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Abstract. State-of-the-art blind image deconvolution approaches have difficul-
ties when dealing with text images, since they rely on natural image statistics
which do not respect the special properties of text images. On the other hand,
previous document image restoring systems and the recently proposed black-and-
white document image deblurring method [1]] are limited, and cannot handle large
motion blurs and complex background. We propose a novel text image deblur-
ring method which takes into account the specific properties of text images. Our
method extends the commonly used optimization framework for image deblur-
ring to allow domain-specific properties to be incorporated in the optimization
process. Experimental results show that our method can generate higher quality
deblurring results on text images than previous approaches.

1 Introduction

In single image deblurring, image degradation is usually modeled as:
b=kxl+n, (1)

where b is the observed blurred image, & is the motion blur kernel, * is the convolution
operator, [ is the latent image, and n is image noise. The goal of blind deconvolution is
to recover both k£ and ! from a single input b, which is an ill-posed problem.

Tremendous progress has been achieved in recent years for solving the blind de-
convolution problem, by utilizing natural image statistics as a strong prior to regularize
the solution [2i314)506l7]. Despite their success in natural images, the state-of-the-art
approaches are barely suitable for an important category of images: text images, mainly
because the natural image statistics that these methods utilize are too weak to constrain
text images. On the other hand, previous document restoration methods [8I9U10J11]] em-
ploy text-specific priors, such as the two-tone property. However, these methods do
not consider motion blur, thus are insufficient to deal with text images that have been
blurred by large motion kernels. Since restoring text images has important real-world
applications, especially in the image forensics domain, there is a significant demand
for specialized image deblurring techniques that can effectively restore text images.
Recently Chen et al. [[1] proposed a text deblurring method, but it depends on text seg-
mentation, which cannot be done robustly for general blurred text images.

* Part of this work was done while the first author was an intern at Adobe.
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Fig. 1. Natural image deblurring vs. text image deblurring. (a) original sharp images; (b) log-scale
gradient histograms of (a); (c) visualization of gradient magnitudes of (a); (d) synthetic blurred
images and the input blur kernels; (e) estimated latent image and blur kernel using Levin et al. [7].

In this paper, we propose a novel text image deblurring method that fully utilizes the
special properties of text images. We first show previous image deblurring approaches
do not work well on text images. We then analyze desirable properties of latent text im-
ages and the difficulty of incorporating domain-specific knowledge into the commonly
used optimization framework for deblurring. To resolve the difficulty, we extend the op-
timization framework by introducing an auxiliary image a, which is used to enforce the
domain-specific properties on the latent image [. We also apply text-specific properties
to the final deconvolution that computes the output latent image [ using the estimated
kernel k. Experimental results show that our method outperforms both previous general
image deblurring algorithms and the recent document deblurring algorithm proposed
by Chen et al. [1]] in terms of deblurring quality of text images.

2 Related Work and Limitations

Image deblurring has been extensively studied in recent years, and significant break-
through has been achieved by incorporating various priors for optimization, such as
Gaussian prior [SU12], sparsity prior [7]], and natural image statistics [13114.4]]. How-
ever, these priors do not apply well to text images. As shown in Fig. [Ip, the gradient
histogram of a natural image is significantly different from a text image. Furthermore,
strong gradients of a text image have a highly-regular spatial distribution as they enclose
text strokes of similar widths (Fig. [Tk). Directly applying a natural image deblurring
method to a text image thus will result in an erroneous result (Fig. ).

Another problem that general image deblurring approaches face when dealing with
text images is the way they handle small objects. Many state-of-the-art methods [[15U5012]]
predict sharp edges in the image and use them for kernel estimation. However, as dis-
covered in a recent work [12], objects whose scales are smaller than the blur kernel can
damage kernel estimation. A solution is to remove small object edges and only rely on
large ones for kernel estimation [[12]. Although this strategy could work well for natural
images, it cannot be directly applied to text images. Text characters are usually small
and spatially close to each other, and the edges from them will be removed as small
outliers in kernel estimation.
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Fig. 2. Difficulty of applying the segmentation (text binarization with thresholding) technique to
a blurred text image.

Previous document restoration methods [8.9110l11]] have used the two-tone or bi-
level property of text. Under this assumption, small blurs and ink-bleeding artifacts
can be removed using thresholding. However, such thresholding no longer works when
the image is blurred with a large motion kernel. Fig. [2] shows an example. Since the
blur is severe in this example, simply applying thresholding would not result in a clean
segmentation of the text region, no matter how the threshold value is selected.

