
ij ≈ 1− dij

dmax
, (6)

where dmax is maximum distance between any two molecules in latent space.

By applying this formula to the compounds in Figure 3, we obtain approximated similarities between
A and B of 0.724, 0.899, and 0.825, and between A and C of 0.139, 0.821, and 0.852 using the
similarity loss model, the triplet loss model, and the vanilla model, respectively. This shows that the
similarity loss model is clearly better at discriminating between similar and dissimilar molecules.

While the vanilla transformer model has no additional information about the similarity between
molecules, the triplet loss function learns to group similar molecules together based on a similarity
threshold. In contrast, the similarity loss function directly maps similarities to Euclidian distances
and thereby, a superiority in this specific task was expected.

Based on these results, we decided to focus on the model with the additional similarity loss function
in the subsequent tests. Due to the superiority of the similarity loss function and the fact that finding a
meaningful threshold to distinguish between similar and dissimilar molecules for a large and diverse
dataset is very difficult (if even possible), we did not include a model trained on the triplet loss in
the subsequent tests.
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Figure 4: Comparison of reproduction abilities of the models with and without similarity loss func-
tion. The lines represent the normalized amount of the 10 most similar compounds within the top N
closest samples in latent space for 10 reference compounds.

3.2 SCALE-UP USING THE ZINC DATABASE

Training of the model was subsequently upscaled using a large dataset of around 500,000 molecules
(see section A.1.1 for details on the dataset generation). To test the optimized model, we chose a
diverse set of 10 reference compounds and screened the whole downloadable ZINC database (around
1.5 billion SMILES) against each reference compound (Sterling & Irwin, 2015). The goal of this
model was not to achieve a perfect correlation with calculated 2D similarities but to reduce the search
space to a manageable size for subsequent exhaustive similarity search. We therefore checked for
each reference compound how many of the 10 most similar database entries (determined using an
exhaustive search) can be found within the N closest samples according to the model (Figure 4).

The model proved to be effective in reproducing the top 10 most similar compounds within the
15,000 closest samples in latent space for all investigated reference compounds. This corresponds
to a reduction of the search space by 5 orders of magnitude. In comparison, the vanilla model (i.e.
without similarity loss function) only managed to identify 45% of all similar compounds within
the top 100,000 predictions. To give further insights into the performance differences between the
vanilla model and the model trained with the similarity loss, we selected three structurally different
compounds from the 10 reference molecules. The first reference (reference1) is a large peptide with
a molecular weight of more than 2000 g/mol (PubChem CID 44335764). The second (reference2)
is a highly cyclized compound (PubChem CID 44605611) and the third (reference3) is a potent
5HT1B receptor antagonist (PubChem CID 44405730).

The first ”ranking” analysis (Figures 5, middle column) shows the models’ potential to correctly
identify and rank the 100,000 most similar compounds from the ZINC database. The right column
in Figure 5 analyses the models’ performance in identifying similar compounds to the reference (at a
similarity threshold of 0.5). This analysis we name ”hit identification” in the subsequent paragraphs.
In general, the vanilla transformer was capable to identify similar compounds to large reference
molecules such as reference1, but had significant difficulties for small substances, e.g. reference3
(Figures 5).

In detail, the analysis showed that both the vanilla and similarity loss model performed very well
for reference1 (Figure 5A), with the similarity loss model being slightly better at reproducing the
similarity distribution of the exact metric. In the ”hit identification” task, with approximately the
first 100 predictions, both models performed similarly. For the compounds ranked lower in predicted
similarity to the reference, the similarity loss model started to clearly outperform the vanilla model.
Within 100,000 top-ranked compounds, the similarity loss model was able to reproduce around 90%
of the similar compounds whereas the vanilla model only managed to find around 40%.

For reference2 (Figure 5B) and reference3 (Figure 5C), the similarity loss model clearly outper-
formed the vanilla transformer model in both ”ranking” and ”hit identification” tasks. For refer-
ence2, the similarity loss model and vanilla model were able to identify 90% and 18% of the similar
compounds, respectively. The largest difference was seen for reference3, where the similarity loss
could identify all similar compounds within the top 2000 predictions while the vanilla model could
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Figure 5: Similarity reproduction abilities. Left: 2D structure of the respective reference com-
pound. Middle: Histogram of similarities (calculated using the exact method) of the 100,000 closest
molecules to the reference in latent space (”ranking” task). Right: Reproduction of fairly similar
compounds to the reference where a threshold of 0.5 was chosen to distinguish between similar and
dissimilar compounds (”hit identification” task). A) analysis of the performance using a very large
reference compound. B) performance with a smaller, cyclized reference compound. C) performance
using a more linear compound with heterocycles.

only find around 7% of the similar compounds within the first 100,000 predictions. The compar-
atively good performance of the vanilla model for reference1 is likely due to the relatively low
number of very large molecules in the data set, placing those molecules in a well-separated location
in latent space. The model trained on the similarity loss however performed well in all three cases,
proving the advantage of the additional loss term.