The work that is closest to ours is the black-and-white document image deblurring
method recently proposed by Chen et al. [1]. This method first detects text from the
input blurred image using a text segmentation method [[16], then estimates the origi-
nal intensities of texts using a learned relationship between the intensity histograms of
blurred and sharp document images. However, the text segmentation technique used in
this method is based on thresholding, which is insufficient for blurred images (Fig. [2).
Consequently, using the segmentation result for deblurring will introduce artifacts, as
we will show in Sec. [6] Moreover, learning the relationship between the intensity his-
tograms is limited by the characteristics of the training data set, such as the amounts of
blurs, types of fonts, and text colors. This approach thus does not generalize very well.

3 Text Image Deblurring

3.1 Desired properties of latent text images

Given that natural image statistics does not work well for text image deblurring, we
first identify a set of text-specific properties that should be considered in the deblurring
process, as listed below:

Property 1 Text characters usually have high contrasts against nearby background
regions.

Property 2 Each character has a near-uniform color. Accordingly, gradient values
inside each character should be close to zero.

Property 3 Although many documents have single background colors (e.g., white),
advertisements or posters may have more complex background. Thus, assuming
a single tone for background as in [1]] is too restrictive. We instead assume the
background gradient values obey natural image statistics and are sparse [17]].

To incorporate these properties into the deblurring process, we could first consider
the commonly used optimization framework for deblurring [6/7], which seeks a pair
(I, k) by optimizing:

argmin [b—k + 1%+ p(l) + pr(k), )
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Fig. 3. Process overview of our deblurring algorithm.

where ||b — k % [||” is the data fitting term, and p;({) and py (k) are priors for the latent
image and the motion blur kernel, respectively. Since the text properties play the role
of an image prior for [, we need to somehow adjust the prior p; (), for which previous
methods mostly use p;(1) = Y, 195,:(1)|* + [8y,:(1)|" with 0.5 < a < 2, so that the
sparsity on gradients of [ is enforced.

However, it is not straightforward to directly minimize Eq. (Z) with the text image
properties other than natural image statistics, because solving for the new p;(1) with
embedded text image properties involves complicated nonlinear optimization. Our three
desirable properties for a latent text image require careful separation between text and
background regions, where such spatial segmentation is hardly defined as a filter (e.g.,
gradients or Laplacian) of [. On the other hand, without explicit segmentation, it is hard
to directly encode the three properties as energy functions of [. To resolve this difficulty,
we propose a new optimization framework which is capable of incorporating domain-
specific properties in the deblurring process.

3.2 Optimization framework

We extend Eq. (2) using the half-quadratic penalty method [18/19] by introducing an
auxiliary image a which enforces domain-specific properties on the latent image [ as:

argmin ||b — k +1||> + pi(1) + pr(k) + pala) + Bl — al®, 3)

k) 70‘

where p,(a) is a cost function defined using the domain-specific properties and 3 is
the weight for the similarity penalty between [ and a. Note that Eq. approaches
Eq. when [ becomes large enough and p,(a) =~ p;(1). In this formulation, the
domain-specific prior p,(a) is explicitly embedded in the optimization framework, and
the parameter 3, which automatically adapts in the process, controls when and how
strong p,(a) to be reflected in the latent image .

It is worth mentioning that the auxiliary image a is similar to the edge prediction re-
sult in some previous kernel estimation methods [5{12]]. However, in those approaches,
a is computed in a simple way by applying various image filters to /, such as bilateral
and shock filters, to produce sharp, step-like edges. In our approach, we can encode
more general domain-specific knowledge in a by taking an optimization framework in

Eq. (3).
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3.3 Process overview

Fig.B]shows the overall process of our deblurring algorithm, which is capable of incor-
porating domain-specific properties. To estimate the blur kernel %, our method iterates
two main steps: estimating k£ and estimating /. The estimating [ step contains an inner
optimization loop, where we iteratively refine the latent image [ and the auxiliary image
a to impose the domain-specific properties on [.

For kernel estimation, similar to previous approaches [5U12], our system employs a
multi-scale approach by building an image pyramid and solving for the kernel starting
from the coarsest level. Once optimized on a level, the estimated k and [ are bi-linearly
interpolated to the next level and are used as initial values for optimization.

4 Algorithm Details

In this section, we present the algorithm details to solve the optimization problem in

Eq. (3).

4.1 Estimating [ with text image properties

Assuming the blur kernel & is fixed, we estimate [ which reflects text properties given
in Sec.[3.1} To do that, our method involves an iterative minimization strategy to solve:

arglmin||b—k*l||2+pl(l)+pa(a)+ﬁ||l—a\|2. )

In Eq. @), a and [ are computed alternatingly by fixing one of them with the value
obtained from the previous iteration. The weight /3 is set to be a small value 3, for
the first iteration, then is multiplied by ¢ at each sequential iteration until 5 > PBumax.
We use 5y = 0.01, § = 1.5, and Byax = 5 in our implementation. The merit of
incrementally adjusting /3 is that in early iterations, ¢ may not be initialized well, thus
we rely on p;(1) to obtain good initial estimates of {. In later iterations when a is more
accurate, we allows it to play a more dominant role in determining ! by using a large
B. At the end of the optimization process, since 3 is large, both [ and a converge to the
same image satisfying both the data term and text image properties.

Step 1: computing | Given b, k, and a, we solve:

argflinllb—k*z\\2+pl<o+ﬁ||l—a||27 )

where p;(1) = A, ||V1||” for regularizing the gradients of I. Eq. (5) is solved using Fast
Fourier Transform (FFT) as:

—1

(6)

F(k)F(b) + BF(a)
F(k)F(k) + BF(1) + NF(V)F(V)

where F(-) and F(-) are the FFT operator and its complex conjugate, respectively, and
F(1) is the FFT of the delta function. Eq. @ can be solved efficiently since it only
consists of component-wise operators except FFTs. We fix A\; = 0.1 in our system, and
set the initial value of @ as [.
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Think T Think = WV TIN Think ‘ ]
Different Different - Different
Ist iteration 2nd iteration - 11th iteration

(b) Intermediate auxiliary image a at the iterations for estimating /

Fig. 4. Intermediate results in latent image estimation. (a) The predicted latent image a of Cho
and Lee [5]] and ours in the first iteration at the coarsest level. (b) The iteratively refined auxiliary
image a given an incomplete blur kernel. The graphs show the 1D profiles of the scan lines of
image a marked in red. The original latent image is show in Fig.[5]

Step 2: computing a In this step, we first refine [ computed from Step 1 to reduce
ringing artifacts and noise caused by simple deconvolution in Eq. (). To achieve this,
we adopt the L0 gradient minimization method [20] which can effectively remove noise
and the edges of small magnitudes. Using L0 gradients can provide a good initial for a,
which is consistent with the requirements of |Property 1|and|Property 2| The boundaries
of texts have large gradient values and are well preserved in L0 gradient minimization,
while the gradients of the noise and ring artifacts generally have small magnitudes and
are suppressed inside texts.
Then, with the refined [, we compute a by minimizing:

arg min pa(a)+5||l—a||27 @

where p,(a) is the cost function to measure if a satisfies the text image properties in
Sec. Mathematically, it is defined as a pixel-wise function as:

0 ifa; =af
palai) = {dMAX otherwise ’ ®)

where i is a pixel index, a® is the ideal image satisfying the text image properties,
and dyax is a constant larger than the maximum pixel value of /. With Eq. , pala)
penalizes the pixels which do not agree with aF.

Note that the ideal image a® which satisfies the domain-specific properties is un-
known. We therefore approximately estimate a® from [ using the stroke width trans-
form (SWT) [21]], which classifies the image into text and non-text regions. The output
of SWT is a stroke width value at each pixel if the pixel is classified as text, and O oth-
erwise. Based on the output of SWT, we find connected components to reconstruct the
set of characters as explained in the original paper [21]. Then, we force pixels in each
character to have the same color value, resulting in the image a’. We will discuss later
how to determine the color of each character.

Since py(a) can be individually computed for each pixel using Eq. , the final
solution a* for Eq. (7) is:

* _ a]; ifﬂ”li—a];HQ<dMAX
4= {li otherwise ' ©)
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Recall that 3 starts from a small value and increases after each iteration. Thus, in early
iterations, the penalty for the similarity term in Eq. (the second term) is small, so the
first term dominates the solution to impose strong domain-specific priors on a. In later
iterations, the penalty for the similarity term becomes significant as /3 increases, and a
is enforced to be close to [. Since [ is updated in Step 1 based on the new a in every
iteration, [ also obeys the text image properties eventually.