3.2.1 EXCLUSION OF SCALING FACTOR IN LOSS FUNCTION

To study the importance of the scaling factor in the similarity loss function (Equation 4), we trained
an additional model with a scaling factor of 1, thus disabling its effect. Using the same analyses as
previously discussed revealed a drop in accuracy compared to using larger scaling factors, although
it still performs better than the vanilla model (Figure 9). These findings have likely to do with the
fact that a well structured latent space that is not too densely packed may be important for a good
reproduction performance.

Finding a good value for the scaling factor is not trivial and this hyperparameter has to be tuned
during training. In our tests, we found a value of 20 to work well for the initial analyses with a
smaller dataset. However, when moving to a larger set, we found that decreasing the scaling factor
to 10 further improves the performance of the model.

4 CONCLUSION

In this work, we developed models for similarity-based high-content screening with the aim to trans-
late pairwise similarities in data space to Euclidian distances in latent space. This will facilitate
efficient similarity searches independent of similarity metrics. We could show that the use of a loss
function specifically designed to conserve molecular similarities in latent space greatly improved
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the accuracy of the model. By training a transformer autoencoder using a novel similarity loss func-
tion, it was possible to obtain a model that could be successfully used for similarity search against a
database of more than 1 billion compounds. We demonstrated that our model was able to generalize
from a comparatively small dataset, making it possible to learn highly complex similarity metrics
that could otherwise not be applied to large datasets. While the presented model did not obtain a
perfect correlation to the underlying ground truth similarity metric, it can be used to substantially
reduce the available search space by five orders of magnitude. Such a drastic reduction of search
space allows for subsequent use of exhaustive classical screening methods.

Here, we provide a proof of concept showing the possibility of generating a model for similarity
search that is unaware of the underlying similarity metric, thereby uncoupling its efficiency from the
chosen method.
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André Fischer, Manuel Sellner, Santhosh Neranjan, Martin Smieško, and Markus A. Lill. Potential
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A APPENDIX A: METHOD DETAILS

The following section will describe the detailed neural network architecture, its hyperparameters,
and the datasets used to train and test the model.

A.1 SMILES TRANSFORMER

Our model uses a transformer architecture as described in the publication by Vaswani et al. (2017). It
was implemented in PyTorch using their integration of the Transformer module. The vocabulary was
generated using tokenized SMILES strings that were used as input and encoded into 256 dimensional
latent space. Our model consisted of 4 encoder and decoder layers with attention layers containing
4 heads. All models were trained using an Adam optimizer with a learning rate of 10−4 and 128
samples per batch. Since it was not possible to further increase the batch size due to memory
limitations, we accumulated the gradients over 4 batches.

In order to determine the ground truth similarities, we calculated the Tanimoto coefficients based on
1024 bit Morgan fingerprints implemented in RDKit with a radius of 2. To conserve similarities in
latent space, it is imperative that during training, each batch contains at least one similar compound
to each sample (and for the triplet loss also at least one dissimilar compound). For the model trained
on the similarity loss, we first randomly assigned compounds to a batch. To guarantee that similar
compounds exist for each of those reference compounds, the algorithm randomly selected 3 of the
100 most similar compounds to the reference which were added to the batch. For the model with
the triplet loss, we randomly selected 64 anchors per batch and for each chose a random compound
with a Tanimoto similarity to the anchor of at least 0.6. It was assumed, that due to the intrinsic
diversity of the dataset, for each anchor in a batch, there will always be a negative sample present.
We defined negative samples as any compound with a similarity of less than 0.4 to the anchor.

The scaling factor a required by the similarity loss function (Equation 4) was set to 20.0 in the
initial tests on a small dataset and was later decreased to 10.0 for the scaled up training. The margin
m for the triplet loss function (Equation 1) was set to 1.0 for the comparison of the loss functions.
These values were determined based on the retrospective analysis of the performance of each trained
model.