The pixels in each character now have the same intensity, thus[Property 7]is satisfied.
Through L0 gradient minimization [20] and re-coloring of text characters, we preserve
the large gradient around the boundaries of text characters, thus[Property 1|is respected.
Note that, however, we do not impose the sparsity prior for background
on this step, since the purpose of estimating [ here is to restore sharp edges along the
boundaries of texts, as salient edges are known to be useful for kernel estimation [SI12].
Instead, the sparsity prior for [Property 3|is included in the final deconvolution step that
produces the deblurring result (Sec. [4.3).

It is worth mentioning that accurately estimating the expected color of each charac-
ter is a difficult task. As Chen et al. [1] pointed out, texts are often small in the scene,
thus their intensities in the blurred image are shifted. A learned relationship of intensi-
ties between sharp and blurred text images could be used [1]], but as mentioned in Sec.
[2] such a relationship strongly depends on the training data and is hard to be generally
applied. In our method, we use the minimum/maximum value of each character for the
approximated color. Specifically, if the character is darker than background, we find the
minimum intensity of all pixels in the character, and assign it to the pixels. Similarly, we
use the maximum intensity if the character is brighter. We found that this method can
effectively solve the intensity shift problem mentioned in [1]. The minimum/maximum
values quickly converge to the true intensity of a character as the optimization proceeds,
thus its inaccuracy in early iterations does not have noticeable effect on the estimated
blur kernel.

Fig. {4] illustrates the behavior of our iterative optimization method. In the initial
iteration, we set k as a delta function and [ as the input blurred image b. Because our
method incorporates text-specific priors, our method predicts sharper initial texts than
the method of Cho and Lee [5] with less blur artifacts (Fig. fp). In the intermediate
iterations, although the estimated blur kernel is not accurate, our method iteratively
refines and predicts a (Fig. @dp) so that pixels in a have almost the same intensities as
the original image, which is shown in Fig. [3]

4.2 Computing k

With the introduction of a, we estimate the blur kernel by minimizing:

E(k) = > wo 07— k*0%all* +~ ||k]?, (10)
o*€O

where © = {0, 0y, Ops, Ozy, Oyy } are partial derivatives as defined in previous ap-
proaches [415], and ~ is a relative weight for the Tikhonov regularization. The success
of gradient-based kernel estimation has been reported in [4I5/7]. Note that we use the
image edges of a, instead of /, to update the blur kernel & in Eq. (I0). Although both
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Fig. 5. Comparison of non-blind deconvolution results.

and a are supposed to converge to the same image after the alternating optimization in
Sec.[d1] the I computed by Eq. (6) using FFTs may contain ringing artifacts and noise.
Since such artifacts are suppressed in a through Step 2, using a as the latent image in
Eq. (I0) provided better results in our experiments.

4.3 Final deconvolution

After the blur kernel & has been estimated, a non-blind deconvolution method is applied
to the input blurred image b to generate the final output image. Since we have only em-
phasized reconstruction of salient edges around texts in the kernel estimation process,
the latent image generated in the process is not optimal in terms of visual quality.

To recover a high quality output image, we propose a non-blind deconvolution prior
that considers the text-specific properties in Sec. [3.1] as:

pr(1) =M SO IVEIZ 42 3 ([l —af|” 4+ As S, (11)

ieT ieT i¢T

where T is the set of pixels that belong to the text regions in a” detected using SWT.
The first term encourages the gradient values of pixels inside text regions to be zero.
The second term makes the color values of pixels consistent with a® inside text regions.
The last term encourages the background pixels to have sparse gradients (v = 0.8 in
our system). Using this prior, the total energy for the final deconvolution is defined as:

E(l) = [|b—k*1|” + pr(), (12)

which can be solved using the Iterative Re-weighted Least Square (IRLS) method [17].
At every iteration for re-weighting in IRLS, we update a” and T using the updated 1.

Fig. [5]compares the performance of our deconvolution prior against traditional nat-
ural image priors using a synthetic example. Since our deconvolution strongly penalizes
color variations inside the text region, our method restores sharper texts.

S Algorithm Analysis

In this section, we provide detailed analysis on how our method can restore sharp texts
effectively. In addition, since the M AP, j, framework in Eq. @) has been known to be
vulnerable to the convergence problem [6/7]], we explain how our extended framework
can overcome it in practice.
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Fig. 6. Effects of L0 gradient minimization and p, (a). (a) intermediate { and @ in our algorithm
at a coarse level; (b) intermediate [ and a at the same level without L0 gradient minimization; (c)
intermediate [ and a at the same level without using p, (a) in Eq. .

5.1 Effects of LO gradient minimization

In Eq. (6) of Step 1, due to the poor regularization prior and the assumption on data
periodicity of FFT, the computed [ contains ringing artifacts and noise. Since L0 gradi-
ent minimization [20] can effectively remove the edges of small magnitudes caused by
these artifacts, it leaves only the edges of large magnitudes intact, which are useful for
kernel estimation, as demonstrated in [S12].

To verify this, an experiment is shown in Fig. [§| using the blurred image in Fig. Zb.
The results suggest that without L0 gradient minimization (Fig. [6p), ringing artifacts
and noise in [ disturb imposing the text image properties on a, thus the kernel estima-
tion is damaged. In contrast, applying L0 gradient minimization ensures the successful
kernel estimation.

5.2 The role of the synthetic text image a®

The cost function p,(a) in Eq. (7) plays the most important role in injecting text proper-
ties into the final solution. To demonstrate it more clearly, in Fig. [6c, we show interme-
diate results after removing this term from Eq. (7). It is clear that the intermediate image
ano longer obeys the text image properties specified in Sec.[3.1} thus the estimated blur
kernel becomes erroneous.
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The key component of p, (a) is the synthetic text image a®, which is computed using
SWT. Given a two-color image like Fig.[f] it may be wondered if SWT can be replaced
by simple segmentation on top of our framework. For such a two-color image, the per-
formance of SWT and simple segmentation may be similar. However, the main purpose
of using SWT is to handle more complex images where the background contains other
colors and textures (e.g., Fig.[IT). SWT obviously outperforms segmentation-based ap-
proaches for text detection in these cases [21], which increases the accuracy, stability,
and robustness of our framework. This is evidenced by our comparisons (see Fig.[9]and
the supplementary material) with the document deblurring method [[1]], which is largely
based on thresholding-based segmentation.

5.3 Iterative updates of a and [/, and its convergence

As shown in Egs. (3)) and (7)), a and [ affect each other and they are updated in an alter-
nating fashion. A natural question would be if this iterative process will converge. Since
3 in Egs. (5) and (7) is increasing after each iteration, the similarity term 3 ||l — al|>
eventually dominates both energy functions, and the optimal solutions are [* = a*.
That is, [ and a converge to the same image with the increasing parameter J (see Fig.
[6). In practice we found the process converges quickly (usually within 15 iterations)
before 3 reaches a large value.

Since a and [ affect each other, it may be wondered whether a could be dominated
by [ and the text properties would not be reflected in the final solution. Note that in Eq.
(@), the prior p;(1) and p,(a) have equal weights, and when computing p,(a), the dyax
value in Eq. is purposely set to be large so that a prefers a’ to [ at early iterations.
Then, the text properties reflected in a affect estimating [ in Eq. (5) due to the similarity
term with increasing 3, thus p;(l) itself cannot dominate in Eq. . In this respect,
pa(a) plays an important role in the optimization process to ensure the text properties
to be reflected in the final images of [ and a.

Finally, our framework is extended from, and shares the same convergence limita-
tion with the M AP, ;, framework, which was analyzed in [6/7]]. In short, converging
to a sharp image is not guaranteed in the original M AP, ;, framework. However in our
approach, since incorporating text properties always imposes a sharper latent image, it
can greatly help avoid the no-blur-explanation problem [6/7]. In practice, we found our
system converges well under various inputs, as evidenced by the results provided in the
paper and the supplementary material.

5.4 Failure cases and limitations

To provide more insights, we further investigate the failure cases of our algorithm (Fig.
[7). Although our approach can robustly estimate complex blur kernels in many cases,
it is vulnerable to severe noise, which is a common limitation of previous deblurring
methods. Specifically, using L0 gradient minimization alone cannot refine [ from a se-
vere noisy image, so this damages the text intensity estimation on a. Another failure
case is the narrow spaces between characters. Overlapping of blurred neighboring char-
acters has negative impact on the performance of the proposed approach. Although our
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Fig. 7. Failure cases. (top row) our intermediate and final results on a synthetic example; (middle
row) results with added severe noise; (bottom row) results with narrow spaces between characters.
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Fig. 8. Deblurring results on the synthetic blurred image in Fig.[I]

method might fail in extreme cases, it works reliably well on various real-world exam-
ples, as demonstrated in the next section.