A.1.1 DATASETS

During an initial test phase, we used a randomly selected subset of 10,000 SMILES extracted from
the natural compounds dataset obtained from the ZINC database. The dataset was randomly split
into a training (80%) and validation (20%) set. The validation set was used to compare the per-
formances of three different loss functions. In the upscaling experiments, we randomly selected
0.03% of the compounds in each tranche downloaded from the ZINC database, leading to a dataset
consisting of approx. 500,000 compounds. Following the method of the initial test, the dataset was
randomly split into a training and validiation set using a 80/20 split. For testing the optimized model,
the whole ZINC database was used which consisted of around 1,458,000,000 compounds at the time
of testing.

For reproducibility, all used SMILES strings were converted to their canonical form using openbabel
prior to training and testing.

A.2 SIMILARITY SEARCH

Once obtained, the distance aware SMILES embeddings were used to efficiently calculate distances
(i.e. similarities) in embedding space. Facebook’s faiss was utilized for this task using a FlatL2
index to calculate Euclidian distances in latent space. Faiss allows the construction and search of
several types of indexes with various degrees of approximation.

The search was performed on pre-calculated latent space embeddings of the whole ZINC database.
Searching 94 reference compounds against the complete database took roughly 2.75 hours on a
machine with 64GB RAM that was equipped with an HDD. Around 65% of the computation time
was needed to read the pre-computed embeddings from disk. By using either a server with solid
state drives or more memory, the computational cost could therefore be significantly decreased.
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Figure 6: Reproduction of molecular weights. The histograms show the distribution of molecular
weights of the 100,000 most similar compounds to reference1 (A), reference2 (B), and reference3
(C) calculated using either the exact similarity metric, the model with similarity loss, or the vanilla
transformer model.

Searching the same database using RDKit’s BulkTanimotoSimilarity function (with pre-computed
fingerprints) on the same machine required around 3.40 hours for a single reference compound.

B APPENDIX B: INVESTIGATION OF MOLECULAR WEIGHTS

To further investigate the reproduction abilities of the model with and without similarity loss, we
analyzed the distribution of molecular weights of the 100,000 molecules predicted to be closest to
the reference (Figure 6).

The data show that both models are well able to reproduce the molecular weight distribution of
the 100,000 most similar compounds to reference1 while the vanilla model slightly outperforms the
model with similarity loss. This effect is the most pronounced at the lower end of the scale where the
vanilla model is able to reproduce more of the low molecular weight compounds than the similarity
loss model. More detailed analysis of this phenomenon revealed that these low molecular weight
compounds are all highly dissimilar to the reference compound. When only including compounds
with a similarity to reference1 of 0.3 or more, these compounds disappeared and the similarity loss
model showed a better overlap with the exact method (Figure 7). This sampling of very dissimilar
molecules may be due to the fact that the vanilla transformer model generated a much denser latent
space, leading to a generally lower distance between the very high molecular weight compounds and
the molecules with lower molecular weight. While this benefits the vanilla model for reference1, it
decreases its performance for reference2 and reference3 (Figure 6 B & C). In these examples, the
model with similarity loss is generally better able to reproduce the distribution of molecular weights
from the underlying (exact) similarity metric. Here, the vanilla transformer model is likely suffering
because there are a lot of molecules in the screened data set that have a similar molecular weight
to the two reference compounds. This causes the model to over sample these compounds in the
densely packed latent space. In these cases, the sparser latent space generated by the similarity loss
may prevent such an over sampling.

Figure 7: Reproduction of molecular weights. The histograms show the distribution of molecular
weights of the 100,000 most similar compounds to reference1 (A), reference2 (B), and reference3
(C) calculated using either the exact similarity metric, the model with similarity loss, or the vanilla
transformer model. Only compounds with a similarity of at least 0.3 are considered.
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C APPENDIX C: ADDITIONAL FIGURES

Figure 8: Example of SMILES tokenization. The 2D structure of a molecule, its SMILES represen-
tation, and the tokenized SMILES are shown. ”<SOS>” and ”<EOS>” represent labels specifying
the start and the end of the sequence, respectively.

Figure 9: Performance of the model trained with the similarity loss scaling factor set to 1 for the ”hit
identification” task. The data for reference1 (A), reference2 (B), and reference3 (C) are shown.
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