Our approach also has some limitations in its technical rigorousness. Specifically,
the optimization is done through an iterative framework which is not guaranteed to
converge to the optimal solution. The different optimization steps are not unified in
an integrated cost function, and refining / through L0 gradient minimization is accom-
plished as a separate step prior to computing a. Nevertheless, our approach to solve the
optimization problem for image deblurring with domain-specific properties works well
in practice, and further analysis and improvements remain as future work.

6 Results

We implemented our method using C++. Our testing environment is a PC running MS
Windows 7 64bit version with Intel Core i7 CPU and 12GB RAM. The computation
time is a few minutes for an 1M image. For example, it took about one minute for Fig.
Ph whose size is 425 x 313 pixels. Faster response could be achieved in practice by
using a small text patch, not the whole image, for kernel estimation. More examples
can be found in the supplementary material.

Fig. [§] shows the deblurring results on the synthetically blurred text image in Fig.
m Our method not only estimates a more accurate blur kernel, but also restores sharper
texts. We also measured the restoration errors quantitatively using the synthetic exam-
ples in the paper (top row of Fig.[7]and Figs. [8|and[I0). The average PSNR value of the
blurred images is 15.66, and that of our deblurring results is 28.22. The detailed results
are provided in the supplementary material.
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(a) Blurred input (b) Fergus et al. [2] (c) Shanetal. [4]  (d) Cho and Lee [3]

(e) Xu and Jia [12] (f) Levin et al. (g) Chen et al. [1]] (h) Our result

Fig. 9. Comparison with previous methods. The input image (a) was originally provided in [T].

(@) (d

Fig. 10. Deblurring of a blurred image with different text regions. (a) ground truth image, (b)
synthetic blurred image and its kernel, (c) cropped images of (b) and our deblurring results, (d)
final deblurring result of (b).

Fig. [0 shows a comparison with previous deblurring methods. Figs. Ob-f were pro-
duced using the authors’ implementations with intensive manual parameter tuning. The
result of Chen et al. [[1]] was taken from the original paper. In Fig.[9] most natural im-
age deblurring methods fail to generate a sharp, clean text image as output. Fergus et
al’s approach [2] worked well, but the result still contains ringing artifacts and noise.
The result genereated by Chen et al.’s approach []] is less noisy, but the recovered texts
are still blurry. This may have resulted from that their histogram-based training method
does not apply well for general text images beyond their training data set. In contrast,
our method recovered a much better latent image in terms of the sharpness of the texts
as well as noise level. Our method achieved this without using any training data or
hard-coded statistics.

Since our method does not depend on the training data, we can estimate the blur ker-
nel from any text region in the given image (Fig. [T0). To illustrate this merit, we selected
and cropped two different regions from the input blurred image and estimated the blur
kernel individually (Fig. [I0¢). The estimated kernels of two regions are almost same,
and the deconvolution results show clear texts regardless of the text and background
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(d) Xu and Jia [12] (e) Levin et al. [7] (f) Our result

Fig. 11. Deblurring results of a real image which consists of texts and complex background.

colors, the sizes of fonts, and the amounts of texts. The final deconvolution result using
one of the estimated kernels is shown in Fig. [I0d.

Fig.[TT|shows a deblurring result of a postcard image which contains complex back-
ground. We used a small region (shown as the red box in Fig. [ITh) to estimate a blur
kernel, and then computed the latent image using the estimated kernel. Although the
image contains color figures and textures as well as texts, our system can restore dif-
ferent types of regions well. Our result shows sharper texts compared to the previous
deblurring method [12] which utilizes only large objects for kernel estimation.

7 Conclusion and Future Work

Previous natural image deblurring methods do not work well for text images due to
the lack of consideration of text-specific properties. We analyzed the desired properties
for latent text images and the difficulty of applying the properties to text image de-
blurring. Based on the analysis, we proposed a novel text image deblurring algorithm
which explicitly incorporates the text-specific properties into the optimization frame-
work. Experimental results show that our system can generate higher quality results on
deblurring text images than previous methods.

In this work, we define the cost function p,(+) in Eq. (8) based on text-related prop-
erties. However, we believe that as a general framework, our approach can be extended
and applied to other domains, by defining the cost function according to other domain-
specific priors. As future work, we plan to explore along this direction to develop spe-
cialized deblurring algorithms for specific types of images, such as medical images.
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